ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

[Team LiB]

UNIX &=
Networkis
Programming

Tha Sockets Matwerking &AF1

*
H
B
B

SIS LTI TVRE

Table of Contents

UNIX?Network Programming Volume 1, Third Edition: The Sockets Networking API

By W.

ichard tevens, Bill _enner, Andrew . udoff

Start Reading »

Publisher: Addison Wesley
Pub Date: November 21, 2003
ISBN: 0-13-141155-1

Pages: 1024

"Everyone will want this book because it provides a great mix of practical experience,

historical perspective, and a depth of understanding that only comes from being intimately

involved in the field. I've already enjoyed and learned from reading this book, and surely
you will too."
-Sam Leffler

The classic guide to UNIX networking APIs... now completely updated!

To build today's highly distributed, networked applications and services, you need deep
mastery of sockets and other key networking APIs. One book delivers comprehensive,
start-to-finish guidance for building robust, high-performance networked systems in any
environment: UNIX Network Programming, Volume 1, Third Edition.

Building on the legendary work of W. Richard Stevens, this edition has been fully updated
by two leading network programming experts to address today's most crucial standards,
implementations, and techniques. New topics include:

POSIX Single UNIX Specification Version 3

IPv6 APIs (including updated guidance on IPv6/IPv4 interoperability)

The new SCTP transport protocol

IPsec-based Key Management Sockets

FreeBSD 4.8/5.1, Red Hat Linux 9.x, Solaris 9, AIX 5.x, HP-UX, and Mac OS X
implementations

New network program debugging techniques

Source Specific Multicast API, the key enabler for widespread IP multicast
deployment

The authors also update and extend Stevens' definitive coverage of these crucial UNIX
networking standards and techniques:

TCP and UDP transport

Sockets: elementary, advanced, routed, and raw

I/0: multiplexing, advanced functions, nonblocking, and signal-driven
Daemons and inetd

UNIX domain protocols

ioctl operations

Page 1

http://www.informit.com/safari/author_bio.asp@ISBN=0131411551
http://www.informit.com/safari/author_bio.asp@ISBN=0131411551
http://www.informit.com/safari/author_bio.asp@ISBN=0131411551
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Broadcasting and multicasting

Threads

Streams

Design: TCP iterative, concurrent, preforked, and prethreaded servers

Since 1990, network programmers have turned to one source for the insights and
techniques they need: W. Richard Stevens' UNIX Network Programming. Now, there's an
edition specifically designed for today's challenges-and tomorrow's.

[Team LiB]

Page 2

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

[Team LiB] [rrevions] nex o

UNIX ==
Networke.
Programming

Table of Contents

UNIX?Network Programming Volume 1, Third Edition: The Sockets Networking API
By W. ichard tevens, Bill enner, Andrew . udoff

Start Reading »

Publisher: Addison Wesley
Pub Date: November 21, 2003
ISBN: 0-13-141155-1

Pages: 1024

Copyright

Addison-Wesley Professional Computing Series

Foreword
Preface
? Introduction

? Changes from the Second Edition

? Using This Book

? Source Code and Errata Availability

? Acknowledgments

Part 1:?Introduction and TCP/IP

? ?Chapter 1.?Introduction

? Section 1.1.?Introduction

? Section 1.2.?A Simple Daytime Client

? Section 1.3.?Protocol Independence

? Section 1.4.?Error Handling: Wrapper Functions

? Section 1.5.?A Simple Daytime Server

? Section 1.6.?Roadmap to Client/Server Examples in
the Text

? Section 1.7.?0SI Model

? Section 1.8.?BSD Networking History

? Section 1.9.?Test Networks and Hosts

? Section 1.10.?Unix Standards

? Section 1.11.?764-Bit Architectures

? Section 1.12.?Summary

Page 3

http://www.informit.com/safari/author_bio.asp@ISBN=0131411551
http://www.informit.com/safari/author_bio.asp@ISBN=0131411551
http://www.informit.com/safari/author_bio.asp@ISBN=0131411551
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

? Exercises

? ?Chapter 2.?The Transport Layer: TCP, UDP, and

SCTP

? Section 2.1.?Introduction

? Section 2.2.?The Big Picture

? Section 2.3.?User Datagram Protocol (UDP)

? Section 2.4.?Transmission Control Protocol (TCP)

? Section 2.5.?Stream Control Transmission Protocol
(SCTP)

? Section 2.6.?TCP Connection Establishment and
Termination

? Section 2.7.?TIME_WAIT State

? Section 2.8.?SCTP Association Establishment and
Termination
? Section 2.9.?Port Numbers

? Section 2.10.?TCP Port Numbers and Concurrent

Servers

? Section 2.11.?Buffer Sizes and Limitations

? Section 2.12.?Standard Internet Services

? Section 2.13.?Protocol Usage by Common Internet
Applications

? Section 2.14.?Summary

? Exercises

Part 2:?Elementary Sockets

? ?Chapter 3.?Sockets Introduction

? Section 3.1.?Introduction

? Section 3.2.?Socket Address Structures

? Section 3.3.?Value-Result Arguments

? Section 3.4.?Byte Ordering Functions

? Section 3.5.?Byte Manipulation Functions

? Section 3.6.2inet aton, inet addr, and
inet ntoa Functions

? Section 3.7.?inet pton and inet ntop
Functions

? Section 3.8.2s0ck ntop and Related Functions

? Section 3.9.?readn, writen, and readline
Functions

? Section 3.10.?Summary

? Exercises

? ?Chapter 4.?Elementary TCP Sockets

? Section 4.1.?Introduction

? Section 4.2.?socket Function
? Section 4.3.?2connect Function
? Section 4.4.?bind Function

? Section 4.5.?1isten Function
? Section 4.6.?2accept Function

Page 4

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

? Section 4.7.?fork and exec Functions

? Section 4.8.?Concurrent Servers

? Section 4.9.?close Function

? Section 4.10.?getsockname and
getpeername Functions

? Section 4.11.?Summary

? Exercises

? ?Chapter 5.?TCP Client/Server Example

? Section 5.1.?Introduction

? Section 5.2.?TCP Echo Server: main Function

? Section 5.3.?TCP Echo Server: str_echo
Function .

? Section 5.4.?TCP Echo Client: main Function

? Section 5.5.?2TCP Echo Client: str cli Function

? Section 5.6.?Normal Startup

? Section 5.7.?Normal Termination

? Section 5.8.?POSIX Signal Handling

? Section 5.9.?Handling SIGCHLD Signals

? Section 5.10.?wait and waitpid Functions

? Section 5.11.?Connection Abort before accept
Returns

? Section 5.12.?Termination of Server Process

? Section 5.13.?SIGPIPE Signal

? Section 5.14.?Crashing of Server Host

? Section 5.15.?Crashing and Rebooting of Server
? %ion 5.16.?Shutdown of Server Host

? Section 5.17.?Summary of TCP Example

? Section 5.18.?Data Format

? Section 5.19.?Summary

? Exercises

? ?Chapter 6.?I/0 Multiplexing: The select and poll

Functions
? Section 6.1.?Introduction

? Section 6.2.?1/0 Models

? Section 6.3.?select Function

? Section 6.4.?str cli Function (Revisited)

? Section 6.5.?Batch Input and Buffering

? Section 6.6.?2shutdown Function

? Section 6.7.?str cli Function (Revisited Again)

? Section 6.8.?TCP Echo Server (Revisited)

? Section 6.9.?pselect Function

? Section 6.10.?p011 Function

? Section 6.11.?TCP Echo Server (Revisited Again)

Page 5

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

? Section 6.12.?Summary

? Exercises

? ?Chapter 7.?Socket Options

? Section 7.1.?Introduction

? Section 7.2.2getsockopt and setsockopt
Functions

? Section 7.3.?Checking if an Option Is Supported and
Obtaining the Default

? Section 7.4.?Socket States

? Section 7.5.?Generic Socket Options

? Section 7.6.?1Pv4 Socket Options

? Section 7.7.?ICMPv6 Socket Option

? Section 7.8.?IPv6 Socket Options

? Section 7.9.?TCP Socket Options

? Section 7.10.?SCTP Socket Options

? Section 7.11.2fcntl Function
? Section 7.12.?Summary
? Exercises

? ?Chapter 8.?Elementary UDP Sockets

? Section 8.1.?Introduction

? Section 8.2.?recvfrom and sendto Functions
? Section 8.3.?UDP Echo Server: main Function

? Section 8.4.?UDP Echo Server: dg_echo Function
? Section 8.5.?UDP Echo Client: main Function

? Section 8.6.?UDP Echo Client: dg_cli Function
? Section 8.7.?lost Datagrams

? Section 8.8.?Verifying Received Response

? Section 8.9.?Server Not Running

? Section 8.10.?Summary of UDP Example

? Section 8.11.?connect Function with UDP

? Section 8.12.?dg_cli Function (Revisited)

? Section 8.13.?Lack of Flow Control with UDP

? Section 8.14.?Determining Outgoing Interface with
UDP

? Section 8.15.?TCP and UDP Echo Server Using
select

? Section 8.16.?Summary

? Exercises

? ?Chapter 9.?Elementary SCTP Sockets

? Section 9.1.?Introduction
? Section 9.2.?Interface Models
? Section 9.3.?2sctp bindx Function

Page 6

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

? Section 9.4.?sctp connectx Function

? Section 9.5.?sctp getpaddrs Function
? Section 9.6.?2sctp freepaddrs Function
? Section 9.7.?sctp getladdrs Function
? Section 9.8.?2sctp freeladdrs Function
? Section 9.9.?2sctp sendmsg Function

? Section 9.10.?sctp recvmsg Function

? Section 9.11.?sctp opt info Function
? Section 9.12.?sctp peeloff Function

? Section 9.13.?shutdown Function

? Section 9.14.?Notifications

? Section 9.15.?Summary

? Exercises

? ?Chapter 10.?SCTP Client/Server Example

? Section 10.1.?Introduction

? Section 10.2.?SCTP One-to-Many-Style Streaming
Echo Server: main Function

? Section 10.3.?SCTP One-to-Many-Style Streaming

Echo Client: main Function
? Section 10.4.?SCTP Streaming Echo Client:
str cli Function

? Section 10.5.?Exploring Head-of-Line Blocking

? Section 10.6.?Controlling the Number of Streams
? Section 10.7.?Controlling Termination

? Section 10.8.?Summary

? Exercises

? ?Chapter 11.?Name and Address Conversions

? Section 11.1.?Introduction

? Section 11.2.?Domain Name System (DNS)

? Section 11.3.?2gethostbyname Function

? Section 11.4.?gethostbyaddr Function

? Section 11.5.?getservbyname and
getservbyport Functions

? Section 11.6.?getaddrinfo Function

? Section 11.7.?gai strerror Function

? Section 11.8.?freeaddrinfo Function

? Section 11.9.?getaddrinfo Function: IPv6

? Section 11.10.?getaddrinfo Function: Examples

? Section 11.11.?host serv Function

? Section 11.12.?2tcp connect Function

? Section 11.13.2tcp listen Function

? Section 11.14.?2udp client Function

? Section 11.15.?2udp connect Function

Page 7

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

? Section 11.16.?2udp server Function

? Section 11.17.?detnameinfo Function
? Section 11.18.?Re-entrant Functions

? Section 11.19.?2gethostbyname r and

gethostbyaddr r Functions
? Section 11.20.?0Obsolete IPv6 Address Lookup

Functions
? Section 11.21.?0ther Networking Information
? Section 11.22.?Summary
? Exercises

Part 3:?Advanced Sockets

? ?Chapter 12.?IPv4 and IPv6 Interoperability

? Section 12.1.?Introduction

? Section 12.2.?IPv4 Client, IPv6 Server

? Section 12.3.?IPv6 Client, IPv4 Server

? Section 12.4.?1Pv6 Address-Testing Macros
? Section 12.5.?Source Code Portability

? Section 12.6.?Summary

? Exercises

? ?Chapter 13.?Daemon Processes and the inetd
Superserver

? Section 13.1.?Introduction

? Section 13.2.?syslogd Daemon

? Section 13.3.?svys10g Function

? Section 13.4.?daemon _init Function
? Section 13.5.?inetd Daemon

? Section 13.6.2daemon _inetd Function
? Section 13.7.?Summary

? Exercises

? ?Chapter 14.?Advanced I/0 Functions

? Section 14.1.?Introduction

? Section 14.2.?Socket Timeouts

? Section 14.3.?recv and send Functions

? Section 14.4.?readv and writev Functions

? Section 14.5.?2recvmsg_and sendmsg_Functions
? Section 14.6.?Ancillary Data

? Section 14.7.?How Much Data Is Queued?

? Section 14.8.?Sockets and Standard I/0O

? Section 14.9.?Advanced Polling
? Section 14.10.?Summary
? Exercises

Page 8

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

? ?Chapter 15.?Unix Domain Protocols

? Section 15.1.?Introduction

? Section 15.2.?Unix Domain Socket Address
Structure

? Section 15.3.?socketpair Function

? Section 15.4.?Socket Functions

? Section 15.5.?Unix Domain Stream Client/Server

? Section 15.6.?Unix Domain Datagram Client/Server

? Section 15.7.?Passing Descriptors

? Section 15.8.?Receiving Sender Credentials

? Section 15.9.?Summary

? Exercises

? ?Chapter 16.?Nonblocking I/0O

? Section 16.1.?Introduction

? Section 16.2.?Nonblocking Reads and Writes:
str cli Function (Revisited)

? Section 16.3.?Nonblocking connect

? Section 16.4.?Nonblocking connect : Daytime
Client

? Section 16.5.?Nonblocking connect : Web Client

? Section 16.6.?Nonblocking accept

? Section 16.7.?Summary

? Exercises

? ?Chapter 17.?ioct] Operations

? Section 17.1.?Introduction

? Section 17.2.?ioct] Function

? Section 17.3.?Socket Operations

? Section 17.4.?File Operations

? Section 17.5.?Interface Configuration

? Section 17.6.2get 1fi info Function
? Section 17.7.?Interface Operations

? Section 17.8.?ARP Cache Operations

? Section 17.9.?Routing Table Operations
? Section 17.10.?Summary

? Exercises

? ?Chapter 18.?Routing Sockets

? Section 18.1.?Introduction

? Section 18.2.?Datalink Socket Address Structure
? Section 18.3.?Reading and Writing

? Section 18.4.?sysct]1 Operations

? Section 18.5.2get 1fi info Function

Page 9

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

(Revisited)
? Section 18.6.?Interface Name and Index Functions
? Section 18.7.?Summary
? Exercises

? ?Chapter 19.?Key Management Sockets

? Section 19.1.?Introduction

? Section 19.2.?Reading and Writing

? Section 19.3.?Dumping the Security Association
Database (SADB)

? Section 19.4.?Creating a Static Security Association
(SA)

? Section 19.5.?Dynamically Maintaining SAs

? Section 19.6.?Summary

? Exercises

? ?Chapter 20.?Broadcasting

? Section 20.1.?Introduction

? Section 20.2.?Broadcast Addresses

? Section 20.3.?Unicast versus Broadcast

? Section 20.4.?2dg_c1i Function Using Broadcasting
? Section 20.5.?Race Conditions

? Section 20.6.?Summary

? Exercises

? ?Chapter 21.?Multicasting

? Section 21.1.?Introduction

? Section 21.2.?Multicast Addresses

? Section 21.3.?Multicasting versus Broadcasting on a
LAN

? Section 21.4.?Multicasting on a WAN

? Section 21.5.?Source-Specific Multicast

? Section 21.6.?Multicast Socket Options

? Section 21.7.?mcast join and Related Functions

? Section 21.8.2dg_c1i Function Using Multicasting

? Section 21.9.?Receiving IP Multicast Infrastructure
Session Anhnouncements

? Section 21.10.?Sending and Receiving

? Section 21.11.?Simple Network Time Protocol
(SNTP)

? Section 21.12.?Summary

? Exercises

? ?Chapter 22.?Advanced UDP Sockets

? Section 22.1.?Introduction

? Section 22.2.?Receiving Flags, Destination IP
Address, and Interface Index

? Section 22.3.?Datagram Truncation

? Section 22.4.?When to Use UDP Instead of TCP

Page 10

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

? Section 22.5.?Adding Reliability to a UDP Application

? Section 22.6.?Binding Interface Addresses
? Section 22.7.?Concurrent UDP Servers
? Section 22.8.?1Pv6 Packet Information

? Section 22.9.?1Pv6 Path MTU Control

? Section 22.10.?Summary

? Exercises

? ?Chapter 23.?Advanced SCTP Sockets

? Section 23.1.?Introduction

? Section 23.2.?An Autoclosing One-to-Many-Style
Server

? Section 23.3.?Partial Delivery

? Section 23.4.?Notifications

? Section 23.5.?Unordered Data

? Section 23.6.?Binding a Subset of Addresses

? Section 23.7.?Determining Peer and Local Address
Information

? Section 23.8.?Finding an Association ID Given an IP
Address

? Section 23.9.?Heartbeating and Address Failure

? Section 23.10.?Peeling Off an Association

? Section 23.11.?Controlling Timing

? Section 23.12.?When to Use SCTP Instead of TCP

? Section 23.13.?Summary

? Exercises

? ?Chapter 24.?0ut-of-Band Data

? Section 24.1.?Introduction

? Section 24.2.?TCP Out-of-Band Data

? Section 24.3.?sockatmark Function

? Section 24.4.?TCP Out-of-Band Data Recap

? Section 24.5.?Summary

? Exercises

? ?Chapter 25.?Signal-Driven I/O

? Section 25.1.?Introduction

? Section 25.2.?Signal-Driven I/O for Sockets

? Section 25.3.?UDP _Echo Server Using SIGIO

? Section 25.4.?Summary

? Exercises

? ?Chapter 26.?Threads

? Section 26.1.?Introduction
? Section 26.2.?Basic Thread Functions: Creation and
Termination

Page 11

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

? Section 26.3.?str cli Function Using Threads

? Section 26.4.?TCP Echo Server Using Threads

? Section 26.5.?Thread-Specific Data

? Section 26.6.?Web Client and Simultaneous
Connections (Continued)

? Section 26.7.?Mutexes: Mutual Exclusion

? Section 26.8.?Condition Variables

? Section 26.9.?Web Client and Simultaneous
Connections (Continued)

? Section 26.10.?Summary

? Exercises

? ?Chapter 27.?1P Options

? Section 27.1.?Introduction

? Section 27.2.?1Pv4 Options

? Section 27.3.?IPv4 Source Route Options

? Section 27.4.?1Pv6 Extension Headers

? Section 27.5.?IPv6 Hop-by-Hop Options and
Destination Options

? Section 27.6.?IPv6 Routing Header

? Section 27.7.?1Pv6 Sticky Options

? Section 27.8.?Historical IPv6 Advanced API

? Section 27.9.?Summary

? Exercises

? ?Chapter 28.?Raw Sockets

? Section 28.1.?Introduction

? Section 28.2.?Raw Socket Creation

? Section 28.3.?Raw Socket Output

? Section 28.4.?Raw Socket Input

? Section 28.5.?ping Program

? Section 28.6.2traceroute Program

? Section 28.7.?An ICMP Message Daemon
? Section 28.8.?Summary

? Exercises

? ?Chapter 29.?Datalink Access

? Section 29.1.?Introduction

? Section 29.2.?BSD Packet Filter (BPF)

? Section 29.3.?Datalink Provider Interface (DLPI)

? Section 29.4.?Linux: SOCK_PACKET and

PF_PACKET
? Section 29.5.?21ibpcap: Packet Capture Library
? Section 29.6.?1ibnet: Packet Creation and
Injection Library
? Section 29.7.?Examining the UDP Checksum Field
? Section 29.8.?Summary

Page 12

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

? Exercises

? ?Chapter 30.?Client/Server Design Alternatives

? Section 30.1.?Introduction

? Section 30.2.?TCP Client Alternatives

? Section 30.3.?TCP Test Client

? Section 30.4.?TCP Iterative Server
? Section 30.5.?TCP Concurrent Server, One Child per
Client

? Section 30.6.?TCP Preforked Server, No Locking
Around accept

? Section 30.7.?TCP Preforked Server, File Locking
Around accept

? Section 30.8.?TCP Preforked Server, Thread Locking
Around accept

? Section 30.9.?TCP Preforked Server, Descriptor

Passing
? Section 30.10.?TCP Concurrent Server, One Thread

per Client
? Section 30.11.?TCP Prethreaded Server,

per-Thread accept
? Section 30.12.?TCP Prethreaded Server, Main

Thread accept
? Section 30.13.?Summary

? Exercises

? ?Chapter 31.?Streams

? Section 31.1.?Introduction

? Section 31.2.?0verview

? Section 31.3.?2getmsg and putmsg Functions

? Section 31.4.?getpmsg and putpmsg Functions
? Section 31.5.?2ioct] Function

? Section 31.6.?Transport Provider Interface (TPI)

? Section 31.7.?Summary

? Exercises

?Appendix A.?IPv4, IPv6, ICMPv4, and ICMPv6

? Section A.1.?Introduction

? Section A.2.?IPv4 Header

? Section A.3.?IPv6 Header

? Section A.4.?1Pv4 Addresses

? Section A.5.?1Pv6 Addresses

? Section A.6.?Internet Control Message Protocols
(ICMPv4 and ICMPv6)

?Appendix B.?Virtual Networks

? Section B.1.?Introduction

? Section B.2.?The MBone

? Section B.3.?The 6bone

? Section B.4.?IPv6 Transition: 6to4

Page 13

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

?Appendix C.?Debugging Technigues

? Section C.1.?System Call Tracing

? Section C.2.?Standard Internet Services

? Section C.3.?250Ck Program

? Section C.4.?Small Test Programs

? Section C.5.?tcpdump Program

? Section C.6.?2netstat Program

? Section C.7.?21s0f Program

?Appendix D.?Miscellaneous Source Code

? Section D.1.?2unp.h Header

? Section D.2.?2config.h Header

? Section D.3.?Standard Error Functions

?Appendix E.?Solutions to Selected Exercises

? Chapter1
? Chapter 2
? Chapter 3
? Chapter 4
? Chapter 5
? Chapter 6
? Chapter?7
? Chapter 8
? Chapter 9

? Chapter 10
? Chapter 11
? Chapter 12
? Chapter 13
? Chapter 14
? Chapter 15
? Chapter 16
? Chapter 17
? Chapter 18
? Chapter 20
? Chapter 21
? Chapter 22
? Chapter 24
? Chapter 25
? Chapter 26
? Chapter 27

? Chapter 28

Page 14

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

? Chapter 29
? Chapter 30
? Chapter 31

?Bibliography
T
[Team LiB]

Page 15

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

[Team LiB]

Copyright

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and
Addison-Wesley was aware of a trademark claim, the designations have been printed with
initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

The publisher offers discounts on this book when ordered in quantity for bulk purchases
and special sales. For more information, please contact:

.S. orporate nd overnment ales
?800)?82-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact:

International ales
?317)?81-3793
international@pearsontechgroup.com

Visit Addison-Wesley on the Web: www.awprofessional.com

Library of Congress Cataloging-in-Publication Data

A CIP catalog record for this book can be obtained from the Library of Congress.
Copyright 72004 by Pearson Education, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form, or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior consent of the publisher. Printed in
the United States of America. Published simultaneously in Canada.

For information on obtaining permission for use of material from this work, please submit a
written request to:

earson ducation, nc.

ights nd ontracts epartment
?5 rlington treet, uite?00
oston, A?2116
ax:?617)?48-7047

Text printed on recycled paper
First printing
Dedication

To Rich.

Aloha nui loa.

[Team LiB]

Page 16

mailto:corpsales@pearsontechgroup.com
mailto:international@pearsontechgroup.com
http://www.awprofessional.com/default.htm
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

[Team LiB]

Addison-Wesley Professional Computing
Series

Brian W. Kernighan and Craig Partridge, Consulting Editors

Matthew H. Austern, Generic Programming and the STL: Using and Extending the C++
Standard Template Library

David R. Butenhof, Programming with POSIX?Threads
Brent Callaghan, NFS Illustrated
Tom Cargill, C++ Programming Style

William R. Cheswick/Steven M. Bellovin/Aviel D. Rubin, Firewalls and Internet Security,
Second Edition: Repelling the Wily Hacker

David A. Curry, UNIX?System Security: A Guide for Users and System Administrators
Stephen C. Dewhurst, C++ Gotchas: Avoiding Common Problems in Coding and Design

Erich Gamma/Richard Helm/Ralph Johnson/John Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software

Erich Gamma/Richard Helm/Ralph Johnson/John Vlissides, Design Patterns CD: Elements
of Reusable Object-Oriented Software

Peter Haggar, Practical Java?Programming Language Guide

David R. Hanson, C Interfaces and Implementations: Techniques for Creating Reusable
Software

Mark Harrison/Michael McLennan, Effective Tcl/Tk Programming: Writing Better Programs
with Tcl and Tk

Michi Henning/Steve Vinoski, Advanced CORBA?Programming with C++
Brian W. Kernighan/Rob Pike, The Practice of Programming

S. Keshav, An Engineering Approach to Computer Networking: ATM Networks, the Internet,
and the Telephone Network

John Lakos, Large-Scale C++ Software Design
Scott Meyers, Effective C++ CD: 85 Specific Ways to Improve Your Programs and Designs

Scott Meyers, Effective C++, Second Edition: 50 Specific Ways to Improve Your Programs
and Designs

Scott Meyers, More Effective C++: 35 New Ways to Improve Your Programs and Designs

Scott Meyers, Effective STL: 50 Specific Ways to Improve Your Use of the Standard
Template Library

Robert B. Murray, C++ Strategies and Tactics

David R. Musser/Gillmer J. Derge/Atul Saini, STL Tutorial and Reference Guide, Second
Edition: C++ Programming with the Standard Template Library

Page 17

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

John K. Ousterhout, Tcl and the Tk Toolkit
Craig Partridge, Gigabit Networking

Radia Perlman, Interconnections, Second Edition: Bridges, Routers, Switches, and
Internetworking Protocols

Stephen A. Rago, UNIX?System V Network Programming

Curt Schimmel, UNIX?Systems for Modern Architectures: Symmetric Multiprocessing and
Caching for Kernel Programmers

W. Richard Stevens/Bill Fenner/Andrew M. Rudoff, UNIX Network Programming Volume 1,
Third Edition: The Sockets Networking API

W. Richard Stevens, Advanced Programming in the UNIX?Environment
W. Richard Stevens, TCP/IP Illustrated, Volume 1: The Protocols

W. Richard Stevens, TCP/IP Illustrated, Volume 3: TCP for Transactions, HTTP, NNTP, and
the UNIX?Domain Protocols

W. Richard Stevens/Gary R. Wright, TCP/IP Illustrated Volumes 1-3 Boxed Set

John Viega/Gary McGraw, Building Secure Software: How to Avoid Security Problems the
Right Way

Gary R. Wright/W. Richard Stevens, TCP/IP Illustrated, Volume 2: The Implementation
Ruixi Yuan/ W. Timothy Strayer, Virtual Private Networks: Technologies and Solutions

Visit www.awprofessional.com/series/professionalcomputing for more
information about these titles.

[Team LiB]

Page 18

http://www.awprofessional.com/series/professionalcomputing
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

[Team LiB]

Foreword

When the original text of this book arrived in 1990, it was quickly recognized as the
definitive reference for programmers to learn network programming techniques. Since
then, the art of computer networking has changed dramatically. All it takes is a look at the
return address for comments from the original text ("uunet!hsi!netbook") to make this
clear. (How many readers will even recognize this as an address in the UUCP dialup
network that was commonplace in the 1980s?)

Today, UUCP networks are a rarity and new technologies such as wireless networks are
becoming ubiquitous! With these changes, new network protocols and programming
paradigms have been developed. But, programmers have lacked a good reference from
which to learn the intricacies of these new techniques.

This book fills that void. Readers who have a dog-eared copy of the original book will want
a new copy for the updated programming techniques and the substantial new material
describing next-generation protocols such as IPv6. Everyone will want this book because it
provides a great mix of practical experience, historical perspective, and a depth of
understanding that only comes from being intimately involved in the field.

I've already enjoyed and learned from reading this book, and surely you will, too.

Sam Leffler

[Team LiB]

Page 19

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

[Team LiB] [rrevions] nex o

Preface

Introduction

Changes from the Second Edition
Using This Book
Source Code and Errata Availability

Acknowledgments
s =

[Team LiB]

Page 20

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

[Team LiB]

Introduction

This book is for people who want to write programs that communicate with each other
using an application program interface (API) known as sockets. Some readers may be very
familiar with sockets already, as that model has become synonymous with network
programming. Others may need an introduction to sockets from the ground up. The goal of
this book is to offer guidance on network programming for beginners as well as
professionals, for those developing new network-aware applications as well as those
maintaining existing code, and for people who simply want to understand how the
networking components of their system function.

All the examples in this text are actual, runnable code tested on Unix systems. However,
many non-Unix systems support the sockets API and the examples are largely operating
system-independent, as are the general concepts we present. Virtually every operating
system (OS) provides numerous network-aware applications such as Web browsers, email
clients, and file-sharing servers. We discuss the usual partitioning of these applications
into client and server and write our own small examples of these many times throughout
the text.

Presenting this material in a Unix-oriented fashion has the natural side effect of providing
background on Unix itself, and on TCP/IP as well. Where more extensive background may
be interesting, we refer the reader to other texts. Four texts are so commonly mentioned in
this book that we've assigned them the following abbreviations:

e APUE: Advanced Programming in the UNIX Environment [Stevens 1992]
e TCPvl: TCP/IP Illustrated, Volume 1 [Stevens 1994]

e TCPv2: TCP/IP Illustrated, Volume 2 [Wright and Stevens 1995]

e TCPv3: TCP/IP Illustrated, Volume 3 [Stevens 1996]

TCPv2 contains a high level of detail very closely related to the material in this book, as it
describes and presents the actual 4.4BSD implementation of the network programming
functions for the sockets API (socket, bind, connect, and so on). If one understands the

implementation of a feature, the use of that feature in an application makes more sense.

[Team LiB]

Page 21

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

[Team LiB]

Changes from the Second Edition

Sockets have been around, more or less in their current form, since the 1980s, and it is a
tribute to their initial design that they have continued to be the network API of choice.
Therefore, it may come as a surprise to learn that quite a bit has changed since the second
edition of this book was published in 1998. The changes we've made to the text are
summarized as follows:

This new edition contains updated information on IPv6, which was only in draft form
at the time of publication of the second edition and has evolved somewhat.

The descriptions of functions and the examples have all been updated to reflect the
most recent POSIX specification (POSIX 1003.1-2001), also known as the Single
Unix Specification Version 3.

The coverage of the X/Open Transport Interface (XTI) has been dropped. That API
has fallen out of common use and even the most recent POSIX specification does
not bother to cover it.

The coverage of TCP for transactions (T/TCP) has been dropped.

Three chapters have been added to describe a relatively new transport protocol,
SCTP. This reliable, message-oriented protocol provides multiple streams between
endpoints and transport-level support for multihoming. It was originally designed
for transport of telephony signaling across the Internet, but provides some features
that many applications could take advantage of.

A chapter has been added on key management sockets, which may be used with
Internet Protocol Security (IPsec) and other network security services.

The machines used, as well as the versions of their variants of Unix, have all been
updated, and the examples have been updated to reflect how these machines
behave. In many cases, examples were updated because OS vendors fixed bugs or
added features, but as one might expect, we've discovered the occasional new bug
here and there. The machines used for testing the examples in this book were:

o Apple Power PC running MacOS/X 10.2.6

o HP PA-RISC running HP-UX 11i

o IBM Power PC running AIX 5.1

o Intel x86 running FreeBSD 4.8

o Intel x86 running Linux 2.4.7

o Sun SPARC running FreeBSD 5.1

o Sun SPARC running Solaris 9

See Figure 1.16 for details on how these machines were used.

Volume 2 of this UNIX Network Programming series, subtitled Interprocess
Communications, builds on the material presented here to cover message passing,
synchronization, shared memory, and remote procedure calls.

[Team LiB]

Page 22

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

[Team LiB]

Using This Book

This text can be used as either a tutorial on network programming or as a reference for
experienced programmers. When used as a tutorial or for an introductory class on network
programming, the emphasis should be on Part 2, "Elementary Sockets" (Chapters 3
through 11), followed by whatever additional topics are of interest. Part 2 covers the basic
socket functions for both TCP and UDP, along with SCTP, I/O multiplexing, socket options,
and basic name and address conversions. Chapter 1 should be read by all readers,
especially Section 1.4, which describes some wrapper functions used throughout the text.
Chapter 2 and perhaps Appendix A should be referred to as necessary, depending on the
reader's background. Most of the chapters in Part 3, "Advanced Sockets," can be read
independently of the others in that part of the book.

To aid in the use of this book as a reference, a thorough index is provided, along with
summaries on the end papers of where to find detailed descriptions of all the functions and
structures. To help those reading topics in a random order, numerous references to related
topics are provided throughout the text.

[Team LiB]

Page 23

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

[Team LiB]

Source Code and Errata Availability

The source code for all the examples that appear in the book is available on the Web at
www.unpbook.com. The best way to learn network programming is to take these programs,
modify them, and enhance them. Actually writing code of this form is the only way to
reinforce the concepts and techniques. Numerous exercises are also provided at the end of
each chapter, and most answers are provided in Appendix E.

A current errata for the book is also available from the same Web site.

[Team LiB]

Page 24

http://www.unpbook.com/default.htm
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

[Team LiB]

Acknowledgments

The first and second editions of this book were written solely by W. Richard Stevens, who
passed away on September 1, 1999. His books have set a high standard and are largely
regarded as concise, laboriously detailed, and extremely readable works of art. In providing
this revision, the authors struggled to maintain the quality and thorough coverage of Rich's
earlier editions and any shortcomings in this area are entirely the fault of the new authors.

The work of an author is only as good as the support from family members and friends. Bill
Fenner would like to thank his dear wife, Peggy (beach ?mile champion), and their
housemate, Christopher Boyd for letting him off all his household chores while working in
the treehouse on this project. Thanks are also due to his friend, Jerry Winner, whose
prodding and encouragement were invaluable. Likewise, Andy Rudoff wants to specifically
thank his wife, Ellen, and girls, Jo and Katie, for their understanding and encouragement
throughout this project. We simply could not have done this without all of you.

Randall Stewart with Cisco Systems, Inc. provided much of the SCTP material and
deserves a special acknowledgment for this much-valued contribution. The coverage of this
new and interesting topic simply would not exist without Randall's work.

The feedback from our reviewers was invaluable for catching errors, pointing out areas that
required more explanation, and suggesting improvements to our text and code examples.
The authors would like to thank: James Carlson, Wu-Chang Feng, Rick Jones, Brian
Kernighan, Sam Leffler, John McCann, Craig Metz, Ian Lance Taylor, David Schwartz, and
Gary Wright.

Numerous individuals and their organizations went beyond the normal call of duty to
provide either a loaner system, software, or access to a system, all of which were used to
test some of the examples in the text.

e Jessie Haug of IBM Austin provided an AIX system and compilers.

e Rick Jones and William Gilliam of Hewlett-Packard provided access to multiple
systems running HP-UX.

The staff at Addison Wesley has been a true pleasure to work with: Noreen Regina,
Kathleen Caren, Dan DePasquale, Anthony Gemellaro, and a very special thanks to our
editor, Mary Franz.

In a trend that Rich Stevens instituted (but contrary to popular fads), we produced
camera-ready copy of the book using the wonderful Groff package written by James Clark,
created the illustrations using the gpic program (using many of Gary Wright's macros),
produced the tables using the gtbl program, performed all the indexing, and did the final
page layout. Dave Hanson's 1loom program and some scripts by Gary Wright were used to
include the source code in the book. A set of awk scripts written by Jon Bentley and Brian
Kernighan helped in producing the final index.

The authors welcome electronic mail from any readers with comments, suggestions, or bug
fixes.

Bill enner
Woodside, alifornia

Andrew . udoff
Boulder, olorado

October?003
authors@unpbook.com

Page 25

mailto:authors@unpbook.com
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.unpbook.com

[« Frevious [nexr o |
[Team LiB]

Page 26

http://www.unpbook.com/default.htm
http://www.unpbook.com
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

[Team LiB]

Part 1: Introduction and TCP/IP

Chapter 1.?Introduction

Chapter 2.?The Transport Layer: TCP, UDP, and SCTP

[Team LiB]

Page 27

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

[Team LiB]

Chapter 1. Introduction

Section 1.1.?Introduction

Section 1.2.?A Simple Daytime Client

Section 1.3.?Protocol Independence

Section 1.4.?Error Handling: Wrapper Functions

Section 1.5.?A Simple Daytime Server

Section 1.6.?Roadmap to Client/Server Examples in the Text

Section 1.7.?0SI Model

Section 1.8.?BSD Networking History

Section 1.9.7?Test Networks and Hosts

Section 1.10.?Unix Standards

Section 1.11.?64-Bit Architectures

Section 1.12.?Summary

Exercises

[Team LiB]

Page 28

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

[Team LiB]

1.1 Introduction

When writing programs that communicate across a computer network, one must first
invent a protocol, an agreement on how those programs will communicate. Before delving
into the design details of a protocol, high-level decisions must be made about which
program is expected to initiate communication and when responses are expected. For
example, a Web server is typically thought of as a long-running program (or daemon) that
sends network messages only in response to requests coming in from the network. The
other side of the protocol is a Web client, such as a browser, which always initiates
communication with the server. This organization into client and server is used by most
network-aware applications. Deciding that the client always initiates requests tends to
simplify the protocol as well as the programs themselves. Of course, some of the more
complex network applications also require asynchronous callback communication, where
the server initiates a message to the client. But it is far more common for applications to
stick to the basic client/server model shown in Figure 1.1.

Figure 1.1. Network application: client and server.

. application protocol
client (g

server

Clients normally communicate with one server at a time, although using a Web browser as
an example, we might communicate with many different Web servers over, say, a
10-minute time period. But from the server's perspective, at any given point in time, it is
not unusual for a server to be communicating with multiple clients. We show this in Figure
1.2. Later in this text, we will cover several different ways for a server to handle multiple
clients at the same time.

Figure 1.2. Server handling multiple clients at the same time.

client

client e} - server

client

The client application and the server application may be thought of as communicating via a
network protocol, but actually, multiple layers of network protocols are typically involved.
In this text, we focus on the TCP/IP protocol suite, also called the Internet protocol suite.
For example, Web clients and servers communicate using the Transmission Control
Protocol, or TCP. TCP, in turn, uses the Internet Protocol, or IP, and IP communicates with
a datalink layer of some form. If the client and server are on the same Ethernet, we would
have the arrangement shown in Figure 1.3.

Figure 1.3. Client and server on the same Ethernet communicating
using TCP.

Page 29

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

user Weeb application protocol Wb -
. fag- - - = L e e - - application layer
process client seTvVer -
4) t
1 1
T o
. TCP® protocol T
TCP ' == = == == L2 R ! TCP transport laver

protocol stack
within kernel

network laver

(s
3
-4
%

=

Ethernet
driver

Ethernet protocol ! Ethernet
e Bt . - datalink layer
1 driver :

el =it S T e

Ethernet

Even though the client and server communicate using an application protocol, the
transport layers communicate using TCP. Note that the actual flow of information between
the client and server goes down the protocol stack on one side, across the network, and up
the protocol stack on the other side. Also note that the client and server are typically user
processes, while the TCP and IP protocols are normally part of the protocol stack within the
kernel. We have labeled the four layers on the right side of Figure 1.3.

TCP and IP are not the only protocols that we will discuss. Some clients and servers use
the User Datagram Protocol (UDP) instead of TCP, and we will discuss both protocols in
more detail in Chapter 2. Furthermore, we have used the term "IP," but the protocol, which
has been in use since the early 1980s, is officially called IP version 4 (IPv4). A new
version, IP version 6 (IPv6) was developed during the mid-1990s and could potentially
replace IPv4 in the years to come. This text covers the development of network
applications using both IPv4 and IPv6. Appendix A provides a comparison of IPv4 and
IPv6, along with other protocols that we will discuss.

The client and server need not be attached to the same local area network (LAN) as we
show in Figure 1.3. For instance, in Figure 1.4, we show the client and server on different
LANs, with both LANs connected to a wide area network (WAN) using routers.

Figure 1.4. Client and server on different LANs connected through a
WAN.

SOTVET
application

hist
with
TCP/AF

LAN LAN

) (o)
roviler roiter
WAN¢
A
[rouler H rouler H rouler H router |
L A

Routers are the building blocks of WANs. The largest WAN today is the Internet. Many
companies build their own WANs and these private WANs may or may not be connected to
the Internet.

The remainder of this chapter provides an introduction to the various topics that are
covered in detail later in the text. We start with a complete example of a TCP client, albeit
a simple one, that demonstrates many of the function calls and concepts that we will
encounter throughout the text. This client works with IPv4 only, and we show the changes

Page 30

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

required to work with IPv6. A better solution is to write protocol-independent clients and
servers, and we will discuss this in Chapter 11. This chapter also shows a complete TCP
server that works with our client.

To simplify all our code, we define our own wrapper functions for most of the system
functions that we call throughout the text. We can use these wrapper functions most of the
time to check for an error, print an appropriate message, and terminate when an error
occurs. We also show the test network, hosts, and routers used for most examples in the
text, along with their hostnames, IP addresses, and operating systems.

Most discussions of Unix these days include the term "X," which is the standard that most
vendors have adopted. We describe the history of POSIX and how it affects the Application
Programming Interfaces (APIs) that we describe in this text, along with the other players
in the standards arena.

[Team LiB]

Page 31

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

[Team LiB]

1.2 A Simple Daytime Client

Let's consider a specific example to introduce many of the concepts and terms that we will
encounter throughout the book. Figure 1.5 is an implementation of a TCP time-of-day
client. This client establishes a TCP connection with a server and the server simply sends
back the current time and date in a human-readable format.

Figure 1.5 TCP daytime client.

intro/daytimetcpcli.c

1 #include "unp.h"

2 int

3 main(int argc, char **argv)

4 |

5 int sockfd, n;

o char recvline [MAXLINE + 17];

7 struct sockaddr in servaddr;

8 if (argc '= 2)

9 err quit("usage: a.out <IPaddress>");
10 if ((sockfd = socket (AF_INET, SOCK_ STREAM, 0)) < 0)
11 err sys("socket error");
12 bzero (&servaddr, sizeof (servaddr));
13 servaddr.sin family = AF INET;
14 servaddr.sin port = htons(13); /* daytime server */
15 if (inet pton(AF INET, argv[l], é&servaddr.sin addr) <= 0)
16 err quit("inet pton error for %s", argv[1l]);

17 if (connect (sockfd, (SA *) &servaddr, sizeof (servaddr)) < 0)
18 err sys("connect error");

19 while ((n = read(sockfd, recvline, MAXLINE)) > 0) {
20 recvline[n] = 0; /* null terminate */
21 if (fputs(recvline, stdout) == EOF)
22 err sys("fputs error");
23 }
24 if (n < 0)
25 err sys("read error");
26 exit (0);
27 }

This is the format that we will use for all the source code in the text. Each nonblank line is
numbered. The text describing portions of the code notes the starting and ending line
numbers in the left margin, as shown shortly. Sometimes a paragraph is preceded by a
short, descriptive, bold heading, providing a summary statement of the code being
described.

The horizontal rules at the beginning and end of a code fragment specify the source code
filename: the file daytimetcpcli.c in the directory intro for this example. Since the
source code for all the examples in the text is freely available (see the Preface), this lets
you locate the appropriate source file. Compiling, running, and especially modifying these
programs while reading this text is an excellent way to learn the concepts of network

Page 32

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

programming.

Throughout the text, we will use indented, parenthetical notes such as this to describe
implementation details and historical points.

If we compile the program into the default a.out file and execute it, we will have the
following output:

solaris % a.out 206.168.112.96 our input

Mon May 26 20:58:40 2003 the program'’s output

Whenever we display interactive input and output, we will show our typed input in bold
and the computer output 1ike this. Comments are added on the right side in italics. We
will always include the name of the system as part of the shell prompt (solaris in this
example) to show on which host the command was run. Figure 1.16 shows the systems
used to run most of the examples in this book. The hostnames usually describe the
operating system (OS) as well.

There are many details to consider in this 27-line program. We mention them briefly here,
in case this is your first encounter with a network program, and provide more information
on these topics later in the text.

Include our own header

1 We include our own header, unp.h, which we will show in Section D.1. This header
includes numerous system headers that are needed by most network programs and defines
various constants that we use (e.g., MAXLINE).

Command-line arguments

2 3 This is the definition of the main function along with the command-line arguments. We
have written the code in this text assuming an American National Standards Institute
(ANSI) C compiler (also referred to as an ISO C compiler).

Create TCP socket

10 11 The socket function creates an Internet (AF_INET) stream (SOCK_ STREAM) socket,

which is a fancy name for a TCP socket. The function returns a small integer descriptor that
we can use to identify the socket in all future function calls (e.g., the calls to connect and
read that follow).

The if statement contains a call to the socket function, an assignment of the return value
to the variable named sockfd, and then a test of whether this assigned value is less than
0. While we could break this into two C statements,

sockfd = socket (AF INET, SOCK STREAM, O0);
if (sockfd < 0)

it is a common C idiom to combine the two lines. The set of parentheses around the
function call and assignment is required, given the precedence rules of C (the less-than
operator has a higher precedence than assignment). As a matter of coding style, the
authors always place a space between the two opening parentheses, as a visual indicator
that the left-hand side of the comparison is also an assignment. (This style is copied from
the Minix source code [Tanenbaum 1987].) We use this same style in the while statement
later in the program.

Page 33

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

We will encounter many different uses of the term "socket." First, the API that we are
using is called the sockets API. In the preceding paragraph, we referred to a function
named socket that is part of the sockets API. In the preceding paragraph, we also referred
to a TCP socket, which is synonymous with a TCP endpoint.

If the call to socket fails, we abort the program by calling our own err sys function. It
prints our error message along with a description of the system error that occurred (e.g.,
"Protocol not supported" is one possible error from socket) and terminates the process.
This function, and a few others of our own that begin with err , are called throughout the
text. We will describe them in Section D.3.

Specify server's IP address and port

12 16 We fill in an Internet socket address structure (a sockaddr in structure named
servaddr) with the server's IP address and port number. We set the entire structure to 0
using bzero, set the address family to AF_INET, set the port humber to 13 (which is the
well-known port of the daytime server on any TCP/IP host that supports this service, as
shown in Figure 2.18), and set the IP address to the value specified as the first
command-line argument (argv[1]). The IP address and port number fields in this structure
must be in specific formats: We call the library function htons ("host to network short") to
convert the binary port number, and we call the library function inet pton ("presentation
to numeric") to convert the ASCII command-line argument (such as 206.62.226.35 when
we ran this example) into the proper format.

bzero is not an ANSI C function. It is derived from early Berkeley networking code.
Nevertheless, we use it throughout the text, instead of the ANSI C memset function,
because bzero is easier to remember (with only two arguments) than memset (with three
arguments). Almost every vendor that supports the sockets API also provides bzero, and if
not, we provide a macro definition of it in our unp.h header.

Indeed, the author of TCPv3 made the mistake of swapping the second and third
arguments to memset in 10 occurrences in the first printing. A C compiler cannot catch this
error because both arguments are of the same type. (Actually, the second argument is an
int and the third argument is size t, which is typically an unsigned int, but the values
specified, 0 and 16, respectively, are still acceptable for the other type of argument.) The
call to memset still worked, but did nothing. The number of bytes to initialize was specified
as 0. The programs still worked, because only a few of the socket functions actually require
that the final 8 bytes of an Internet socket address structure be set to 0. Nevertheless, it
was an error, and one that could be avoided by using bzero, because swapping the two
arguments to bzero will always be caught by the C compiler if function prototypes are
used.

This may be your first encounter with the inet pton function. It is new with IPv6 (which
we will talk more about in Appendix A). Older code uses the inet addr function to convert
an ASCII dotted-decimal string into the correct format, but this function has numerous
limitations that inet pton corrects. Do not worry if your system does not (yet) support this
function; we will provide an implementation of it in Section 3.7.

Establish connection with server

17 18 The connect function, when applied to a TCP socket, establishes a TCP connection
with the server specified by the socket address structure pointed to by the second
argument. We must also specify the length of the socket address structure as the third
argument to connect, and for Internet socket address structures, we always let the
compiler calculate the length using C's sizeof operator.

In the unp.h header, we #define SA to be struct sockaddr, that is, a generic socket
address structure. Everytime one of the socket functions requires a pointer to a socket

Page 34

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

address structure, that pointer must be cast to a pointer to a generic socket address
structure. This is because the socket functions predate the ANSI C standard, so the void *
pointer type was not available in the early 1980s when these functions were developed.
The problem is that "struct sockaddr" is 15 characters and often causes the source code
line to extend past the right edge of the screen (or page, in the case of a book), so we
shorten it to sA. We will talk more about generic socket address structures when

explaining Figure 3.3.
Read and display server's reply

19 25 We read the server's reply and display the result using the standard I/O fputs
function. We must be careful when using TCP because it is a byte-stream protocol with no
record boundaries. The server's reply is normally a 26-byte string of the form

Mon May 26 20 : 58 : 40 2003\r\n

where \r is the ASCII carriage return and \n is the ASCII linefeed. With a byte-stream
protocol, these 26 bytes can be returned in numerous ways: a single TCP segment
containing all 26 bytes of data, in 26 TCP segments each containing 1 byte of data, or any
other combination that totals to 26 bytes. Normally, a single segment containing all 26
bytes of data is returned, but with larger data sizes, we cannot assume that the server's
reply will be returned by a single read. Therefore, when reading from a TCP socket, we
always need to code the read in a loop and terminate the loop when either read returns 0
(i.e., the other end closed the connection) or a value less than 0 (an error).

In this example, the end of the record is being denoted by the server closing the
connection. This technique is also used by version 1.0 of the Hypertext Transfer Protocol
(HTTP). Other techniques are available. For example, the Simple Mail Transfer Protocol
(SMTP) marks the end of a record with the two-byte sequence of an ASCII carriage return
followed by an ASCII linefeed. Sun Remote Procedure Call (RPC) and the Domain Name
System (DNS) place a binary count containing the record length in front of each record
that is sent when using TCP. The important concept here is that TCP itself provides no
record markers: If an application wants to delineate the ends of records, it must do so
itself and there are a few common ways to accomplish this.

Terminate program

26 exit terminates the program. Unix always closes all open descriptors when a process
terminates, so our TCP socket is now closed.

As we mentioned, the text will go into much more detail on all the points we just
described.

[Team LiB]

Page 35

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

[Team LiB]

1.3 Protocol Independence

Our program in Figure 1.5 is protocol-dependent on IPv4. We allocate and initialize a
sockaddr in structure, we set the family of this structure to AF INET, and we specify the
first argument to socket as AF_INET.

To modify the program to work under IPv6, we must change the code. Figure 1.6 shows a
version that works under IPv6, with the changes highlighted in bold.

Figure 1.6 Version of Figure 1.5 for IPv6.

intro/daytimetcpclivé.c

1 #include "unp.h"

2 int

3 main(int argc, char **argv)

4 |

5 int sockfd, n;

o char recvline [MAXLINE + 17];

7 struct sockaddr in6é servaddr;

8 if (argc '= 2)

9 err quit("usage: a.out <IPaddress>");
10 if ((sockfd = socket(AF_INETG, SOCK_STREAM, 0)) < 0)
11 err sys("socket error");
12 bzero (&servaddr, sizeof (servaddr));
13 servaddr.sin6_family = AF_INET6;

14 servaddr.sin6é_port = htons (13); /* daytime server */
15 if (inet pton (AF_INET6, argv[l], &servaddr.siné_addr) <= 0)
16 err quit("inet pton error for %s", argv[1l]);

17 if (connect (sockfd, (SA *) &servaddr, sizeof (servaddr)) < 0)
18 err sys("connect error");

19 while ((n = read(sockfd, recvline, MAXLINE)) > 0) {
20 recvline[n] = 0; /* null terminate */
21 if (fputs(recvline, stdout) == EOF)
22 err sys("fputs error");
23 }
24 if (n < 0)
25 err sys("read error");
26 exit (0);
27 }

Only five lines are changed, but what we now have is another protocol-dependent
program; this time, it is dependent on IPv6. It is better to make a program
protocol-independent. Figure 11.11 will show a version of this client that is
protocol-independent by using the getaddrinfo function (which is called by tcp connect).

Another deficiency in our programs is that the user must enter the server's IP address as a
dotted-decimal number (e.g., 206.168.112.219 for the IPv4 version). Humans work better
with names instead of numbers (e.g., www.unpbook.com). In Chapter 11, we will discuss
the functions that convert between hostnames and IP addresses, and between service

Page 36

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

names and ports. We purposely put off the discussion of these functions and continue
using IP addresses and port numbers so we know exactly what goes into the socket
address structures that we must fill in and examine. This also avoids complicating our
discussion of network programming with the details of yet another set of functions.

[Team LiB]

Page 37

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

[Team LiB]

1.4 Error Handling: Wrapper Functions

In any real-world program, it is essential to check every function call for an error return.
In Figure 1.5, we check for errors from socket, inet pton, connect, read, and fputs, and
when one occurs, we call our own functions, err quit and err sys, to print an error
message and terminate the program. We find that most of the time, this is what we want
to do. Occasionally, we want to do something other than terminate when one of these
functions returns an error, as in Figure 5.12, when we must check for an interrupted
system call.

Since terminating on an error is the common case, we can shorten our programs by
defining a wrapper function that performs the actual function call, tests the return value,

and terminates on an error. The convention we use is to capitalize the name of the
function, as in

sockfd = Socket (AF_INET, SOCK_ STREAM, O0);

Our wrapper function is shown in Figure 1.7.
Figure 1.7 Our wrapper function for the socket function.

lib/wrapsock.c

236 int

237 Socket (int family, int type, int protocol)

238 {

239 int n;

240 if ((n = socket(family, type, protocol)) < 0)
241 err sys("socket error");

242 return (n);

243 '}

Whenever you encounter a function name in the text that begins with an uppercase letter,
that is one of our wrapper functions. It calls a function whose name is the same but begins
with the lowercase letter.

When describing the source code that is presented in the text, we always refer to the
lowest level function being called (e.g., socket), not the wrapper function (e.g., Socket).

While these wrapper functions might not seem like a big savings, when we discuss threads
in Chapter 26, we will find that thread functions do not set the standard Unix errno
variable when an error occurs; instead, the errno value is the return value of the function.
This means that every time we call one of the pthread functions, we must allocate a
variable, save the return value in that variable, and then set errno to this value before
calling err_sys. To avoid cluttering the code with braces, we can use C's comma operator
to combine the assignment into errno and the call of err sys into a single statement, as
in the following:

int n;

if ((n = pthread mutex lock(&ndone mutex)) != 0)

Page 38

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

errno = n, err sys("pthread mutex lock error");

Alternately, we could define a new error function that takes the system's error number as
an argument. But, we can make this piece of code much easier to read as just

Pthread mutex lock (&ndone mutex) ;

by defining our own wrapper function, as shown in Figure 1.8.
Figure 1.8 Our wrapper function for pthread mutex_lock.

lib/wrappthread.c

72 void

73 Pthread mutex lock(pthread mutex t *mptr)

74 |

75 int n;

76 if ((n = pthread mutex lock(mptr)) == 0)
77 return;

78 errno = n;

79 err sys ("pthread mutex lock error");

80 }

With careful C coding, we could use macros instead of functions, providing a little run-time
efficiency, but these wrapper functions are rarely the performance bottleneck of a program.

Our choice of capitalizing the first character of a function name is a compromise. Many
other styles were considered: prefixing the function name with an "e" (as done on p. 182
of [Kernighan and Pike 1984]), appending " e" to the function name, and so on. Our style
seems the least distracting while still providing a visual indication that some other function
is really being called.

This technique has the side benefit of checking for errors from functions whose error
returns are often ignored: close and listen, for example.

Throughout the rest of this book, we will use these wrapper functions unless we need to
check for an explicit error and handle it in some way other than terminating the process.
We do not show the source code for all our wrapper functions, but the code is freely
available (see the Preface).

UniXx errno Value

When an error occurs in a Unix function (such as one of the socket functions), the global
variable errno is set to a positive value indicating the type of error and the function
normally returns 1. Our err_ sys function looks at the value of errno and prints the
corresponding error message string (e.g., "Connection timed out" if errno equals
ETIMEDOUT),

The value of errno is set by a function only if an error occurs. Its value is undefined if the
function does not return an error. All of the positive error values are constants with
all-uppercase names beginning with "E," and are normally defined in the <sys/errno.h>
header. No error has a value of 0.

Storing errno in a global variable does not work with multiple threads that share all global
variables. We will talk about solutions to this problem in Chapter 26.

Page 39

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Throughout the text, we will use phrases such as "the connect function returns

ECONNREFUSED" as shorthand to mean that the function returns an error (typically with a
return value of 1), with errno set to the specified constant.

[Team LiB]

Page 40

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

[Team LiB]

1.5 A Simple Daytime Server

We can write a simple version of a TCP daytime server, which will work with the client
from Section 1.2. We use the wrapper functions that we described in the previous section
and show this server in Figure 1.9.

Figure 1.9 TCP daytime server.

intro/daytimetcpsrv.c

1 #include "unp.h".

2 #include <time.h>

3 int

4 main(int argc, char **argv)

5 {

o int listenfd, connfd;

7 struct sockaddr in servaddr;

8 char buff [MAXLINE];

9 time t ticks;
10 listenfd = Socket(AF_INET, SOCK_STREAM, 0);
11 bzeros (&servaddr, sizeof (servaddr));
12 servaddr.sin family = AF INET;
13 servaddr.sin addr.s_addr = htonl (INADDR ANY) ;

14 servaddr.sin port = htons(13); /* daytime server */
15 Bind (listenfd, (SA *) &servaddr, sizeof (servaddr));
16 Listen(listenfd, LISTENQ) ;

17 for (; ;) {

18 connfd = Accept(listenfd, (SA *) NULL, NULL);
19 ticks = time (NULL) ;
20 snprintf (buff, sizeof (buff), "%.24s\r\n", ctime(&ticks));
21 Write (connfd, buff, strlen(buff));
22 Close (connfd) ;
23 }
24 '}

Create a TCP socket

10 The creation of the TCP socket is identical to the client code.

Bind server's well-known port to socket

11 15 The server's well-known port (13 for the daytime service) is bound to the socket by
filling in an Internet socket address structure and calling bind. We specify the IP address
as INADDR ANY, which allows the server to accept a client connection on any interface, in
case the server host has multiple interfaces. Later we will see how we can restrict the
server to accepting a client connection on just a single interface.

Convert socket to listening socket

Page 41

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

16 By calling 1isten, the socket is converted into a listening socket, on which incoming
connections from clients will be accepted by the kernel. These three steps, socket, bind,
and listen, are the normal steps for any TCP server to prepare what we call the listening
descriptor (1istenfd in this example).

The constant LISTENQ is from our unp.h header. It specifies the maximum number of client
connections that the kernel will queue for this listening descriptor. We say much more
about this queueing in Section 4.5.

Accept client connection, send reply

17 21 Normally, the server process is put to sleep in the call to accept, waiting for a client
connection to arrive and be accepted. A TCP connection uses what is called a three-way
handshake to establish a connection. When this handshake completes, accept returns, and
the return value from the function is a new descriptor (connfd) that is called the connected
descriptor. This new descriptor is used for communication with the new client. A new
descriptor is returned by accept for each client that connects to our server.

The style used throughout the book for an infinite loop is

for (; ;7) |

The current time and date are returned by the library function time, which returns the

number of seconds since the Unix Epoch: 00:00:00 January 1, 1970, Coordinated Universal
Time (UTC). The next library function, ctime, converts this integer value into a

human-readable string such as

Mon May 26 20:58:40 2003

A carriage return and linefeed are appended to the string by snprintf, and the result is
written to the client by write.

If you're not already in the habit of using snprintf instead of the older sprintf, now's the
time to learn. Calls to sprintf cannot check for overflow of the destination buffer.
snprintf, on the other hand, requires that the second argument be the size of the
destination buffer, and this buffer will not overflow.

snprintf was a relatively late addition to the ANSI C standard, introduced in the version
referred to as ISO C99. Virtually all vendors provide it as part of the standard C library, and
many freely available versions are also available. We use snprintf throughout the text,
and we recommend using it instead of sprintf in all your programs for reliability.

It is remarkable how many network break-ins have occurred by a hacker sending data to
cause a server's call to sprintf to overflow its buffer. Other functions that we should be
careful with are gets, strcat, and strcpy, normally calling fgets, strncat, and strncpy
instead. Even better are the more recently available functions strlcat and strlcpy, which
ensure the result is a properly terminated string. Additional tips on writing secure network
programs are found in Chapter 23 of [Garfinkel, Schwartz, and Spafford 2003].

Terminate connection

Page 42

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

22 The server closes its connection with the client by calling close. This initiates the
normal TCP connection termination sequence: a FIN is sent in each direction and each FIN
is acknowledged by the other end. We will say much more about TCP's three-way
handshake and the four TCP packets used to terminate a TCP connection in Section 2.6.

As with the client in the previous section, we have only examined this server briefly, saving
all the details for later in the book. Note the following points:

As with the client, the server is protocol-dependent on IPv4. We will show a
protocol-independent version that uses the getaddrinfo function in Figure 11.13.

Our server handles only one client at a time. If multiple client connections arrive at
about the same time, the kernel queues them, up to some limit, and returns them
to accept one at a time. This daytime server, which requires calling two library
functions, time and ctime, is quite fast. But if the server took more time to service
each client (say a few seconds or a minute), we would need some way to overlap
the service of one client with another client.

The server that we show in Figure 1.9 is called an iterative server because it iterates
through each client, one at a time. There are numerous techniques for writing a
concurrent server, one that handles multiple clients at the same time. The simplest
technique for a concurrent server is to call the Unix fork function (Section 4.7),
creating one child process for each client. Other techniques are to use threads
instead of fork (Section 26.4), or to pre-fork a fixed number of children when the
server starts (Section 30.6).

If we start a server like this from a shell command line, we might want the server to
run for a long time, since servers often run for as long as the system is up. This
requires that we add code to the server to run correctly as a Unix daemon: a process
that can run in the background, unattached to a terminal. We will cover this in
Section 13.4.

[Team LiB]

Page 43

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

[Team LiB]

1.6 Roadmap to Client/Server Examples in the Text

Two client/server examples are used predominantly throughout the text to illustrate the
various techniques used in network programming:

e A daytime client/server (which we started in Figures 1.5, 1.6, and 1.9)
e An echo client/server (which will start in Chapter 5)

To provide a roadmap for the different topics that are covered in this text, we will
summarize the programs that we will develop, and give the starting figure number and
page number in which the source code appears. Figure 1.10 lists the versions of the
daytime client, two versions of which we have already seen. Figure 1.11 lists the versions
of the daytime server. Figure 1.12 lists the versions of the echo client, and Figure 1.13 lists
the versions of the echo server.

Figure 1.10. Different versions of the daytime client developed in the

text.
Figure | Iage Description
1.5 6 | TCP/IPv4, protocol-dependent
1.6 10| TCP/IPvé, protocol-dependent
1.4 313 | TCP/IPv4, protocol-dependent, calls gethostbyname and getservbyname
11.11 328 | TCF, protocol-independent, calls getaddrinfe and tep_connect
11.16 336 | UDE protocol-independent, calls getaddrinfo and wdp_client
15.11 450 TCF, uses nonblocking connect
3la 839 | TCLE protocol-dependent, uses TP instead of sockets
El 917 | TCE protwocol-dependent, generates SIGPIEE
ES5 920 | TCP, protocol-dependent, prints socket receive buffer sizes and MSS
E1l 931 | TCF, prowcol-dependent, allows hostname (gethestbynamne) or IP address
E12 932 | TCT protocol-independent, allows hosmame (gethostbynams)

Figure 1.11. Different versions of the daytime server developed in the

text.
Figure | Page Description
1.9 14 | TCP/IPv4, protocol-dependent

11.13 332 TCF, protocol-independent, calls getaddrinfo and top_listen
114 M TCE, protocol-independent, calls getaddrinfoand tep_listen
11.19 339 UDF, protocol-independent, calls getaddrinfo and udp_server
135 37l TCT, protocol-independent, runs as standalone daesmon

1312 378 TCT, protocol-independent, spawned from inetd daemon

Figure 1.12. Different versions of the echo client developed in the text.

Page 44

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Figure 1.13. Different versions of the echo server developed in the

[Team LiB]

Figure | Page Description
54 124 | TCF/IPvd, protocol-dependent
iR 165 TCE wses selact
6.13 174 | TCP uses select and operates on buffers
8.7 244 | UDFP/IPv4, protocol-dependent
Ba M7 VDR, verifies server's address
817 256 | UDF calls connect to oblain asynchronous errors
14.2 384 UDP, times out when meading server s reply using STGALEM
14.4 6 | UDFE times out when reading server s reply using selact
14.5 7| UDF, times out when reading server's reply using 50_RCVTIMEO
15.4 418 | Unix domain stream, protocol-dependent
15.6 419 | Unix domain datagram, protocol-dependent
163 438 | TCPE uses nonblocking 1/0
1610 7| TCP, uses two processes (fork)
16.21 462 TCP, establishes connection then sends RST
14.15 44 | TCE uses fdev/poll for multiplexing
14.18 407 | TCE, uses kqueus for multiplexing
M5 537 UDF, broadcasts with race condition
20.6 50 | UDF, broadcasts with race condition
0.7 542 | UDI broadeasts, race condition fixed by using pselect
4 544 UDF, broadcasts, race condition fixed by using sigset imp and siglengjmp
20.10 547 | UDP, broadcasts, race condition fixed by using IPC from signal handler
6 600 | UDFE reliable using timeout, retransmit, and sequence number
22 A0 TCP, uses two threads
276 716 | TCP/IPv4, specifies a source route
27.13 7249 | UDP/IPvé, specifies a source route

text.
Figure | Page Description
5.2 123 | TCP/IPv4, protocol-dependent
512 139 TCP/1Pv4, protocol-dependent, reaps terminated children
21 178 TCP/1Pv4, protocol-dependent, uses select, one process handles all chents
6.25 186 | TCP/IPv4, protocol-dependent, uses poll, one process handles all elients
B3 242 | UDP/1IPv4, protocol-dependent
824 | 263 | TCPand UDP/TPv4, protocol-dependent, uses select
1404 | 400 | TCF uses standard 170 library
15.3 417 | Unix domain stream, protocol-dependent
155 418 Unix domain da tagram, thu:ul-dul:lsmdunt
1515 | 431 | Unix domain stream, with credential passing from client
224 593 UDP, receives destination address and received interface; runcated datagrams
2215 B9 UDP binds all interface addresses
254 668 | UDE, uses signal-driven 1,/0
263 652 | TCE one thread per client
264 654 | TCF one thread per client, portable argument passing
276 716 | TCP/IPvY, prints received source route
27.14 730 | UL/ IPv6, prints and reverses received source route
28.31 773 | UDP, uses icmpd to receive asynchronous errors
E.15 943 | UDP, binds all interface addresses

Page 45

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

[Team LiB]

1.7 OSI Model

A common way to describe the layers in a network is to use the International Organization
for Standardization (ISO) open systems interconnection (OSI) model for computer
communications. This is a seven-layer model, which we show in Figure 1.14, along with the
approximate mapping to the Internet protocol suite.

Figure 1.14. Layers in OSI model and Internet protocol suite.

application
details

e |

application

) . . user |
6| presentation application o

process
5 Se8Sion

sockets
. XTI
- transport TCP upr
3 network IPvd, IPve kernel
. ice communications

2 datalink device -

driver details

and
hardware

1 physical

OS5I model Internet protocol
suite

We consider the bottom two layers of the OSI model as the device driver and networking
hardware that are supplied with the system. Normally, we need not concern ourselves with
these layers other than being aware of some properties of the datalink, such as the
1500-byte Ethernet maximum transfer unit (MTU), which we describe in Section 2.11.

The network layer is handled by the IPv4 and IPv6 protocols, both of which we will describe
in Appendix A. The transport layers that we can choose from are TCP and UDP, and we will
describe these in Chapter 2. We show a gap between TCP and UDP in Figure 1.14 to
indicate that it is possible for an application to bypass the transport layer and use IPv4 or
IPv6 directly. This is called a raw socket, and we will talk about this in Chapter 28.

The upper three layers of the OSI model are combined into a single layer called the
application. This is the Web client (browser), Telnet client, Web server, FTP server, or
whatever application we are using. With the Internet protocols, there is rarely any
distinction between the upper three layers of the OSI model.

The sockets programming interfaces described in this book are interfaces from the upper
three layers (the "application") into the transport layer. This is the focus of this book: how
to write applications using sockets that use either TCP or UDP. We already mentioned raw
sockets, and in Chapter 29 we will see that we can even bypass the IP layer completely to
read and write our own datalink-layer frames.

Why do sockets provide the interface from the upper three layers of the OSI model into the
transport layer? There are two reasons for this design, which we note on the right side of
Figure 1.14. First, the upper three layers handle all the details of the application (FTP,
Telnet, or HTTP, for example) and know little about the communication details. The lower
four layers know little about the application, but handle all the communication details:
sending data, waiting for acknowledgments, sequencing data that arrives out of order,
calculating and verifying checksums, and so on. The second reason is that the upper three
layers often form what is called a user process while the lower four layers are normally
provided as part of the operating system (0OS) kernel. Unix provides this separation
between the user process and the kernel, as do many other contemporary operating
systems. Therefore, the interface between layers 4 and 5 is the natural place to build the
API.

Page 46

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

[erevious [e |
[Team LiB]

Page 47

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

[Team LiB]

1.8 BSD Networking History

The sockets API originated with the 4.2BSD system, released in 1983. Figure 1.15 shows
the development of the various BSD releases, noting the major TCP/IP developments. A
few changes to the sockets API also took place in 1990 with the 4.3BSD Reno release,
when the OSI protocols went into the BSD kernel.

Figure 1.15. History of various BSD releases.

4.2BSD (1983)
first widely available
release of TCP/1P
and sockets APl

'

4.3BSD (1986)
TCP performance improvements

'

4.3BSD Tahoe (1988)
slow start,

congestion avoidance,
fast retransmit

BSD MNetworking Software

Release 1.0 (1989): Net/1
e ¢ 4.3BSD Rene (1990)

fast recovery,
TCP header prediction,

SLIP header compression,
/ routing table changes;
length field added to sockaddr{};

BSD Netwaorking Software control information added to msghdr{ }
Release 2.0 (1991): Net/2 l

4.4BSD (1993)

multicasting,
/ long fat pipe modifications

44BSD-Lite (1994)
referred to in text as Net/3 BSD/OS
FreeBSD
l MNetBsD
OpenBSD
4.4BSD-Lite2 (1995)

The path down the figure from 4.2BSD through 4.4BSD shows the releases from the
Computer Systems Research Group (CSRG) at Berkeley, which required the recipient to
already have a source code license for Unix. But all the networking code, both the kernel
support (such as the TCP/IP and Unix domain protocol stacks and the socket interface),
along with the applications (such as the Telnet and FTP clients and servers), were
developed independently from the AT&T-derived Unix code. Therefore, starting in 1989,
Berkeley provided the first of the BSD networking releases, which contained all the
networking code and various other pieces of the BSD system that were not constrained by
the Unix source code license requirement. These releases were "publicly available" and
eventually became available by anonymous FTP to anyone.

The final releases from Berkeley were 4.4BSD-Lite in 1994 and 4.4BSD-Lite2 in 1995. We
note that these two releases were then used as the base for other systems: BSD/OS,
FreeBSD, NetBSD, and OpenBSD, most of which are still being actively developed and
enhanced. More information on the various BSD releases, and on the history of the various
Unix systems in general, can be found in Chapter 01 of [McKusick et al. 1996].

Page 48

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Many Unix systems started with some version of the BSD networking code, including the
sockets API, and we refer to these implementations as Berkeley-derived implementations.
Many commercial versions of Unix are based on System V Release 4 (SVR4). Some of these
versions have Berkeley-derived networking code (e.g., UnixWare 2.x), while the networking
code in other SVR4 systems has been independently derived (e.g., Solaris 2.x). We also
note that Linux, a popular, freely available implementation of Unix, does not fit into the
Berkeley-derived classification: Its networking code and sockets API were developed from
scratch.

[Team LiB]

Page 49

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

[Team LiB]

1.9 Test Networks and Hosts

Figure 1.16 shows the various networks and hosts used in the examples throughout the
text. For each host, we show the OS and the type of hardware (since some of the operating
systems run on more than one type of hardware). The name within each box is the
hostname that appears in the text.

The topology shown in Figure 1.16 is interesting for the sake of our examples, but the
machines are largely spread out across the Internet and the physical topology becomes
less interesting in practice. Instead, virtual private networks (VPNs) or secure shell (SSH)
connections provide connectivity between these machines regardless of where they live
physically.

Figure 1.16. Networks and hosts used for most examples in the text.

HP-UX 113
AN 10 HP-UX 11.11
MacO%/X 1026 hpux :,\ s AIXS51
{darwin 6.6 by "’ i Power I'C
Power PC 192.6.38.100 .
—‘“ mACOAX b .i

Fe======

135.197.17.100 — 12.106.32.254
[Faffresbaddg = Swsnansnss ‘@Dﬂs.sﬁm Fadii g freebsd —
FroeBSD 4.8 FreeBSD 5.1

Inked x56 SPARC

172.24.37/24 192.168.42/24

I
I
I
L
]
: 3ffo:bBO:1E8d:3 /64

[
L206.168.112.96

Limux 2.4.7 Solaris 9
{KedHat 7.2) linux solaris | (Sunl)s59)
Intel x856 SPARC
.10 1.20
192.168.1/24 —I I

The notation "/24" indicates the number of consecutive bits starting from the leftmost bit
of the address used to identify the network and subnet. Section A.4 will talk about the /n
notation used today to designate subnet boundaries.

The real name of the Sun OS is SunOS 5.x and not Solaris 2.x, but everyone refers to it as
Solaris, the name given to the sum of the OS and other software bundled with the base
Os.

Discovering Network Topology

We show the network topology in Figure 1.16 for the hosts used for the examples
throughout this text, but you may need to know your own network topology to run the
examples and exercises on your own network. Although there are no current Unix
standards with regard to network configuration and administration, two basic commands
are provided by most Unix systems and can be used to discover some details of a

network: netstat and ifconfig. Check the manual (man) pages for these commands on
your system to see the details on the information that is output. Also be aware that some
vendors place these commands in an administrative directory, such as /sbin or /usr/sbin,
instead of the normal /usr/bin, and these directories might not be in your normal shell
search path (PATH).

1. netstat -i provides information on the interfaces. We also specify the -n flag to
print numeric addresses, instead of trying to find names for the networks. This
shows us the interfaces and their names.

Page 50

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4,

5. linux

6.

7. Iface
Flg

8. ethO
BMRU

9. 1lo
LRU

10.

% netstat -ni

1500

16436

Kernel Interface table
MTU Met RX-0OK RX-ERR RX-DRP RX-0OVR TX-0K TX-ERR TX-DRP TX-0OVR

049211085 0 0 040540958

098613572 0 0 098613572

The loopback interface is called 10 and the Ethernet is called eth0. The next
example shows a host with IPv6 support.

freebsd % netstat -ni

Name
Coll
hmeO

0
hmeO

hmeO

hmeO

hmel
0
hmel

hmel

hmel

100
0
100

100

100

gif0
0
gif0

gif0

Mtu Network Address

1500 <Link#1> 08:00:20:a7:68:6b 29100435
1500 12.106.32/24 12.106.32.254 28746630
1500 fe80:1::a00:20ff:fea7:686b/64

1500

1500

1500

1500

1500

16384

16384

16384

16384

1280

1280

1280

fe80:1::a00:20ff:fea77:686b

0

3ffe:b80:1£f8d:1::1/64
3ffe:b80:1£8d:1::1 0
<Link#2> 08:00:20:a7:68:6b 51092

fe80:2::a00:20ff:fea7:686b/64
fe80:2::a200:20ff:fea77:686b

0
192.168.42 192.168.42.1 43584
3ffe:b80:1£8d:2::1/64
3ffe:p80:1£8d:2::1 78
<Link#6> 10198
::1/128 AN 10
fe80:6::1/64 fe80:6::1 0
127 127.0.0.1 10167
<Link#8> 6
3ffe:b80:3:9adl::2/128
3ffe:b80:3:9%adl::2 0

fe80:8::a00:20ff:fea7:686b/64
fe80:8::a00:20ff:fea77:686b
0

Ipkts Ierrs

35

Opkts Oerrs

46561488

46617260

31537

90

24173

10198

10

10167

11. netstat -r shows the routing table, which is another way to determine the

0

Page 51

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34, :
35.
36.
37.
38.
39.
40.
41.
42.
43,
44.
45.
46.
47.

48.

interfaces. We normally specify the -n flag to print numeric addresses. This also

shows the IP address of the default router.

freebad %
Routing tables

Internet:
Destination
Expire
default
12.106.32/24
12.106.32.1
1187
12.106.32.253
140
12.106.32.254
127.0.0.1
192.168.42
192.168.42.1
192.168.42.2
210

netstat

-nr
Gateway
12.106.32.1
link#1
00:b0:8e:92
08:00:20:b8:
08:00:20:a7:
127.0.0.1
link#2
08:00:20:a7:

00:04:ac:17

:2c:

£7

oe:

68:
:bf:

Flags
UGSc
uc
00 UHLW
:e0 UHLW
6b UHLW
UH
uc
6b UHLW
38 UHLW
Gateway

Refs

w

NN O NN O

3ffe:b80:3:9%adl::

3ffe:b80:3:9%adl:

1ink#8

100

link#1

08:00:20:a7:68:6b

link#2

08:00:20:a7:68:6b

12

3ffe:b80:1£f8d:2:204:acff:fel7:0f38 00:04:ac:17:bf:38

Internet6:
Destination
Netif Expire
::/96
lo0 =>
default
gif0
01
100
::fff£:0.0.0.0/96
100
3ffe:b80:3:9%adl::1
gif0
3ffe:b80:3:9%adl::2
100
3ffe:b80:1£f8d::/48
100
3ffe:b80:1f8d:1::/64
hme0
3ffe:b80:1f£8d: 01
100
3ffe:b80:1f8d:2::/64
hmel
3ffe:b80:1f£8d: 01
100
hmel
fe80::/10
100

fe80::%hme0/64
hmeO

fe80::a00:20ff:fea’7:686b%hmel

100
fe80::%hmel/64
hmel

fe80::a00:20ff:fea7:686b%hmel

link#1

08:00:20:a7:68:6b

link#2

08:00:20:a7:68:6b

10167

11
24108

Netif
hmeO
hmeO
hmeO
hmeO

100
100
hmel

100
hmel

Flags

UGRSc

UGSc

UH

UGRSc

UH

UHL

UusSc

ucC

UHL

ucC

UHL

UHLW

UGRSc

ucC

UHL

ucC

UHL

Page 52

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.
60.

61.
62.
63.
64.
65.
66.

67.
68.
69.
70.
71.

72.
73.

74.

75.
76.
77.
78.
79.
80.

81.
82.
83.
84.
85.
86.
87.

100

fe80::%100/64 fe80::1%100 Uc
100

fe80::1%100 link#6 UHL
100

fe80::%gif0/64 link#8 uc

gif0

fe80::a00:20ff:fea7:686b%gif0 1ink#8 ucC
100

f£f01::/32 ::1 U
100

£ff02::/16 ::1 UGRS
100

£f£f02::%hme0/32 link#1 ucC

hmeO

£f£f02::%hmel/32 link#2 ucC

hmel

£ff02::%100/32 ::1 uc
100

ff02::%g1f0/32 link#8 ucC

gif0

Given the interface names, we execute ifconfig to obtain the details for each
interface.

o

linux % ifconfig ethO
ethO Link encap:Ethernet HWaddr 00:C0:9F:06:B0:E1
inet addr:206.168.112.96 Bcast:206.168.112.127
Mask:255.255.255.128
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:49214397 errors:0 dropped:0 overruns:0 frame:0
TX packets:40543799 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:100
RX bytes:1098069974 (1047.2 Mb) TX bytes:3360546472 (3204.8
Mb)
Interrupt:11 Base address:0x6000

This shows the IP address, subnet mask, and broadcast address. The MULTICAST flag
is often an indication that the host supports multicasting. Some implementations

provide a -a flag, which prints information on all configured interfaces.

One way to find the IP address of many hosts on the local network is to ping the
broadcast address (which we found in the previous step).

linux % ping -b 206.168.112.127
WARNING: pinging broadcast address

PING 206.168.112.127 (206.168.112.127) from 206.168.112.96 : 56(84) bytes

of data.
64 bytes from 206.168.112.96: icmp seq=0 ttl=255 time=241 usec

64 bytes from 206.168.112.40: icmp seq=0 ttl=255 time=2.566 msec (DUP!)
64 bytes from 206.168.112.118: icmp seg=0 ttl=255 time=2.973 msec (DUP!)
64 bytes from 206.168.112.14: icmp seq=0 ttl=255 time=3.089 msec (DUP!)
64 bytes from 206.168.112.126: icmp seg=0 ttl=255 time=3.200 msec (DUP!)
64 bytes from 206.168.112.71: icmp seq=0 ttl=255 time=3.311 msec (DUP!)

64 bytes from 206.168.112.31: icmp seq=0 ttl=64 time=3.541 msec (DUP!)

Page 53

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

88. 64 bytes from 206.168.112.7: icmp seg=0 ttl=255 time=3.636 msec (DUP!)
89. ...

90.
I
[Team LiB]

Page 54

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

[Team LiB]

1.10 Unix Standards

At the time of this writing, the most interesting Unix standardization activity was being
done by The Austin Common Standards Revision Group (CSRG). Their efforts have
produced roughly 4,000 pages of specifications covering over 1,700 programming
interfaces [Josey 2002]. These specifications carry both the IEEE POSIX designation as well
as The Open Group's Technical Standard designation. The net result is that you'll likely
encounter references to the same standard by various names: ISO/IEC 9945:2002, IEEE
Std 1003.1-2001, and the Single Unix Specification Version 3, for example. In this text, we
will refer to this standard as simply The POSIX Specification, except in sections like this
one where we are discussing specifics of various older standards.

The easiest way to acquire a copy of this consolidated standard is to either order it on
CD-ROM or access it via the Web (free of charge). The starting point for either of these
methods is

http://www.UNIX.org/version3

Background on POSIX

POSIX is an acronym for Portable Operating System Interface. POSIX is not a single
standard, but a family of standards being developed by the Institute for Electrical and
Electronics Engineers, Inc., normally called the IEEE. The POSIX standards have also been
adopted as international standards by ISO and the International Electrotechnical
Commission (IEC), called ISO/IEC. The POSIX standards have an interesting history, which
we cover only briefly here:

e IEEE Std 1003.1 1988 (317 pages) was the first POSIX standard. It specified the C
language interface into a Unix-like kernel and covered the following areas: process
primitives (fork, exec, signals, and timers), the environment of a process (user IDs
and process groups), files and directories (all the I/O functions), terminal 1I/0,
system databases (password file and group file), and the tar and cpio archive
formats.

The first POSIX standard was a trial-use version in 1986 known as "IEEE-IX." The
name "POSIX" was suggested by Richard Stallman.

e IEEE Std 1003.1 1990 (356 pages) was next, and it was also known as ISO/IEC
9945 1: 1990. Minimal changes were made from the 1988 to the 1990 version.
Appended to the title was "Part 1: System Application Program Interface (API) [C
Language],” indicating that this standard was the C language API.

e IEEE Std 1003.2 1992 came next in two volumes (about 1,300 pages). Its title
contained "Part 2: Shell and Utilities." This part defined the shell (based on the
System V Bourne shell) and about 100 utilities (programs normally executed from a
shell, from awk and basename to vi and yacc). Throughout this text, we will refer to
this standard as POSIX.2.

e IEEE Std 1003.1b 1993 (590 pages) was originally known as IEEE P1003.4. This
was an update to the 1003.1 1990 standard to include the real-time extensions
developed by the P1003.4 working group. The 1003.1b 1993 standard added the
following items to the 1990 standard: file synchronization, asynchronous I/0,
semaphores, memory management (mmap and shared memory), execution
scheduling, clocks and timers, and message queues.

Page 55

http://www.UNIX.org/version3
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

IEEE Std 1003.1, 1996 Edition [IEEE 1996] (743 pages) came next and included
1003.1 1990 (the base API), 1003.1b 1993 (real-time extensions), 1003.1c

1995 (pthreads), and 1003.1i 1995 (technical corrections to 1003.1b). This
standard was also called ISO/IEC 9945 1: 1996. Three chapters on threads were
added, along with additional sections on thread synchronization (mutexes and
condition variables), thread scheduling, and synchronization scheduling. Throughout
this text, we will refer to this standard as POSIX.1. This standard also contains a
Foreword stating that ISO/IEC 9945 consists of the following parts:

o Part 1: System API (C language)

o Part 2: Shell and utilities

o Part 3: System administration (under development)
Parts 1 and 2 are what we call POSIX.1 and POSIX.2.

Over one-quarter of the 743 pages are an appendix titled "Rationale and Notes."
This appendix contains historical information and reasons why certain features were
included or omitted. Often, the rationale is as informative as the official standard.

IEEE Std 1003.1g: Protocol-independent interfaces (PII) became an approved
standard in 2000. Until the introduction of The Single Unix Specification Version 3,
this POSIX work was the most relevant to the topics covered in this book. This is the
networking API standard and it defines two APIs, which it calls Detailed Network
Interfaces (DNIs):

o DNI/Socket, based on the 4.4BSD sockets API
o DNI/XTI, based on the X/Open XPG4 specification

Work on this standard started in the late 1980s as the P1003.12 working group
(later renamed P1003.1g). Throughout this text, we will refer to this standard as
POSIX.1g.

The current status of the various POSIX standards is available from

http://www.pasc.org/standing/sd11.html

Background on The Open Group

The Open Group was formed in 1996 by the consolidation of the X/Open Company
(founded in 1984) and the Open Software Foundation (OSF, founded in 1988). It is an
international consortium of vendors and end-user customers from industry, government,
and academia. Here is a brief background on the standards they produced:

X/Open published the X/Open Portability Guide, Issue 3 (XPG3) in 1989.

Issue 4 was published in 1992, followed by Issue 4, Version 2 in 1994. This latest
version was also known as "Spec 1170," with the magic number 1,170 being the
sum of the number of system interfaces (926), the number of headers (70), and the
number of commands (174). The latest name for this set of specifications is the
"X/Open Single Unix Specification," although it is also called "Unix 95."

In March 1997, Version 2 of the Single Unix Specification was announced. Products
conforming to this specification were called "Unix 98." We will refer to this
specification as just "Unix 98" throughout this text. The number of interfaces
required by Unix 98 increases from 1,170 to 1,434, although for a workstation this
jumps to 3,030, because it includes the Common Desktop Environment (CDE),
which in turn requires the X Window System and the Motif user interface. Details
are available in [Josey 1997] and at http://www.UNIX.org/version2. The networking

Page 56

http://www.pasc.org/standing/sdll.html
http://www.unix.org/version2
http://www.pasc.org/standing/sd11.html
http://www.UNIX.org/version2
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

services that are part of Unix 98 are defined for both the sockets and XTI APIs. This
specification is nearly identical to POSIX.1g.

Unfortunately, Unix 98 referred to networking standards as XNS: X/Open
Networking Services. The version of this document that defines sockets and XTI for
Unix 98 ([Open Group 1997]) is called "XNS Issue 5." In the networking world XNS
has always been an abbreviation for the Xerox Network Systems architecture. We
will avoid this use of XNS and refer to this X/Open document as just the Unix 98
network API standard.

Unification of Standards

The above brief backgrounds on POSIX and The Open Group both continue with The Austin
Group's publication of The Single Unix Specification Version 3, as mentioned at the
beginning of this section. Getting over 50 companies to agree on a single standard is
certainly a landmark in the history of Unix. Most Unix systems today conform to some
version of POSIX.1 and POSIX.2; many comply with The Single Unix Specification Version
3.

Historically, most Unix systems show either a Berkeley heritage or a System V heritage,
but these differences are slowly disappearing as most vendors adopt the standards. The
main differences still existing deal with system administration, one area that no standard
currently addresses.

The focus of this book is on The Single Unix Specification Version 3, with our main focus on
the sockets API. Whenever possible we will use the standard functions.

Internet Engineering Task Force (IETF)

The Internet Engineering Task Force (IETF) is a large, open, international community of
network designers, operators, vendors, and researchers concerned with the evolution of the
Internet architecture and the smooth operation of the Internet. It is open to any interested
individual.

The Internet standards process is documented in RFC 2026 [Bradner 1996]. Internet
standards normally deal with protocol issues and not with programming APIs.
Nevertheless, two RFCs (RFC 3493 [Gilligan et al. 2003] and RFC 3542 [Stevens et al.
2003]) specify the sockets API for IPv6. These are informational RFCs, not standards, and
were produced to speed the deployment of portable applications by the numerous vendors
working on early releases of IPv6. Although standards bodies tend to take a long time,
many APIs were standardized in The Single Unix Specification Version 3.

[Team LiB]

Page 57

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

[Team LiB]

1.11 64-Bit Architectures

During the mid to late 1990s, the trend began toward 64-bit architectures and 64-bit
software. One reason is for larger addressing within a process (i.e., 64-bit pointers), which
can address large amounts of memory (more than 232 pytes). The common programming
model for existing 32-bit Unix systems is called the ILP32 model, denoting that integers
(I), long integers (L), and pointers (P) occupy 32 bits. The model that is becoming most
prevalent for 64-bit Unix systems is called the LP64 model, meaning only long integers (L)
and pointers (P) require 64 bits. Figure 1.17 compares these two models.

Figure 1.17. Comparison of nhumber of bits to hold various datatypes
for the ILP32 and LP64 models.

Datatype | ILP32 model | LP64 model
char 8 8
short 16 16
int 32 32
long 32 &4
pointer 32 64

From a programming perspective, the LP64 model means we cannot assume that a pointer
can be stored in an integer. We must also consider the effect of the LP64 model on existing
APIs.

ANSI C invented the size t datatype, which is used, for example, as the argument to
malloc (the number of bytes to allocate), and as the third argument to read and write
(the number of bytes to read or write). On a 32-bit system, size t is a 32-bit value, but
on a 64-bit system, it must be a 64-bit value, to take advantage of the larger addressing
model. This means a 64-bit system will probably contain a typedef of size t to be an
unsigned long. The networking API problem is that some drafts of POSIX.1g specified that
function arguments containing the size of a socket address structures have the size t
datatype (e.g., the third argument to bind and connect). Some XTI structures also had
members with a datatype of long (e.g., the t _info and t opthdr structures). If these had
been left as is, both would change from 32-bit values to 64-bit values when a Unix system
changes from the ILP32 to the LP64 model. In both instances, there is no need for a 64-bit
datatype: The length of a socket address structure is a few hundred bytes at most, and the
use of long for the XTI structure members was a mistake.

The solution is to use datatypes designed specifically to handle these scenarios. The
sockets API uses the socklen t datatype for lengths of socket address structures, and XTI
uses the t scalar t and t uscalar_ t datatypes. The reason for not changing these values
from 32 bits to 64 bits is to make it easier to provide binary compatibility on the new
64-bit systems for applications compiled under 32-bit systems.

[Team LiB]

Page 58

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

[Team LiB]

1.12 Summary

Figure 1.5 shows a complete, albeit simple, TCP client that fetches the current time and
date from a specified server, and Figure 1.9 shows a complete version of the server. These
two examples introduce many of the terms and concepts that are expanded on throughout
the rest of the book.

Our client was protocol-dependent on IPv4 and we modified it to use IPv6 instead. But this
just gave us another protocol-dependent program. In Chapter 11, we will develop some
functions to let us write protocol-independent code, which will be important as the Internet
starts using IPv6.

Throughout the text, we will use the wrapper functions developed in Section 1.4 to reduce
the size of our code, yet still check every function call for an error return. Our wrapper
functions all begin with a capital letter.

The Single Unix Specification Version 3, known by several other names and called simply
The POSIX Specification by us, is the confluence of two long-running standards efforts,
finally drawn together by The Austin Group.

Readers interested in the history of Unix networking should consult [Salus 1994] for a
description of Unix history, and [Salus 1995] for the history of TCP/IP and the Internet.

[Team LiB]

Page 59

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

[Team LiB]

Exercises

1.1 Go through the steps at the end of Section 1.9 to discover information
about your network topology.

1.2 Obtain the source code for the examples in this text (see the Preface).

Compile and test the TCP daytime client in Figure 1.5. Run the program
a few times, specifying a different IP address as the command-line
argument each time.

Modify the first argument to socket in Figure 1.5 to be 9999. Compile
and run the program. What happens? Find the errno value corresponding
to the error that is printed. How can you find more information on