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"Everyone will want this book because it provides a great mix of practical experience,

historical perspective, and a depth of understanding that only comes from being intimately

involved in the field. I've already enjoyed and learned from reading this book, and surely
you will too."
-Sam Leffler

The classic guide to UNIX networking APIs... now completely updated!

To build today's highly distributed, networked applications and services, you need deep
mastery of sockets and other key networking APIs. One book delivers comprehensive,
start-to-finish guidance for building robust, high-performance networked systems in any
environment: UNIX Network Programming, Volume 1, Third Edition.

Building on the legendary work of W. Richard Stevens, this edition has been fully updated
by two leading network programming experts to address today's most crucial standards,
implementations, and techniques. New topics include:

POSIX Single UNIX Specification Version 3

IPv6 APIs (including updated guidance on IPv6/IPv4 interoperability)

The new SCTP transport protocol

IPsec-based Key Management Sockets

FreeBSD 4.8/5.1, Red Hat Linux 9.x, Solaris 9, AIX 5.x, HP-UX, and Mac OS X
implementations

New network program debugging techniques

Source Specific Multicast API, the key enabler for widespread IP multicast
deployment

The authors also update and extend Stevens' definitive coverage of these crucial UNIX
networking standards and techniques:

TCP and UDP transport

Sockets: elementary, advanced, routed, and raw

I/0: multiplexing, advanced functions, nonblocking, and signal-driven
Daemons and inetd

UNIX domain protocols

ioctl operations
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Broadcasting and multicasting

Threads

Streams

Design: TCP iterative, concurrent, preforked, and prethreaded servers

Since 1990, network programmers have turned to one source for the insights and
techniques they need: W. Richard Stevens' UNIX Network Programming. Now, there's an
edition specifically designed for today's challenges-and tomorrow's.
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Foreword

When the original text of this book arrived in 1990, it was quickly recognized as the
definitive reference for programmers to learn network programming techniques. Since
then, the art of computer networking has changed dramatically. All it takes is a look at the
return address for comments from the original text ("uunet!hsi!netbook") to make this
clear. (How many readers will even recognize this as an address in the UUCP dialup
network that was commonplace in the 1980s?)

Today, UUCP networks are a rarity and new technologies such as wireless networks are
becoming ubiquitous! With these changes, new network protocols and programming
paradigms have been developed. But, programmers have lacked a good reference from
which to learn the intricacies of these new techniques.

This book fills that void. Readers who have a dog-eared copy of the original book will want
a new copy for the updated programming techniques and the substantial new material
describing next-generation protocols such as IPv6. Everyone will want this book because it
provides a great mix of practical experience, historical perspective, and a depth of
understanding that only comes from being intimately involved in the field.

I've already enjoyed and learned from reading this book, and surely you will, too.

Sam Leffler
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Introduction

This book is for people who want to write programs that communicate with each other
using an application program interface (API) known as sockets. Some readers may be very
familiar with sockets already, as that model has become synonymous with network
programming. Others may need an introduction to sockets from the ground up. The goal of
this book is to offer guidance on network programming for beginners as well as
professionals, for those developing new network-aware applications as well as those
maintaining existing code, and for people who simply want to understand how the
networking components of their system function.

All the examples in this text are actual, runnable code tested on Unix systems. However,
many non-Unix systems support the sockets API and the examples are largely operating
system-independent, as are the general concepts we present. Virtually every operating
system (OS) provides numerous network-aware applications such as Web browsers, email
clients, and file-sharing servers. We discuss the usual partitioning of these applications
into client and server and write our own small examples of these many times throughout
the text.

Presenting this material in a Unix-oriented fashion has the natural side effect of providing
background on Unix itself, and on TCP/IP as well. Where more extensive background may
be interesting, we refer the reader to other texts. Four texts are so commonly mentioned in
this book that we've assigned them the following abbreviations:

e APUE: Advanced Programming in the UNIX Environment [Stevens 1992]
e TCPvl: TCP/IP Illustrated, Volume 1 [Stevens 1994]

e TCPv2: TCP/IP Illustrated, Volume 2 [Wright and Stevens 1995]

e TCPv3: TCP/IP Illustrated, Volume 3 [Stevens 1996]

TCPv2 contains a high level of detail very closely related to the material in this book, as it
describes and presents the actual 4.4BSD implementation of the network programming
functions for the sockets API (socket, bind, connect, and so on). If one understands the

implementation of a feature, the use of that feature in an application makes more sense.

[ Team LiB ]
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Changes from the Second Edition

Sockets have been around, more or less in their current form, since the 1980s, and it is a
tribute to their initial design that they have continued to be the network API of choice.
Therefore, it may come as a surprise to learn that quite a bit has changed since the second
edition of this book was published in 1998. The changes we've made to the text are
summarized as follows:

This new edition contains updated information on IPv6, which was only in draft form
at the time of publication of the second edition and has evolved somewhat.

The descriptions of functions and the examples have all been updated to reflect the
most recent POSIX specification (POSIX 1003.1-2001), also known as the Single
Unix Specification Version 3.

The coverage of the X/Open Transport Interface (XTI) has been dropped. That API
has fallen out of common use and even the most recent POSIX specification does
not bother to cover it.

The coverage of TCP for transactions (T/TCP) has been dropped.

Three chapters have been added to describe a relatively new transport protocol,
SCTP. This reliable, message-oriented protocol provides multiple streams between
endpoints and transport-level support for multihoming. It was originally designed
for transport of telephony signaling across the Internet, but provides some features
that many applications could take advantage of.

A chapter has been added on key management sockets, which may be used with
Internet Protocol Security (IPsec) and other network security services.

The machines used, as well as the versions of their variants of Unix, have all been
updated, and the examples have been updated to reflect how these machines
behave. In many cases, examples were updated because OS vendors fixed bugs or
added features, but as one might expect, we've discovered the occasional new bug
here and there. The machines used for testing the examples in this book were:

o Apple Power PC running MacOS/X 10.2.6

o HP PA-RISC running HP-UX 11i

o IBM Power PC running AIX 5.1

o Intel x86 running FreeBSD 4.8

o Intel x86 running Linux 2.4.7

o Sun SPARC running FreeBSD 5.1

o Sun SPARC running Solaris 9

See Figure 1.16 for details on how these machines were used.

Volume 2 of this UNIX Network Programming series, subtitled Interprocess
Communications, builds on the material presented here to cover message passing,
synchronization, shared memory, and remote procedure calls.

[ Team LiB ]
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Using This Book

This text can be used as either a tutorial on network programming or as a reference for
experienced programmers. When used as a tutorial or for an introductory class on network
programming, the emphasis should be on Part 2, "Elementary Sockets" (Chapters 3
through 11), followed by whatever additional topics are of interest. Part 2 covers the basic
socket functions for both TCP and UDP, along with SCTP, I/O multiplexing, socket options,
and basic name and address conversions. Chapter 1 should be read by all readers,
especially Section 1.4, which describes some wrapper functions used throughout the text.
Chapter 2 and perhaps Appendix A should be referred to as necessary, depending on the
reader's background. Most of the chapters in Part 3, "Advanced Sockets," can be read
independently of the others in that part of the book.

To aid in the use of this book as a reference, a thorough index is provided, along with
summaries on the end papers of where to find detailed descriptions of all the functions and
structures. To help those reading topics in a random order, numerous references to related
topics are provided throughout the text.

[ Team LiB ]
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Source Code and Errata Availability

The source code for all the examples that appear in the book is available on the Web at
www.unpbook.com. The best way to learn network programming is to take these programs,
modify them, and enhance them. Actually writing code of this form is the only way to
reinforce the concepts and techniques. Numerous exercises are also provided at the end of
each chapter, and most answers are provided in Appendix E.

A current errata for the book is also available from the same Web site.

[Team LiB ]
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1.1 Introduction

When writing programs that communicate across a computer network, one must first
invent a protocol, an agreement on how those programs will communicate. Before delving
into the design details of a protocol, high-level decisions must be made about which
program is expected to initiate communication and when responses are expected. For
example, a Web server is typically thought of as a long-running program (or daemon) that
sends network messages only in response to requests coming in from the network. The
other side of the protocol is a Web client, such as a browser, which always initiates
communication with the server. This organization into client and server is used by most
network-aware applications. Deciding that the client always initiates requests tends to
simplify the protocol as well as the programs themselves. Of course, some of the more
complex network applications also require asynchronous callback communication, where
the server initiates a message to the client. But it is far more common for applications to
stick to the basic client/server model shown in Figure 1.1.

Figure 1.1. Network application: client and server.

. application protocol
client (g

server

Clients normally communicate with one server at a time, although using a Web browser as
an example, we might communicate with many different Web servers over, say, a
10-minute time period. But from the server's perspective, at any given point in time, it is
not unusual for a server to be communicating with multiple clients. We show this in Figure
1.2. Later in this text, we will cover several different ways for a server to handle multiple
clients at the same time.

Figure 1.2. Server handling multiple clients at the same time.

client

client e} - server

client

The client application and the server application may be thought of as communicating via a
network protocol, but actually, multiple layers of network protocols are typically involved.
In this text, we focus on the TCP/IP protocol suite, also called the Internet protocol suite.
For example, Web clients and servers communicate using the Transmission Control
Protocol, or TCP. TCP, in turn, uses the Internet Protocol, or IP, and IP communicates with
a datalink layer of some form. If the client and server are on the same Ethernet, we would
have the arrangement shown in Figure 1.3.

Figure 1.3. Client and server on the same Ethernet communicating
using TCP.
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Even though the client and server communicate using an application protocol, the
transport layers communicate using TCP. Note that the actual flow of information between
the client and server goes down the protocol stack on one side, across the network, and up
the protocol stack on the other side. Also note that the client and server are typically user
processes, while the TCP and IP protocols are normally part of the protocol stack within the
kernel. We have labeled the four layers on the right side of Figure 1.3.

TCP and IP are not the only protocols that we will discuss. Some clients and servers use
the User Datagram Protocol (UDP) instead of TCP, and we will discuss both protocols in
more detail in Chapter 2. Furthermore, we have used the term "IP," but the protocol, which
has been in use since the early 1980s, is officially called IP version 4 (IPv4). A new
version, IP version 6 (IPv6) was developed during the mid-1990s and could potentially
replace IPv4 in the years to come. This text covers the development of network
applications using both IPv4 and IPv6. Appendix A provides a comparison of IPv4 and
IPv6, along with other protocols that we will discuss.

The client and server need not be attached to the same local area network (LAN) as we
show in Figure 1.3. For instance, in Figure 1.4, we show the client and server on different
LANs, with both LANs connected to a wide area network (WAN) using routers.

Figure 1.4. Client and server on different LANs connected through a
WAN.
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Routers are the building blocks of WANs. The largest WAN today is the Internet. Many
companies build their own WANs and these private WANs may or may not be connected to
the Internet.

The remainder of this chapter provides an introduction to the various topics that are
covered in detail later in the text. We start with a complete example of a TCP client, albeit
a simple one, that demonstrates many of the function calls and concepts that we will
encounter throughout the text. This client works with IPv4 only, and we show the changes
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required to work with IPv6. A better solution is to write protocol-independent clients and
servers, and we will discuss this in Chapter 11. This chapter also shows a complete TCP
server that works with our client.

To simplify all our code, we define our own wrapper functions for most of the system
functions that we call throughout the text. We can use these wrapper functions most of the
time to check for an error, print an appropriate message, and terminate when an error
occurs. We also show the test network, hosts, and routers used for most examples in the
text, along with their hostnames, IP addresses, and operating systems.

Most discussions of Unix these days include the term "X," which is the standard that most
vendors have adopted. We describe the history of POSIX and how it affects the Application
Programming Interfaces (APIs) that we describe in this text, along with the other players
in the standards arena.

[ Team LiB ]
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1.2 A Simple Daytime Client

Let's consider a specific example to introduce many of the concepts and terms that we will
encounter throughout the book. Figure 1.5 is an implementation of a TCP time-of-day
client. This client establishes a TCP connection with a server and the server simply sends
back the current time and date in a human-readable format.

Figure 1.5 TCP daytime client.

intro/daytimetcpcli.c

1 #include "unp.h"

2 int

3 main(int argc, char **argv)

4 |

5 int sockfd, n;

o char recvline [MAXLINE + 17];

7 struct sockaddr in servaddr;

8 if (argc '= 2)

9 err quit("usage: a.out <IPaddress>");
10 if ( (sockfd = socket (AF_INET, SOCK_ STREAM, 0)) < 0)
11 err sys("socket error");
12 bzero (&servaddr, sizeof (servaddr));
13 servaddr.sin family = AF INET;
14 servaddr.sin port = htons(13); /* daytime server */
15 if (inet pton(AF INET, argv[l], é&servaddr.sin addr) <= 0)
16 err quit("inet pton error for %s", argv[1l]);

17 if (connect (sockfd, (SA *) &servaddr, sizeof (servaddr)) < 0)
18 err sys("connect error");

19 while ( (n = read(sockfd, recvline, MAXLINE)) > 0) {
20 recvline[n] = 0; /* null terminate */
21 if (fputs(recvline, stdout) == EOF)
22 err sys("fputs error");
23 }
24 if (n < 0)
25 err sys("read error");
26 exit (0);
27 }

This is the format that we will use for all the source code in the text. Each nonblank line is
numbered. The text describing portions of the code notes the starting and ending line
numbers in the left margin, as shown shortly. Sometimes a paragraph is preceded by a
short, descriptive, bold heading, providing a summary statement of the code being
described.

The horizontal rules at the beginning and end of a code fragment specify the source code
filename: the file daytimetcpcli.c in the directory intro for this example. Since the
source code for all the examples in the text is freely available (see the Preface), this lets
you locate the appropriate source file. Compiling, running, and especially modifying these
programs while reading this text is an excellent way to learn the concepts of network
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programming.

Throughout the text, we will use indented, parenthetical notes such as this to describe
implementation details and historical points.

If we compile the program into the default a.out file and execute it, we will have the
following output:

solaris % a.out 206.168.112.96 our input

Mon May 26 20:58:40 2003 the program'’s output

Whenever we display interactive input and output, we will show our typed input in bold
and the computer output 1ike this. Comments are added on the right side in italics. We
will always include the name of the system as part of the shell prompt (solaris in this
example) to show on which host the command was run. Figure 1.16 shows the systems
used to run most of the examples in this book. The hostnames usually describe the
operating system (OS) as well.

There are many details to consider in this 27-line program. We mention them briefly here,
in case this is your first encounter with a network program, and provide more information
on these topics later in the text.

Include our own header

1 We include our own header, unp.h, which we will show in Section D.1. This header
includes numerous system headers that are needed by most network programs and defines
various constants that we use (e.g., MAXLINE).

Command-line arguments

2 3 This is the definition of the main function along with the command-line arguments. We
have written the code in this text assuming an American National Standards Institute
(ANSI) C compiler (also referred to as an ISO C compiler).

Create TCP socket

10 11 The socket function creates an Internet (AF_INET) stream (SOCK_ STREAM) socket,

which is a fancy name for a TCP socket. The function returns a small integer descriptor that
we can use to identify the socket in all future function calls (e.g., the calls to connect and
read that follow).

The if statement contains a call to the socket function, an assignment of the return value
to the variable named sockfd, and then a test of whether this assigned value is less than
0. While we could break this into two C statements,

sockfd = socket (AF INET, SOCK STREAM, O0);
if (sockfd < 0)

it is a common C idiom to combine the two lines. The set of parentheses around the
function call and assignment is required, given the precedence rules of C (the less-than
operator has a higher precedence than assignment). As a matter of coding style, the
authors always place a space between the two opening parentheses, as a visual indicator
that the left-hand side of the comparison is also an assignment. (This style is copied from
the Minix source code [Tanenbaum 1987].) We use this same style in the while statement
later in the program.
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We will encounter many different uses of the term "socket." First, the API that we are
using is called the sockets API. In the preceding paragraph, we referred to a function
named socket that is part of the sockets API. In the preceding paragraph, we also referred
to a TCP socket, which is synonymous with a TCP endpoint.

If the call to socket fails, we abort the program by calling our own err sys function. It
prints our error message along with a description of the system error that occurred (e.g.,
"Protocol not supported" is one possible error from socket) and terminates the process.
This function, and a few others of our own that begin with err , are called throughout the
text. We will describe them in Section D.3.

Specify server's IP address and port

12 16 We fill in an Internet socket address structure (a sockaddr in structure named
servaddr) with the server's IP address and port number. We set the entire structure to 0
using bzero, set the address family to AF_INET, set the port humber to 13 (which is the
well-known port of the daytime server on any TCP/IP host that supports this service, as
shown in Figure 2.18), and set the IP address to the value specified as the first
command-line argument (argv[1]). The IP address and port number fields in this structure
must be in specific formats: We call the library function htons ("host to network short") to
convert the binary port number, and we call the library function inet pton ("presentation
to numeric") to convert the ASCII command-line argument (such as 206.62.226.35 when
we ran this example) into the proper format.

bzero is not an ANSI C function. It is derived from early Berkeley networking code.
Nevertheless, we use it throughout the text, instead of the ANSI C memset function,
because bzero is easier to remember (with only two arguments) than memset (with three
arguments). Almost every vendor that supports the sockets API also provides bzero, and if
not, we provide a macro definition of it in our unp.h header.

Indeed, the author of TCPv3 made the mistake of swapping the second and third
arguments to memset in 10 occurrences in the first printing. A C compiler cannot catch this
error because both arguments are of the same type. (Actually, the second argument is an
int and the third argument is size t, which is typically an unsigned int, but the values
specified, 0 and 16, respectively, are still acceptable for the other type of argument.) The
call to memset still worked, but did nothing. The number of bytes to initialize was specified
as 0. The programs still worked, because only a few of the socket functions actually require
that the final 8 bytes of an Internet socket address structure be set to 0. Nevertheless, it
was an error, and one that could be avoided by using bzero, because swapping the two
arguments to bzero will always be caught by the C compiler if function prototypes are
used.

This may be your first encounter with the inet pton function. It is new with IPv6 (which
we will talk more about in Appendix A). Older code uses the inet addr function to convert
an ASCII dotted-decimal string into the correct format, but this function has numerous
limitations that inet pton corrects. Do not worry if your system does not (yet) support this
function; we will provide an implementation of it in Section 3.7.

Establish connection with server

17 18 The connect function, when applied to a TCP socket, establishes a TCP connection
with the server specified by the socket address structure pointed to by the second
argument. We must also specify the length of the socket address structure as the third
argument to connect, and for Internet socket address structures, we always let the
compiler calculate the length using C's sizeof operator.

In the unp.h header, we #define SA to be struct sockaddr, that is, a generic socket
address structure. Everytime one of the socket functions requires a pointer to a socket
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address structure, that pointer must be cast to a pointer to a generic socket address
structure. This is because the socket functions predate the ANSI C standard, so the void *
pointer type was not available in the early 1980s when these functions were developed.
The problem is that "struct sockaddr" is 15 characters and often causes the source code
line to extend past the right edge of the screen (or page, in the case of a book), so we
shorten it to sA. We will talk more about generic socket address structures when

explaining Figure 3.3.
Read and display server's reply

19 25 We read the server's reply and display the result using the standard I/O fputs
function. We must be careful when using TCP because it is a byte-stream protocol with no
record boundaries. The server's reply is normally a 26-byte string of the form

Mon May 26 20 : 58 : 40 2003\r\n

where \r is the ASCII carriage return and \n is the ASCII linefeed. With a byte-stream
protocol, these 26 bytes can be returned in numerous ways: a single TCP segment
containing all 26 bytes of data, in 26 TCP segments each containing 1 byte of data, or any
other combination that totals to 26 bytes. Normally, a single segment containing all 26
bytes of data is returned, but with larger data sizes, we cannot assume that the server's
reply will be returned by a single read. Therefore, when reading from a TCP socket, we
always need to code the read in a loop and terminate the loop when either read returns 0
(i.e., the other end closed the connection) or a value less than 0 (an error).

In this example, the end of the record is being denoted by the server closing the
connection. This technique is also used by version 1.0 of the Hypertext Transfer Protocol
(HTTP). Other techniques are available. For example, the Simple Mail Transfer Protocol
(SMTP) marks the end of a record with the two-byte sequence of an ASCII carriage return
followed by an ASCII linefeed. Sun Remote Procedure Call (RPC) and the Domain Name
System (DNS) place a binary count containing the record length in front of each record
that is sent when using TCP. The important concept here is that TCP itself provides no
record markers: If an application wants to delineate the ends of records, it must do so
itself and there are a few common ways to accomplish this.

Terminate program

26 exit terminates the program. Unix always closes all open descriptors when a process
terminates, so our TCP socket is now closed.

As we mentioned, the text will go into much more detail on all the points we just
described.

[ Team LiB ]

Page 35


http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

[ Team LiB ]

1.3 Protocol Independence

Our program in Figure 1.5 is protocol-dependent on IPv4. We allocate and initialize a
sockaddr in structure, we set the family of this structure to AF INET, and we specify the
first argument to socket as AF_INET.

To modify the program to work under IPv6, we must change the code. Figure 1.6 shows a
version that works under IPv6, with the changes highlighted in bold.

Figure 1.6 Version of Figure 1.5 for IPv6.

intro/daytimetcpclivé.c

1 #include "unp.h"

2 int

3 main(int argc, char **argv)

4 |

5 int sockfd, n;

o char recvline [MAXLINE + 17];

7 struct sockaddr in6é servaddr;

8 if (argc '= 2)

9 err quit("usage: a.out <IPaddress>");
10 if ( (sockfd = socket(AF_INETG, SOCK_STREAM, 0)) < 0)
11 err sys("socket error");
12 bzero (&servaddr, sizeof (servaddr));
13 servaddr.sin6_family = AF_INET6;

14 servaddr.sin6é_port = htons (13); /* daytime server */
15 if (inet pton (AF_INET6, argv[l], &servaddr.siné_addr) <= 0)
16 err quit("inet pton error for %s", argv[1l]);

17 if (connect (sockfd, (SA *) &servaddr, sizeof (servaddr)) < 0)
18 err sys("connect error");

19 while ( (n = read(sockfd, recvline, MAXLINE)) > 0) {
20 recvline[n] = 0; /* null terminate */
21 if (fputs(recvline, stdout) == EOF)
22 err sys("fputs error");
23 }
24 if (n < 0)
25 err sys("read error");
26 exit (0);
27 }

Only five lines are changed, but what we now have is another protocol-dependent
program; this time, it is dependent on IPv6. It is better to make a program
protocol-independent. Figure 11.11 will show a version of this client that is
protocol-independent by using the getaddrinfo function (which is called by tcp connect).

Another deficiency in our programs is that the user must enter the server's IP address as a
dotted-decimal number (e.g., 206.168.112.219 for the IPv4 version). Humans work better
with names instead of numbers (e.g., www.unpbook.com). In Chapter 11, we will discuss
the functions that convert between hostnames and IP addresses, and between service
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names and ports. We purposely put off the discussion of these functions and continue
using IP addresses and port numbers so we know exactly what goes into the socket
address structures that we must fill in and examine. This also avoids complicating our
discussion of network programming with the details of yet another set of functions.

[ Team LiB ]
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1.4 Error Handling: Wrapper Functions

In any real-world program, it is essential to check every function call for an error return.
In Figure 1.5, we check for errors from socket, inet pton, connect, read, and fputs, and
when one occurs, we call our own functions, err quit and err sys, to print an error
message and terminate the program. We find that most of the time, this is what we want
to do. Occasionally, we want to do something other than terminate when one of these
functions returns an error, as in Figure 5.12, when we must check for an interrupted
system call.

Since terminating on an error is the common case, we can shorten our programs by
defining a wrapper function that performs the actual function call, tests the return value,

and terminates on an error. The convention we use is to capitalize the name of the
function, as in

sockfd = Socket (AF_INET, SOCK_ STREAM, O0);

Our wrapper function is shown in Figure 1.7.
Figure 1.7 Our wrapper function for the socket function.

lib/wrapsock.c

236 int

237 Socket (int family, int type, int protocol)

238 {

239 int n;

240 if ( (n = socket(family, type, protocol)) < 0)
241 err sys("socket error");

242 return (n);

243 '}

Whenever you encounter a function name in the text that begins with an uppercase letter,
that is one of our wrapper functions. It calls a function whose name is the same but begins
with the lowercase letter.

When describing the source code that is presented in the text, we always refer to the
lowest level function being called (e.g., socket), not the wrapper function (e.g., Socket).

While these wrapper functions might not seem like a big savings, when we discuss threads
in Chapter 26, we will find that thread functions do not set the standard Unix errno
variable when an error occurs; instead, the errno value is the return value of the function.
This means that every time we call one of the pthread functions, we must allocate a
variable, save the return value in that variable, and then set errno to this value before
calling err_sys. To avoid cluttering the code with braces, we can use C's comma operator
to combine the assignment into errno and the call of err sys into a single statement, as
in the following:

int n;

if ( (n = pthread mutex lock(&ndone mutex)) != 0)
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errno = n, err sys("pthread mutex lock error");

Alternately, we could define a new error function that takes the system's error number as
an argument. But, we can make this piece of code much easier to read as just

Pthread mutex lock (&ndone mutex) ;

by defining our own wrapper function, as shown in Figure 1.8.
Figure 1.8 Our wrapper function for pthread mutex_lock.

lib/wrappthread.c

72 void

73 Pthread mutex lock(pthread mutex t *mptr)

74 |

75 int n;

76 if ( (n = pthread mutex lock(mptr)) == 0)
77 return;

78 errno = n;

79 err sys ("pthread mutex lock error");

80 }

With careful C coding, we could use macros instead of functions, providing a little run-time
efficiency, but these wrapper functions are rarely the performance bottleneck of a program.

Our choice of capitalizing the first character of a function name is a compromise. Many
other styles were considered: prefixing the function name with an "e" (as done on p. 182
of [Kernighan and Pike 1984]), appending " e" to the function name, and so on. Our style
seems the least distracting while still providing a visual indication that some other function
is really being called.

This technique has the side benefit of checking for errors from functions whose error
returns are often ignored: close and listen, for example.

Throughout the rest of this book, we will use these wrapper functions unless we need to
check for an explicit error and handle it in some way other than terminating the process.
We do not show the source code for all our wrapper functions, but the code is freely
available (see the Preface).

UniXx errno Value

When an error occurs in a Unix function (such as one of the socket functions), the global
variable errno is set to a positive value indicating the type of error and the function
normally returns 1. Our err_ sys function looks at the value of errno and prints the
corresponding error message string (e.g., "Connection timed out" if errno equals
ETIMEDOUT),

The value of errno is set by a function only if an error occurs. Its value is undefined if the
function does not return an error. All of the positive error values are constants with
all-uppercase names beginning with "E," and are normally defined in the <sys/errno.h>
header. No error has a value of 0.

Storing errno in a global variable does not work with multiple threads that share all global
variables. We will talk about solutions to this problem in Chapter 26.
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Throughout the text, we will use phrases such as "the connect function returns

ECONNREFUSED" as shorthand to mean that the function returns an error (typically with a
return value of 1), with errno set to the specified constant.

[ Team LiB ]
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1.5 A Simple Daytime Server

We can write a simple version of a TCP daytime server, which will work with the client
from Section 1.2. We use the wrapper functions that we described in the previous section
and show this server in Figure 1.9.

Figure 1.9 TCP daytime server.

intro/daytimetcpsrv.c

1 #include "unp.h".

2 #include <time.h>

3 int

4 main(int argc, char **argv)

5 {

o int listenfd, connfd;

7 struct sockaddr in servaddr;

8 char buff [MAXLINE];

9 time t ticks;
10 listenfd = Socket(AF_INET, SOCK_STREAM, 0);
11 bzeros (&servaddr, sizeof (servaddr));
12 servaddr.sin family = AF INET;
13 servaddr.sin addr.s_addr = htonl (INADDR ANY) ;

14 servaddr.sin port = htons(13); /* daytime server */
15 Bind (listenfd, (SA *) &servaddr, sizeof (servaddr));
16 Listen(listenfd, LISTENQ) ;

17 for ( ; ; ) {

18 connfd = Accept(listenfd, (SA *) NULL, NULL);
19 ticks = time (NULL) ;
20 snprintf (buff, sizeof (buff), "%.24s\r\n", ctime(&ticks));
21 Write (connfd, buff, strlen(buff));
22 Close (connfd) ;
23 }
24 '}

Create a TCP socket

10 The creation of the TCP socket is identical to the client code.

Bind server's well-known port to socket

11 15 The server's well-known port (13 for the daytime service) is bound to the socket by
filling in an Internet socket address structure and calling bind. We specify the IP address
as INADDR ANY, which allows the server to accept a client connection on any interface, in
case the server host has multiple interfaces. Later we will see how we can restrict the
server to accepting a client connection on just a single interface.

Convert socket to listening socket
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16 By calling 1isten, the socket is converted into a listening socket, on which incoming
connections from clients will be accepted by the kernel. These three steps, socket, bind,
and listen, are the normal steps for any TCP server to prepare what we call the listening
descriptor (1istenfd in this example).

The constant LISTENQ is from our unp.h header. It specifies the maximum number of client
connections that the kernel will queue for this listening descriptor. We say much more
about this queueing in Section 4.5.

Accept client connection, send reply

17 21 Normally, the server process is put to sleep in the call to accept, waiting for a client
connection to arrive and be accepted. A TCP connection uses what is called a three-way
handshake to establish a connection. When this handshake completes, accept returns, and
the return value from the function is a new descriptor (connfd) that is called the connected
descriptor. This new descriptor is used for communication with the new client. A new
descriptor is returned by accept for each client that connects to our server.

The style used throughout the book for an infinite loop is

for (; ;7 ) |

The current time and date are returned by the library function time, which returns the

number of seconds since the Unix Epoch: 00:00:00 January 1, 1970, Coordinated Universal
Time (UTC). The next library function, ctime, converts this integer value into a

human-readable string such as

Mon May 26 20:58:40 2003

A carriage return and linefeed are appended to the string by snprintf, and the result is
written to the client by write.

If you're not already in the habit of using snprintf instead of the older sprintf, now's the
time to learn. Calls to sprintf cannot check for overflow of the destination buffer.
snprintf, on the other hand, requires that the second argument be the size of the
destination buffer, and this buffer will not overflow.

snprintf was a relatively late addition to the ANSI C standard, introduced in the version
referred to as ISO C99. Virtually all vendors provide it as part of the standard C library, and
many freely available versions are also available. We use snprintf throughout the text,
and we recommend using it instead of sprintf in all your programs for reliability.

It is remarkable how many network break-ins have occurred by a hacker sending data to
cause a server's call to sprintf to overflow its buffer. Other functions that we should be
careful with are gets, strcat, and strcpy, normally calling fgets, strncat, and strncpy
instead. Even better are the more recently available functions strlcat and strlcpy, which
ensure the result is a properly terminated string. Additional tips on writing secure network
programs are found in Chapter 23 of [Garfinkel, Schwartz, and Spafford 2003].

Terminate connection
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22 The server closes its connection with the client by calling close. This initiates the
normal TCP connection termination sequence: a FIN is sent in each direction and each FIN
is acknowledged by the other end. We will say much more about TCP's three-way
handshake and the four TCP packets used to terminate a TCP connection in Section 2.6.

As with the client in the previous section, we have only examined this server briefly, saving
all the details for later in the book. Note the following points:

As with the client, the server is protocol-dependent on IPv4. We will show a
protocol-independent version that uses the getaddrinfo function in Figure 11.13.

Our server handles only one client at a time. If multiple client connections arrive at
about the same time, the kernel queues them, up to some limit, and returns them
to accept one at a time. This daytime server, which requires calling two library
functions, time and ctime, is quite fast. But if the server took more time to service
each client (say a few seconds or a minute), we would need some way to overlap
the service of one client with another client.

The server that we show in Figure 1.9 is called an iterative server because it iterates
through each client, one at a time. There are numerous techniques for writing a
concurrent server, one that handles multiple clients at the same time. The simplest
technique for a concurrent server is to call the Unix fork function (Section 4.7),
creating one child process for each client. Other techniques are to use threads
instead of fork (Section 26.4), or to pre-fork a fixed number of children when the
server starts (Section 30.6).

If we start a server like this from a shell command line, we might want the server to
run for a long time, since servers often run for as long as the system is up. This
requires that we add code to the server to run correctly as a Unix daemon: a process
that can run in the background, unattached to a terminal. We will cover this in
Section 13.4.

[ Team LiB ]
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1.6 Roadmap to Client/Server Examples in the Text

Two client/server examples are used predominantly throughout the text to illustrate the
various techniques used in network programming:

e A daytime client/server (which we started in Figures 1.5, 1.6, and 1.9)
e An echo client/server (which will start in Chapter 5)

To provide a roadmap for the different topics that are covered in this text, we will
summarize the programs that we will develop, and give the starting figure number and
page number in which the source code appears. Figure 1.10 lists the versions of the
daytime client, two versions of which we have already seen. Figure 1.11 lists the versions
of the daytime server. Figure 1.12 lists the versions of the echo client, and Figure 1.13 lists
the versions of the echo server.

Figure 1.10. Different versions of the daytime client developed in the

text.
Figure | Iage Description
1.5 6 | TCP/IPv4, protocol-dependent
1.6 10| TCP/IPvé, protocol-dependent
1.4 313 | TCP/IPv4, protocol-dependent, calls gethostbyname and getservbyname
11.11 328 | TCF, protocol-independent, calls getaddrinfe and tep_connect
11.16 336 | UDE protocol-independent, calls getaddrinfo and wdp_client
15.11 450 TCF, uses nonblocking connect
3la 839 | TCLE protocol-dependent, uses TP instead of sockets
El 917 | TCE protwocol-dependent, generates SIGPIEE
ES5 920 | TCP, protocol-dependent, prints socket receive buffer sizes and MSS
E1l 931 | TCF, prowcol-dependent, allows hostname (gethestbynamne) or IP address
E12 932 | TCT protocol-independent, allows hosmame (gethostbynams)

Figure 1.11. Different versions of the daytime server developed in the

text.
Figure | Page Description
1.9 14 | TCP/IPv4, protocol-dependent

11.13 332 TCF, protocol-independent, calls getaddrinfo and top_listen
114 M TCE, protocol-independent, calls getaddrinfoand tep_listen
11.19 339 UDF, protocol-independent, calls getaddrinfo and udp_server
135 37l TCT, protocol-independent, runs as standalone daesmon

1312 378 TCT, protocol-independent, spawned from inetd daemon

Figure 1.12. Different versions of the echo client developed in the text.
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Figure 1.13. Different versions of the echo server developed in the
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Figure | Page Description
54 124 | TCF/IPvd, protocol-dependent
iR 165 TCE wses selact
6.13 174 | TCP uses select and operates on buffers
8.7 244 | UDFP/IPv4, protocol-dependent
Ba M7 VDR, verifies server's address
817 256 | UDF calls connect to oblain asynchronous errors
14.2 384 UDP, times out when meading server s reply using STGALEM
14.4 6 | UDFE times out when reading server s reply using selact
14.5 7| UDF, times out when reading server's reply using 50_RCVTIMEO
15.4 418 | Unix domain stream, protocol-dependent
15.6 419 | Unix domain datagram, protocol-dependent
163 438 | TCPE uses nonblocking 1/0
1610 7| TCP, uses two processes (fork)
16.21 462 TCP, establishes connection then sends RST
14.15 44 | TCE uses fdev/poll for multiplexing
14.18 407 | TCE, uses kqueus for multiplexing
M5 537 UDF, broadcasts with race condition
20.6 50 | UDF, broadcasts with race condition
0.7 542 | UDI broadeasts, race condition fixed by using pselect
4 544 UDF, broadcasts, race condition fixed by using sigset imp and siglengjmp
20.10 547 | UDP, broadcasts, race condition fixed by using IPC from signal handler
6 600 | UDFE reliable using timeout, retransmit, and sequence number
22 A0 TCP, uses two threads
276 716 | TCP/IPv4, specifies a source route
27.13 7249 | UDP/IPvé, specifies a source route

text.
Figure | Page Description
5.2 123 | TCP/IPv4, protocol-dependent
512 139 TCP/1Pv4, protocol-dependent, reaps terminated children
21 178 TCP/1Pv4, protocol-dependent, uses select, one process handles all chents
6.25 186 | TCP/IPv4, protocol-dependent, uses poll, one process handles all elients
B3 242 | UDP/1IPv4, protocol-dependent
824 | 263 | TCPand UDP/TPv4, protocol-dependent, uses select
1404 | 400 | TCF uses standard 170 library
15.3 417 | Unix domain stream, protocol-dependent
155 418 Unix domain da tagram, thu:ul-dul:lsmdunt
1515 | 431 | Unix domain stream, with credential passing from client
224 593 UDP, receives destination address and received interface; runcated datagrams
2215 B9 UDP binds all interface addresses
254 668 | UDE, uses signal-driven 1,/0
263 652 | TCE one thread per client
264 654 | TCF one thread per client, portable argument passing
276 716 | TCP/IPvY, prints received source route
27.14 730 | UL/ IPv6, prints and reverses received source route
28.31 773 | UDP, uses icmpd to receive asynchronous errors
E.15 943 | UDP, binds all interface addresses
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1.7 OSI Model

A common way to describe the layers in a network is to use the International Organization
for Standardization (ISO) open systems interconnection (OSI) model for computer
communications. This is a seven-layer model, which we show in Figure 1.14, along with the
approximate mapping to the Internet protocol suite.

Figure 1.14. Layers in OSI model and Internet protocol suite.
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We consider the bottom two layers of the OSI model as the device driver and networking
hardware that are supplied with the system. Normally, we need not concern ourselves with
these layers other than being aware of some properties of the datalink, such as the
1500-byte Ethernet maximum transfer unit (MTU), which we describe in Section 2.11.

The network layer is handled by the IPv4 and IPv6 protocols, both of which we will describe
in Appendix A. The transport layers that we can choose from are TCP and UDP, and we will
describe these in Chapter 2. We show a gap between TCP and UDP in Figure 1.14 to
indicate that it is possible for an application to bypass the transport layer and use IPv4 or
IPv6 directly. This is called a raw socket, and we will talk about this in Chapter 28.

The upper three layers of the OSI model are combined into a single layer called the
application. This is the Web client (browser), Telnet client, Web server, FTP server, or
whatever application we are using. With the Internet protocols, there is rarely any
distinction between the upper three layers of the OSI model.

The sockets programming interfaces described in this book are interfaces from the upper
three layers (the "application") into the transport layer. This is the focus of this book: how
to write applications using sockets that use either TCP or UDP. We already mentioned raw
sockets, and in Chapter 29 we will see that we can even bypass the IP layer completely to
read and write our own datalink-layer frames.

Why do sockets provide the interface from the upper three layers of the OSI model into the
transport layer? There are two reasons for this design, which we note on the right side of
Figure 1.14. First, the upper three layers handle all the details of the application (FTP,
Telnet, or HTTP, for example) and know little about the communication details. The lower
four layers know little about the application, but handle all the communication details:
sending data, waiting for acknowledgments, sequencing data that arrives out of order,
calculating and verifying checksums, and so on. The second reason is that the upper three
layers often form what is called a user process while the lower four layers are normally
provided as part of the operating system (0OS) kernel. Unix provides this separation
between the user process and the kernel, as do many other contemporary operating
systems. Therefore, the interface between layers 4 and 5 is the natural place to build the
API.
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1.8 BSD Networking History

The sockets API originated with the 4.2BSD system, released in 1983. Figure 1.15 shows
the development of the various BSD releases, noting the major TCP/IP developments. A
few changes to the sockets API also took place in 1990 with the 4.3BSD Reno release,
when the OSI protocols went into the BSD kernel.

Figure 1.15. History of various BSD releases.

4.2BSD (1983)
first widely available
release of TCP/1P
and sockets APl

'

4.3BSD (1986)
TCP performance improvements

'

4.3BSD Tahoe (1988)
slow start,

congestion avoidance,
fast retransmit

BSD MNetworking Software

Release 1.0 (1989): Net/1
e ¢ 4.3BSD Rene (1990)

fast recovery,
TCP header prediction,

SLIP header compression,
/ routing table changes;
length field added to sockaddr{};

BSD Netwaorking Software control information added to msghdr{ }
Release 2.0 (1991): Net/2 l

4.4BSD (1993)

multicasting,
/ long fat pipe modifications

44BSD-Lite (1994)
referred to in text as Net/3 BSD/OS
FreeBSD
l MNetBsD
OpenBSD
4.4BSD-Lite2 (1995)

The path down the figure from 4.2BSD through 4.4BSD shows the releases from the
Computer Systems Research Group (CSRG) at Berkeley, which required the recipient to
already have a source code license for Unix. But all the networking code, both the kernel
support (such as the TCP/IP and Unix domain protocol stacks and the socket interface),
along with the applications (such as the Telnet and FTP clients and servers), were
developed independently from the AT&T-derived Unix code. Therefore, starting in 1989,
Berkeley provided the first of the BSD networking releases, which contained all the
networking code and various other pieces of the BSD system that were not constrained by
the Unix source code license requirement. These releases were "publicly available" and
eventually became available by anonymous FTP to anyone.

The final releases from Berkeley were 4.4BSD-Lite in 1994 and 4.4BSD-Lite2 in 1995. We
note that these two releases were then used as the base for other systems: BSD/OS,
FreeBSD, NetBSD, and OpenBSD, most of which are still being actively developed and
enhanced. More information on the various BSD releases, and on the history of the various
Unix systems in general, can be found in Chapter 01 of [McKusick et al. 1996].
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Many Unix systems started with some version of the BSD networking code, including the
sockets API, and we refer to these implementations as Berkeley-derived implementations.
Many commercial versions of Unix are based on System V Release 4 (SVR4). Some of these
versions have Berkeley-derived networking code (e.g., UnixWare 2.x), while the networking
code in other SVR4 systems has been independently derived (e.g., Solaris 2.x). We also
note that Linux, a popular, freely available implementation of Unix, does not fit into the
Berkeley-derived classification: Its networking code and sockets API were developed from
scratch.

[ Team LiB ]
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1.9 Test Networks and Hosts

Figure 1.16 shows the various networks and hosts used in the examples throughout the
text. For each host, we show the OS and the type of hardware (since some of the operating
systems run on more than one type of hardware). The name within each box is the
hostname that appears in the text.

The topology shown in Figure 1.16 is interesting for the sake of our examples, but the
machines are largely spread out across the Internet and the physical topology becomes
less interesting in practice. Instead, virtual private networks (VPNs) or secure shell (SSH)
connections provide connectivity between these machines regardless of where they live
physically.

Figure 1.16. Networks and hosts used for most examples in the text.
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L206.168.112.96

Limux 2.4.7 Solaris 9
{KedHat 7.2) linux solaris | (Sunl)s59)
Intel x856 SPARC
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192.168.1/24 —I I

The notation "/24" indicates the number of consecutive bits starting from the leftmost bit
of the address used to identify the network and subnet. Section A.4 will talk about the /n
notation used today to designate subnet boundaries.

The real name of the Sun OS is SunOS 5.x and not Solaris 2.x, but everyone refers to it as
Solaris, the name given to the sum of the OS and other software bundled with the base
Os.

Discovering Network Topology

We show the network topology in Figure 1.16 for the hosts used for the examples
throughout this text, but you may need to know your own network topology to run the
examples and exercises on your own network. Although there are no current Unix
standards with regard to network configuration and administration, two basic commands
are provided by most Unix systems and can be used to discover some details of a

network: netstat and ifconfig. Check the manual (man) pages for these commands on
your system to see the details on the information that is output. Also be aware that some
vendors place these commands in an administrative directory, such as /sbin or /usr/sbin,
instead of the normal /usr/bin, and these directories might not be in your normal shell
search path (PATH).

1. netstat -i provides information on the interfaces. We also specify the -n flag to
print numeric addresses, instead of trying to find names for the networks. This
shows us the interfaces and their names.
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4,

5. linux

6.

7. Iface
Flg

8. ethO
BMRU

9. 1lo
LRU

10.

% netstat -ni

1500

16436

Kernel Interface table
MTU Met RX-0OK RX-ERR RX-DRP RX-0OVR TX-0K TX-ERR TX-DRP TX-0OVR

049211085 0 0 040540958

098613572 0 0 098613572

The loopback interface is called 10 and the Ethernet is called eth0. The next
example shows a host with IPv6 support.

freebsd % netstat -ni

Name
Coll
hmeO

0
hmeO

hmeO

hmeO

hmel
0
hmel

hmel

hmel

100
0
100

100

100

gif0
0
gif0

gif0

Mtu Network Address

1500 <Link#1> 08:00:20:a7:68:6b 29100435
1500 12.106.32/24 12.106.32.254 28746630
1500 fe80:1::a00:20ff:fea7:686b/64

1500

1500

1500

1500

1500

16384

16384

16384

16384

1280

1280

1280

fe80:1::a00:20ff:fea77:686b

0

3ffe:b80:1£f8d:1::1/64
3ffe:b80:1£8d:1::1 0
<Link#2> 08:00:20:a7:68:6b 51092

fe80:2::a00:20ff:fea7:686b/64
fe80:2::a200:20ff:fea77:686b

0
192.168.42 192.168.42.1 43584
3ffe:b80:1£8d:2::1/64
3ffe:p80:1£8d:2::1 78
<Link#6> 10198
::1/128 AN 10
fe80:6::1/64 fe80:6::1 0
127 127.0.0.1 10167
<Link#8> 6
3ffe:b80:3:9adl::2/128
3ffe:b80:3:9%adl::2 0

fe80:8::a00:20ff:fea7:686b/64
fe80:8::a00:20ff:fea77:686b
0

Ipkts Ierrs

35

Opkts Oerrs

46561488

46617260

31537

90

24173

10198

10

10167

11. netstat -r shows the routing table, which is another way to determine the

0
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12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34, :
35.
36.
37.
38.
39.
40.
41.
42.
43,
44.
45.
46.
47.

48.

interfaces. We normally specify the -n flag to print numeric addresses. This also

shows the IP address of the default router.

freebad %
Routing tables

Internet:
Destination
Expire
default
12.106.32/24
12.106.32.1
1187
12.106.32.253
140
12.106.32.254
127.0.0.1
192.168.42
192.168.42.1
192.168.42.2
210

netstat

-nr
Gateway
12.106.32.1
link#1
00:b0:8e:92
08:00:20:b8:
08:00:20:a7:
127.0.0.1
link#2
08:00:20:a7:

00:04:ac:17

:2c:

£7

oe:

68:
:bf:

Flags
UGSc
uc
00 UHLW
:e0  UHLW
6b UHLW
UH
uc
6b UHLW
38 UHLW
Gateway

Refs

w

NN O NN O

3ffe:b80:3:9%adl::

3ffe:b80:3:9%adl:

1ink#8

100

link#1

08:00:20:a7:68:6b

link#2

08:00:20:a7:68:6b

12

3ffe:b80:1£f8d:2:204:acff:fel7:0f38 00:04:ac:17:bf:38

Internet6:
Destination
Netif Expire
::/96
lo0 =>
default
gif0
01
100
::fff£:0.0.0.0/96
100
3ffe:b80:3:9%adl::1
gif0
3ffe:b80:3:9%adl::2
100
3ffe:b80:1£f8d::/48
100
3ffe:b80:1f8d:1::/64
hme0
3ffe:b80:1f£8d: 01
100
3ffe:b80:1f8d:2::/64
hmel
3ffe:b80:1f£8d: 01
100
hmel
fe80::/10
100

fe80::%hme0/64
hmeO

fe80::a00:20ff:fea’7:686b%hmel

100
fe80::%hmel/64
hmel

fe80::a00:20ff:fea7:686b%hmel

link#1

08:00:20:a7:68:6b

link#2

08:00:20:a7:68:6b

10167

11
24108

Netif
hmeO
hmeO
hmeO
hmeO

100
100
hmel

100
hmel

Flags

UGRSc

UGSc

UH

UGRSc

UH

UHL

UusSc

ucC

UHL

ucC

UHL

UHLW

UGRSc

ucC

UHL

ucC

UHL
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49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.
60.

61.
62.
63.
64.
65.
66.

67.
68.
69.
70.
71.

72.
73.

74.

75.
76.
77.
78.
79.
80.

81.
82.
83.
84.
85.
86.
87.

100

fe80::%100/64 fe80::1%100 Uc
100

fe80::1%100 link#6 UHL
100

fe80::%gif0/64 link#8 uc

gif0

fe80::a00:20ff:fea7:686b%gif0 1ink#8 ucC
100

f£f01::/32 ::1 U
100

£ff02::/16 ::1 UGRS
100

£f£f02::%hme0/32 link#1 ucC

hmeO

£f£f02::%hmel/32 link#2 ucC

hmel

£ff02::%100/32 ::1 uc
100

ff02::%g1f0/32 link#8 ucC

gif0

Given the interface names, we execute ifconfig to obtain the details for each
interface.

o

linux % ifconfig ethO
ethO Link encap:Ethernet HWaddr 00:C0:9F:06:B0:E1
inet addr:206.168.112.96 Bcast:206.168.112.127
Mask:255.255.255.128
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:49214397 errors:0 dropped:0 overruns:0 frame:0
TX packets:40543799 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:100
RX bytes:1098069974 (1047.2 Mb) TX bytes:3360546472 (3204.8
Mb)
Interrupt:11 Base address:0x6000

This shows the IP address, subnet mask, and broadcast address. The MULTICAST flag
is often an indication that the host supports multicasting. Some implementations

provide a -a flag, which prints information on all configured interfaces.

One way to find the IP address of many hosts on the local network is to ping the
broadcast address (which we found in the previous step).

linux % ping -b 206.168.112.127
WARNING: pinging broadcast address

PING 206.168.112.127 (206.168.112.127) from 206.168.112.96 : 56(84) bytes

of data.
64 bytes from 206.168.112.96: icmp seq=0 ttl=255 time=241 usec

64 bytes from 206.168.112.40: icmp seq=0 ttl=255 time=2.566 msec (DUP!)
64 bytes from 206.168.112.118: icmp seg=0 ttl=255 time=2.973 msec (DUP!)
64 bytes from 206.168.112.14: icmp seq=0 ttl=255 time=3.089 msec (DUP!)
64 bytes from 206.168.112.126: icmp seg=0 ttl=255 time=3.200 msec (DUP!)
64 bytes from 206.168.112.71: icmp seq=0 ttl=255 time=3.311 msec (DUP!)

64 bytes from 206.168.112.31: icmp seq=0 ttl=64 time=3.541 msec (DUP!)
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88. 64 bytes from 206.168.112.7: icmp seg=0 ttl=255 time=3.636 msec (DUP!)
89. ...

90.
I
[ Team LiB ]
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1.10 Unix Standards

At the time of this writing, the most interesting Unix standardization activity was being
done by The Austin Common Standards Revision Group (CSRG). Their efforts have
produced roughly 4,000 pages of specifications covering over 1,700 programming
interfaces [Josey 2002]. These specifications carry both the IEEE POSIX designation as well
as The Open Group's Technical Standard designation. The net result is that you'll likely
encounter references to the same standard by various names: ISO/IEC 9945:2002, IEEE
Std 1003.1-2001, and the Single Unix Specification Version 3, for example. In this text, we
will refer to this standard as simply The POSIX Specification, except in sections like this
one where we are discussing specifics of various older standards.

The easiest way to acquire a copy of this consolidated standard is to either order it on
CD-ROM or access it via the Web (free of charge). The starting point for either of these
methods is

http://www.UNIX.org/version3

Background on POSIX

POSIX is an acronym for Portable Operating System Interface. POSIX is not a single
standard, but a family of standards being developed by the Institute for Electrical and
Electronics Engineers, Inc., normally called the IEEE. The POSIX standards have also been
adopted as international standards by ISO and the International Electrotechnical
Commission (IEC), called ISO/IEC. The POSIX standards have an interesting history, which
we cover only briefly here:

e IEEE Std 1003.1 1988 (317 pages) was the first POSIX standard. It specified the C
language interface into a Unix-like kernel and covered the following areas: process
primitives (fork, exec, signals, and timers), the environment of a process (user IDs
and process groups), files and directories (all the I/O functions), terminal 1I/0,
system databases (password file and group file), and the tar and cpio archive
formats.

The first POSIX standard was a trial-use version in 1986 known as "IEEE-IX." The
name "POSIX" was suggested by Richard Stallman.

e IEEE Std 1003.1 1990 (356 pages) was next, and it was also known as ISO/IEC
9945 1: 1990. Minimal changes were made from the 1988 to the 1990 version.
Appended to the title was "Part 1: System Application Program Interface (API) [C
Language],” indicating that this standard was the C language API.

e IEEE Std 1003.2 1992 came next in two volumes (about 1,300 pages). Its title
contained "Part 2: Shell and Utilities." This part defined the shell (based on the
System V Bourne shell) and about 100 utilities (programs normally executed from a
shell, from awk and basename to vi and yacc). Throughout this text, we will refer to
this standard as POSIX.2.

e IEEE Std 1003.1b 1993 (590 pages) was originally known as IEEE P1003.4. This
was an update to the 1003.1 1990 standard to include the real-time extensions
developed by the P1003.4 working group. The 1003.1b 1993 standard added the
following items to the 1990 standard: file synchronization, asynchronous I/0,
semaphores, memory management (mmap and shared memory), execution
scheduling, clocks and timers, and message queues.
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IEEE Std 1003.1, 1996 Edition [IEEE 1996] (743 pages) came next and included
1003.1 1990 (the base API), 1003.1b 1993 (real-time extensions), 1003.1c

1995 (pthreads), and 1003.1i 1995 (technical corrections to 1003.1b). This
standard was also called ISO/IEC 9945 1: 1996. Three chapters on threads were
added, along with additional sections on thread synchronization (mutexes and
condition variables), thread scheduling, and synchronization scheduling. Throughout
this text, we will refer to this standard as POSIX.1. This standard also contains a
Foreword stating that ISO/IEC 9945 consists of the following parts:

o Part 1: System API (C language)

o Part 2: Shell and utilities

o Part 3: System administration (under development)
Parts 1 and 2 are what we call POSIX.1 and POSIX.2.

Over one-quarter of the 743 pages are an appendix titled "Rationale and Notes."
This appendix contains historical information and reasons why certain features were
included or omitted. Often, the rationale is as informative as the official standard.

IEEE Std 1003.1g: Protocol-independent interfaces (PII) became an approved
standard in 2000. Until the introduction of The Single Unix Specification Version 3,
this POSIX work was the most relevant to the topics covered in this book. This is the
networking API standard and it defines two APIs, which it calls Detailed Network
Interfaces (DNIs):

o DNI/Socket, based on the 4.4BSD sockets API
o DNI/XTI, based on the X/Open XPG4 specification

Work on this standard started in the late 1980s as the P1003.12 working group
(later renamed P1003.1g). Throughout this text, we will refer to this standard as
POSIX.1g.

The current status of the various POSIX standards is available from

http://www.pasc.org/standing/sd11.html

Background on The Open Group

The Open Group was formed in 1996 by the consolidation of the X/Open Company
(founded in 1984) and the Open Software Foundation (OSF, founded in 1988). It is an
international consortium of vendors and end-user customers from industry, government,
and academia. Here is a brief background on the standards they produced:

X/Open published the X/Open Portability Guide, Issue 3 (XPG3) in 1989.

Issue 4 was published in 1992, followed by Issue 4, Version 2 in 1994. This latest
version was also known as "Spec 1170," with the magic number 1,170 being the
sum of the number of system interfaces (926), the number of headers (70), and the
number of commands (174). The latest name for this set of specifications is the
"X/Open Single Unix Specification," although it is also called "Unix 95."

In March 1997, Version 2 of the Single Unix Specification was announced. Products
conforming to this specification were called "Unix 98." We will refer to this
specification as just "Unix 98" throughout this text. The number of interfaces
required by Unix 98 increases from 1,170 to 1,434, although for a workstation this
jumps to 3,030, because it includes the Common Desktop Environment (CDE),
which in turn requires the X Window System and the Motif user interface. Details
are available in [Josey 1997] and at http://www.UNIX.org/version2. The networking
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services that are part of Unix 98 are defined for both the sockets and XTI APIs. This
specification is nearly identical to POSIX.1g.

Unfortunately, Unix 98 referred to networking standards as XNS: X/Open
Networking Services. The version of this document that defines sockets and XTI for
Unix 98 ([Open Group 1997]) is called "XNS Issue 5." In the networking world XNS
has always been an abbreviation for the Xerox Network Systems architecture. We
will avoid this use of XNS and refer to this X/Open document as just the Unix 98
network API standard.

Unification of Standards

The above brief backgrounds on POSIX and The Open Group both continue with The Austin
Group's publication of The Single Unix Specification Version 3, as mentioned at the
beginning of this section. Getting over 50 companies to agree on a single standard is
certainly a landmark in the history of Unix. Most Unix systems today conform to some
version of POSIX.1 and POSIX.2; many comply with The Single Unix Specification Version
3.

Historically, most Unix systems show either a Berkeley heritage or a System V heritage,
but these differences are slowly disappearing as most vendors adopt the standards. The
main differences still existing deal with system administration, one area that no standard
currently addresses.

The focus of this book is on The Single Unix Specification Version 3, with our main focus on
the sockets API. Whenever possible we will use the standard functions.

Internet Engineering Task Force (IETF)

The Internet Engineering Task Force (IETF) is a large, open, international community of
network designers, operators, vendors, and researchers concerned with the evolution of the
Internet architecture and the smooth operation of the Internet. It is open to any interested
individual.

The Internet standards process is documented in RFC 2026 [Bradner 1996]. Internet
standards normally deal with protocol issues and not with programming APIs.
Nevertheless, two RFCs (RFC 3493 [Gilligan et al. 2003] and RFC 3542 [Stevens et al.
2003]) specify the sockets API for IPv6. These are informational RFCs, not standards, and
were produced to speed the deployment of portable applications by the numerous vendors
working on early releases of IPv6. Although standards bodies tend to take a long time,
many APIs were standardized in The Single Unix Specification Version 3.

[ Team LiB ]
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1.11 64-Bit Architectures

During the mid to late 1990s, the trend began toward 64-bit architectures and 64-bit
software. One reason is for larger addressing within a process (i.e., 64-bit pointers), which
can address large amounts of memory (more than 232 pytes). The common programming
model for existing 32-bit Unix systems is called the ILP32 model, denoting that integers
(I), long integers (L), and pointers (P) occupy 32 bits. The model that is becoming most
prevalent for 64-bit Unix systems is called the LP64 model, meaning only long integers (L)
and pointers (P) require 64 bits. Figure 1.17 compares these two models.

Figure 1.17. Comparison of nhumber of bits to hold various datatypes
for the ILP32 and LP64 models.

Datatype | ILP32 model | LP64 model
char 8 8
short 16 16
int 32 32
long 32 &4
pointer 32 64

From a programming perspective, the LP64 model means we cannot assume that a pointer
can be stored in an integer. We must also consider the effect of the LP64 model on existing
APIs.

ANSI C invented the size t datatype, which is used, for example, as the argument to
malloc (the number of bytes to allocate), and as the third argument to read and write
(the number of bytes to read or write). On a 32-bit system, size t is a 32-bit value, but
on a 64-bit system, it must be a 64-bit value, to take advantage of the larger addressing
model. This means a 64-bit system will probably contain a typedef of size t to be an
unsigned long. The networking API problem is that some drafts of POSIX.1g specified that
function arguments containing the size of a socket address structures have the size t
datatype (e.g., the third argument to bind and connect). Some XTI structures also had
members with a datatype of long (e.g., the t _info and t opthdr structures). If these had
been left as is, both would change from 32-bit values to 64-bit values when a Unix system
changes from the ILP32 to the LP64 model. In both instances, there is no need for a 64-bit
datatype: The length of a socket address structure is a few hundred bytes at most, and the
use of long for the XTI structure members was a mistake.

The solution is to use datatypes designed specifically to handle these scenarios. The
sockets API uses the socklen t datatype for lengths of socket address structures, and XTI
uses the t scalar t and t uscalar_ t datatypes. The reason for not changing these values
from 32 bits to 64 bits is to make it easier to provide binary compatibility on the new
64-bit systems for applications compiled under 32-bit systems.

[ Team LiB ]
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1.12 Summary

Figure 1.5 shows a complete, albeit simple, TCP client that fetches the current time and
date from a specified server, and Figure 1.9 shows a complete version of the server. These
two examples introduce many of the terms and concepts that are expanded on throughout
the rest of the book.

Our client was protocol-dependent on IPv4 and we modified it to use IPv6 instead. But this
just gave us another protocol-dependent program. In Chapter 11, we will develop some
functions to let us write protocol-independent code, which will be important as the Internet
starts using IPv6.

Throughout the text, we will use the wrapper functions developed in Section 1.4 to reduce
the size of our code, yet still check every function call for an error return. Our wrapper
functions all begin with a capital letter.

The Single Unix Specification Version 3, known by several other names and called simply
The POSIX Specification by us, is the confluence of two long-running standards efforts,
finally drawn together by The Austin Group.

Readers interested in the history of Unix networking should consult [Salus 1994] for a
description of Unix history, and [Salus 1995] for the history of TCP/IP and the Internet.

[ Team LiB ]
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Exercises

1.1 Go through the steps at the end of Section 1.9 to discover information
about your network topology.

1.2 Obtain the source code for the examples in this text (see the Preface).

Compile and test the TCP daytime client in Figure 1.5. Run the program
a few times, specifying a different IP address as the command-line
argument each time.

Modify the first argument to socket in Figure 1.5 to be 9999. Compile
and run the program. What happens? Find the errno value corresponding
to the error that is printed. How can you find more information on