
[ Team LiB ]

  
 Table of Contents

UNIX?Network Programming Volume 1, Third Edition: The Sockets Networking API
By W. ichard tevens, Bill enner, Andrew . udoff
 

Publisher: Addison Wesley
Pub Date: November 21, 2003

ISBN: 0-13-141155-1
Pages: 1024

"Everyone will want this book because it provides a great mix of practical experience,
historical perspective, and a depth of understanding that only comes from being intimately
involved in the field. I've already enjoyed and learned from reading this book, and surely
you will too."
-Sam Leffler

The classic guide to UNIX networking APIs... now completely updated!

To build today's highly distributed, networked applications and services, you need deep
mastery of sockets and other key networking APIs. One book delivers comprehensive,
start-to-finish guidance for building robust, high-performance networked systems in any
environment: UNIX Network Programming, Volume 1, Third Edition. 

Building on the legendary work of W. Richard Stevens, this edition has been fully updated
by two leading network programming experts to address today's most crucial standards,
implementations, and techniques. New topics include: 

 POSIX Single UNIX Specification Version 3
 IPv6 APIs (including updated guidance on IPv6/IPv4 interoperability)
 The new SCTP transport protocol
 IPsec-based Key Management Sockets
 FreeBSD 4.8/5.1, Red Hat Linux 9.x, Solaris 9, AIX 5.x, HP-UX, and Mac OS X

implementations
 New network program debugging techniques
 Source Specific Multicast API, the key enabler for widespread IP multicast

deployment

The authors also update and extend Stevens' definitive coverage of these crucial UNIX
networking standards and techniques: 

 TCP and UDP transport
 Sockets: elementary, advanced, routed, and raw
 I/O: multiplexing, advanced functions, nonblocking, and signal-driven 
 Daemons and inetd
 UNIX domain protocols
 ioctl operations

Page 1

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.informit.com/safari/author_bio.asp@ISBN=0131411551
http://www.informit.com/safari/author_bio.asp@ISBN=0131411551
http://www.informit.com/safari/author_bio.asp@ISBN=0131411551
http://www.processtext.com/abcchm.html


 Broadcasting and multicasting
 Threads
 Streams
 Design: TCP iterative, concurrent, preforked, and prethreaded servers

Since 1990, network programmers have turned to one source for the insights and
techniques they need: W. Richard Stevens' UNIX Network Programming. Now, there's an
edition specifically designed for today's challenges-and tomorrow's. 

[ Team LiB ]

Page 2

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

  
 Table of Contents

UNIX?Network Programming Volume 1, Third Edition: The Sockets Networking API
By W. ichard tevens, Bill enner, Andrew . udoff
 

Publisher: Addison Wesley
Pub Date: November 21, 2003

ISBN: 0-13-141155-1
Pages: 1024

 
 

Copyright

 
 

Addison-Wesley Professional Computing Series

 
 

Foreword

 
 

Preface

 
 

? Introduction

 
 

? Changes from the Second Edition

 
 

? Using This Book

 
 

? Source Code and Errata Availability

 
 

? Acknowledgments

 
 

Part 1:?Introduction and TCP/IP

 
 

? ?Chapter 1.?Introduction

 
 

? Section 1.1.?Introduction

 
 

? Section 1.2.?A Simple Daytime Client

 
 

? Section 1.3.?Protocol Independence

 
 

? Section 1.4.?Error Handling: Wrapper Functions

 
 

? Section 1.5.?A Simple Daytime Server

 
 

? Section 1.6.?Roadmap to Client/Server Examples in
the Text

 
 

? Section 1.7.?OSI Model

 
 

? Section 1.8.?BSD Networking History

 
 

? Section 1.9.?Test Networks and Hosts

 
 

? Section 1.10.?Unix Standards

 
 

? Section 1.11.?64-Bit Architectures

 ? Section 1.12.?Summary

Page 3

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.informit.com/safari/author_bio.asp@ISBN=0131411551
http://www.informit.com/safari/author_bio.asp@ISBN=0131411551
http://www.informit.com/safari/author_bio.asp@ISBN=0131411551
http://www.processtext.com/abcchm.html


 
 
 

? Exercises

 
 

? ?Chapter 2.?The Transport Layer: TCP, UDP, and
SCTP

 
 

? Section 2.1.?Introduction

 
 

? Section 2.2.?The Big Picture

 
 

? Section 2.3.?User Datagram Protocol (UDP)

 
 

? Section 2.4.?Transmission Control Protocol (TCP)

 
 

? Section 2.5.?Stream Control Transmission Protocol
(SCTP)

 
 

? Section 2.6.?TCP Connection Establishment and
Termination

 
 

? Section 2.7.?TIME_WAIT State

 
 

? Section 2.8.?SCTP Association Establishment and
Termination

 
 

? Section 2.9.?Port Numbers

 
 

? Section 2.10.?TCP Port Numbers and Concurrent
Servers

 
 

? Section 2.11.?Buffer Sizes and Limitations

 
 

? Section 2.12.?Standard Internet Services

 
 

? Section 2.13.?Protocol Usage by Common Internet
Applications

 
 

? Section 2.14.?Summary

 
 

? Exercises

 
 

Part 2:?Elementary Sockets

 
 

? ?Chapter 3.?Sockets Introduction

 
 

? Section 3.1.?Introduction

 
 

? Section 3.2.?Socket Address Structures

 
 

? Section 3.3.?Value-Result Arguments

 
 

? Section 3.4.?Byte Ordering Functions

 
 

? Section 3.5.?Byte Manipulation Functions

 
 

? Section 3.6.?inet_aton, inet_addr, and
inet_ntoa Functions

 
 

? Section 3.7.?inet_pton and inet_ntop
Functions

 
 

? Section 3.8.?sock_ntop and Related Functions

 
 

? Section 3.9.?readn, writen, and readline
Functions

 
 

? Section 3.10.?Summary

 
 

? Exercises

 
 

? ?Chapter 4.?Elementary TCP Sockets

 
 

? Section 4.1.?Introduction

 
 

? Section 4.2.?socket Function

 
 

? Section 4.3.?connect Function

 
 

? Section 4.4.?bind Function

 
 

? Section 4.5.?listen Function

 
 

? Section 4.6.?accept Function

Page 4

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


 
 

? Section 4.7.?fork and exec Functions

 
 

? Section 4.8.?Concurrent Servers

 
 

? Section 4.9.?close Function

 
 

? Section 4.10.?getsockname and
getpeername Functions

 
 

? Section 4.11.?Summary

 
 

? Exercises

 
 

? ?Chapter 5.?TCP Client/Server Example

 
 

? Section 5.1.?Introduction

 
 

? Section 5.2.?TCP Echo Server: main Function

 
 

? Section 5.3.?TCP Echo Server: str_echo
Function

 
 

? Section 5.4.?TCP Echo Client: main Function

 
 

? Section 5.5.?TCP Echo Client: str_cli Function

 
 

? Section 5.6.?Normal Startup

 
 

? Section 5.7.?Normal Termination

 
 

? Section 5.8.?POSIX Signal Handling

 
 

? Section 5.9.?Handling SIGCHLD Signals

 
 

? Section 5.10.?wait and waitpid Functions

 
 

? Section 5.11.?Connection Abort before accept
Returns

 
 

? Section 5.12.?Termination of Server Process

 
 

? Section 5.13.?SIGPIPE Signal

 
 

? Section 5.14.?Crashing of Server Host

 
 

? Section 5.15.?Crashing and Rebooting of Server
Host

 
 

? Section 5.16.?Shutdown of Server Host

 
 

? Section 5.17.?Summary of TCP Example

 
 

? Section 5.18.?Data Format

 
 

? Section 5.19.?Summary

 
 

? Exercises

 
 

? ?Chapter 6.?I/O Multiplexing: The select and poll
Functions

 
 

? Section 6.1.?Introduction

 
 

? Section 6.2.?I/O Models

 
 

? Section 6.3.?select Function

 
 

? Section 6.4.?str_cli Function (Revisited)

 
 

? Section 6.5.?Batch Input and Buffering

 
 

? Section 6.6.?shutdown Function

 
 

? Section 6.7.?str_cli Function (Revisited Again)

 
 

? Section 6.8.?TCP Echo Server (Revisited)

 
 

? Section 6.9.?pselect Function

 
 

? Section 6.10.?poll Function

 ? Section 6.11.?TCP Echo Server (Revisited Again)

Page 5

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


 
 
 

? Section 6.12.?Summary

 
 

? Exercises

 
 

? ?Chapter 7.?Socket Options

 
 

? Section 7.1.?Introduction

 
 

? Section 7.2.?getsockopt and setsockopt
Functions

 
 

? Section 7.3.?Checking if an Option Is Supported and
Obtaining the Default

 
 

? Section 7.4.?Socket States

 
 

? Section 7.5.?Generic Socket Options

 
 

? Section 7.6.?IPv4 Socket Options

 
 

? Section 7.7.?ICMPv6 Socket Option

 
 

? Section 7.8.?IPv6 Socket Options

 
 

? Section 7.9.?TCP Socket Options

 
 

? Section 7.10.?SCTP Socket Options

 
 

? Section 7.11.?fcntl Function

 
 

? Section 7.12.?Summary

 
 

? Exercises

 
 

? ?Chapter 8.?Elementary UDP Sockets

 
 

? Section 8.1.?Introduction

 
 

? Section 8.2.?recvfrom and sendto Functions

 
 

? Section 8.3.?UDP Echo Server: main Function

 
 

? Section 8.4.?UDP Echo Server: dg_echo Function

 
 

? Section 8.5.?UDP Echo Client: main Function

 
 

? Section 8.6.?UDP Echo Client: dg_cli Function

 
 

? Section 8.7.?Lost Datagrams

 
 

? Section 8.8.?Verifying Received Response

 
 

? Section 8.9.?Server Not Running

 
 

? Section 8.10.?Summary of UDP Example

 
 

? Section 8.11.?connect Function with UDP

 
 

? Section 8.12.?dg_cli Function (Revisited)

 
 

? Section 8.13.?Lack of Flow Control with UDP

 
 

? Section 8.14.?Determining Outgoing Interface with
UDP

 
 

? Section 8.15.?TCP and UDP Echo Server Using 
select

 
 

? Section 8.16.?Summary

 
 

? Exercises

 
 

? ?Chapter 9.?Elementary SCTP Sockets

 
 

? Section 9.1.?Introduction

 
 

? Section 9.2.?Interface Models

 
 

? Section 9.3.?sctp_bindx Function

Page 6

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


 
 

? Section 9.4.?sctp_connectx Function

 
 

? Section 9.5.?sctp_getpaddrs Function

 
 

? Section 9.6.?sctp_freepaddrs Function

 
 

? Section 9.7.?sctp_getladdrs Function

 
 

? Section 9.8.?sctp_freeladdrs Function

 
 

? Section 9.9.?sctp_sendmsg Function

 
 

? Section 9.10.?sctp_recvmsg Function

 
 

? Section 9.11.?sctp_opt_info Function

 
 

? Section 9.12.?sctp_peeloff Function

 
 

? Section 9.13.?shutdown Function

 
 

? Section 9.14.?Notifications

 
 

? Section 9.15.?Summary

 
 

? Exercises

 
 

? ?Chapter 10.?SCTP Client/Server Example

 
 

? Section 10.1.?Introduction

 
 

? Section 10.2.?SCTP One-to-Many-Style Streaming
Echo Server: main Function

 
 

? Section 10.3.?SCTP One-to-Many-Style Streaming
Echo Client: main Function

 
 

? Section 10.4.?SCTP Streaming Echo Client: 
str_cli Function

 
 

? Section 10.5.?Exploring Head-of-Line Blocking

 
 

? Section 10.6.?Controlling the Number of Streams

 
 

? Section 10.7.?Controlling Termination

 
 

? Section 10.8.?Summary

 
 

? Exercises

 
 

? ?Chapter 11.?Name and Address Conversions

 
 

? Section 11.1.?Introduction

 
 

? Section 11.2.?Domain Name System (DNS)

 
 

? Section 11.3.?gethostbyname Function

 
 

? Section 11.4.?gethostbyaddr Function

 
 

? Section 11.5.?getservbyname and
getservbyport Functions

 
 

? Section 11.6.?getaddrinfo Function

 
 

? Section 11.7.?gai_strerror Function

 
 

? Section 11.8.?freeaddrinfo Function

 
 

? Section 11.9.?getaddrinfo Function: IPv6

 
 

? Section 11.10.?getaddrinfo Function: Examples

 
 

? Section 11.11.?host_serv Function

 
 

? Section 11.12.?tcp_connect Function

 
 

? Section 11.13.?tcp_listen Function

 
 

? Section 11.14.?udp_client Function

 ? Section 11.15.?udp_connect Function

Page 7

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


 
 
 

? Section 11.16.?udp_server Function

 
 

? Section 11.17.?getnameinfo Function

 
 

? Section 11.18.?Re-entrant Functions

 
 

? Section 11.19.?gethostbyname_r and
gethostbyaddr_r Functions

 
 

? Section 11.20.?Obsolete IPv6 Address Lookup
Functions

 
 

? Section 11.21.?Other Networking Information

 
 

? Section 11.22.?Summary

 
 

? Exercises

 
 

Part 3:?Advanced Sockets

 
 

? ?Chapter 12.?IPv4 and IPv6 Interoperability

 
 

? Section 12.1.?Introduction

 
 

? Section 12.2.?IPv4 Client, IPv6 Server

 
 

? Section 12.3.?IPv6 Client, IPv4 Server

 
 

? Section 12.4.?IPv6 Address-Testing Macros

 
 

? Section 12.5.?Source Code Portability

 
 

? Section 12.6.?Summary

 
 

? Exercises

 
 

? ?Chapter 13.?Daemon Processes and the inetd
Superserver

 
 

? Section 13.1.?Introduction

 
 

? Section 13.2.?syslogd Daemon

 
 

? Section 13.3.?syslog Function

 
 

? Section 13.4.?daemon_init Function

 
 

? Section 13.5.?inetd Daemon

 
 

? Section 13.6.?daemon_inetd Function

 
 

? Section 13.7.?Summary

 
 

? Exercises

 
 

? ?Chapter 14.?Advanced I/O Functions

 
 

? Section 14.1.?Introduction

 
 

? Section 14.2.?Socket Timeouts

 
 

? Section 14.3.?recv and send Functions

 
 

? Section 14.4.?readv and writev Functions

 
 

? Section 14.5.?recvmsg and sendmsg Functions

 
 

? Section 14.6.?Ancillary Data

 
 

? Section 14.7.?How Much Data Is Queued?

 
 

? Section 14.8.?Sockets and Standard I/O

 
 

? Section 14.9.?Advanced Polling

 
 

? Section 14.10.?Summary

 ? Exercises

Page 8

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


 

 
 

? ?Chapter 15.?Unix Domain Protocols

 
 

? Section 15.1.?Introduction

 
 

? Section 15.2.?Unix Domain Socket Address
Structure

 
 

? Section 15.3.?socketpair Function

 
 

? Section 15.4.?Socket Functions

 
 

? Section 15.5.?Unix Domain Stream Client/Server

 
 

? Section 15.6.?Unix Domain Datagram Client/Server

 
 

? Section 15.7.?Passing Descriptors

 
 

? Section 15.8.?Receiving Sender Credentials

 
 

? Section 15.9.?Summary

 
 

? Exercises

 
 

? ?Chapter 16.?Nonblocking I/O

 
 

? Section 16.1.?Introduction

 
 

? Section 16.2.?Nonblocking Reads and Writes: 
str_cli Function (Revisited)

 
 

? Section 16.3.?Nonblocking connect

 
 

? Section 16.4.?Nonblocking connect: Daytime
Client

 
 

? Section 16.5.?Nonblocking connect: Web Client

 
 

? Section 16.6.?Nonblocking accept

 
 

? Section 16.7.?Summary

 
 

? Exercises

 
 

? ?Chapter 17.?ioctl Operations

 
 

? Section 17.1.?Introduction

 
 

? Section 17.2.?ioctl Function

 
 

? Section 17.3.?Socket Operations

 
 

? Section 17.4.?File Operations

 
 

? Section 17.5.?Interface Configuration

 
 

? Section 17.6.?get_ifi_info Function

 
 

? Section 17.7.?Interface Operations

 
 

? Section 17.8.?ARP Cache Operations

 
 

? Section 17.9.?Routing Table Operations

 
 

? Section 17.10.?Summary

 
 

? Exercises

 
 

? ?Chapter 18.?Routing Sockets

 
 

? Section 18.1.?Introduction

 
 

? Section 18.2.?Datalink Socket Address Structure

 
 

? Section 18.3.?Reading and Writing

 
 

? Section 18.4.?sysctl Operations

 ? Section 18.5.?get_ifi_info Function

Page 9

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


 (Revisited)
 
 

? Section 18.6.?Interface Name and Index Functions

 
 

? Section 18.7.?Summary

 
 

? Exercises

 
 

? ?Chapter 19.?Key Management Sockets

 
 

? Section 19.1.?Introduction

 
 

? Section 19.2.?Reading and Writing

 
 

? Section 19.3.?Dumping the Security Association
Database (SADB)

 
 

? Section 19.4.?Creating a Static Security Association
(SA)

 
 

? Section 19.5.?Dynamically Maintaining SAs

 
 

? Section 19.6.?Summary

 
 

? Exercises

 
 

? ?Chapter 20.?Broadcasting

 
 

? Section 20.1.?Introduction

 
 

? Section 20.2.?Broadcast Addresses

 
 

? Section 20.3.?Unicast versus Broadcast

 
 

? Section 20.4.?dg_cli Function Using Broadcasting

 
 

? Section 20.5.?Race Conditions

 
 

? Section 20.6.?Summary

 
 

? Exercises

 
 

? ?Chapter 21.?Multicasting

 
 

? Section 21.1.?Introduction

 
 

? Section 21.2.?Multicast Addresses

 
 

? Section 21.3.?Multicasting versus Broadcasting on a
LAN

 
 

? Section 21.4.?Multicasting on a WAN

 
 

? Section 21.5.?Source-Specific Multicast

 
 

? Section 21.6.?Multicast Socket Options

 
 

? Section 21.7.?mcast_join and Related Functions

 
 

? Section 21.8.?dg_cli Function Using Multicasting

 
 

? Section 21.9.?Receiving IP Multicast Infrastructure
Session Announcements

 
 

? Section 21.10.?Sending and Receiving

 
 

? Section 21.11.?Simple Network Time Protocol
(SNTP)

 
 

? Section 21.12.?Summary

 
 

? Exercises

 
 

? ?Chapter 22.?Advanced UDP Sockets

 
 

? Section 22.1.?Introduction

 
 

? Section 22.2.?Receiving Flags, Destination IP
Address, and Interface Index

 
 

? Section 22.3.?Datagram Truncation

 
 

? Section 22.4.?When to Use UDP Instead of TCP

Page 10

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


 
 

? Section 22.5.?Adding Reliability to a UDP Application

 
 

? Section 22.6.?Binding Interface Addresses

 
 

? Section 22.7.?Concurrent UDP Servers

 
 

? Section 22.8.?IPv6 Packet Information

 
 

? Section 22.9.?IPv6 Path MTU Control

 
 

? Section 22.10.?Summary

 
 

? Exercises

 
 

? ?Chapter 23.?Advanced SCTP Sockets

 
 

? Section 23.1.?Introduction

 
 

? Section 23.2.?An Autoclosing One-to-Many-Style
Server

 
 

? Section 23.3.?Partial Delivery

 
 

? Section 23.4.?Notifications

 
 

? Section 23.5.?Unordered Data

 
 

? Section 23.6.?Binding a Subset of Addresses

 
 

? Section 23.7.?Determining Peer and Local Address
Information

 
 

? Section 23.8.?Finding an Association ID Given an IP
Address

 
 

? Section 23.9.?Heartbeating and Address Failure

 
 

? Section 23.10.?Peeling Off an Association

 
 

? Section 23.11.?Controlling Timing

 
 

? Section 23.12.?When to Use SCTP Instead of TCP

 
 

? Section 23.13.?Summary

 
 

? Exercises

 
 

? ?Chapter 24.?Out-of-Band Data

 
 

? Section 24.1.?Introduction

 
 

? Section 24.2.?TCP Out-of-Band Data

 
 

? Section 24.3.?sockatmark Function

 
 

? Section 24.4.?TCP Out-of-Band Data Recap

 
 

? Section 24.5.?Summary

 
 

? Exercises

 
 

? ?Chapter 25.?Signal-Driven I/O

 
 

? Section 25.1.?Introduction

 
 

? Section 25.2.?Signal-Driven I/O for Sockets

 
 

? Section 25.3.?UDP Echo Server Using SIGIO

 
 

? Section 25.4.?Summary

 
 

? Exercises

 
 

? ?Chapter 26.?Threads

 
 

? Section 26.1.?Introduction

 
 

? Section 26.2.?Basic Thread Functions: Creation and
Termination

Page 11

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


 
 

? Section 26.3.?str_cli Function Using Threads

 
 

? Section 26.4.?TCP Echo Server Using Threads

 
 

? Section 26.5.?Thread-Specific Data

 
 

? Section 26.6.?Web Client and Simultaneous
Connections (Continued)

 
 

? Section 26.7.?Mutexes: Mutual Exclusion

 
 

? Section 26.8.?Condition Variables

 
 

? Section 26.9.?Web Client and Simultaneous
Connections (Continued)

 
 

? Section 26.10.?Summary

 
 

? Exercises

 
 

? ?Chapter 27.?IP Options

 
 

? Section 27.1.?Introduction

 
 

? Section 27.2.?IPv4 Options

 
 

? Section 27.3.?IPv4 Source Route Options

 
 

? Section 27.4.?IPv6 Extension Headers

 
 

? Section 27.5.?IPv6 Hop-by-Hop Options and
Destination Options

 
 

? Section 27.6.?IPv6 Routing Header

 
 

? Section 27.7.?IPv6 Sticky Options

 
 

? Section 27.8.?Historical IPv6 Advanced API

 
 

? Section 27.9.?Summary

 
 

? Exercises

 
 

? ?Chapter 28.?Raw Sockets

 
 

? Section 28.1.?Introduction

 
 

? Section 28.2.?Raw Socket Creation

 
 

? Section 28.3.?Raw Socket Output

 
 

? Section 28.4.?Raw Socket Input

 
 

? Section 28.5.?ping Program

 
 

? Section 28.6.?traceroute Program

 
 

? Section 28.7.?An ICMP Message Daemon

 
 

? Section 28.8.?Summary

 
 

? Exercises

 
 

? ?Chapter 29.?Datalink Access

 
 

? Section 29.1.?Introduction

 
 

? Section 29.2.?BSD Packet Filter (BPF)

 
 

? Section 29.3.?Datalink Provider Interface (DLPI)

 
 

? Section 29.4.?Linux: SOCK_PACKET and
PF_PACKET

 
 

? Section 29.5.?libpcap: Packet Capture Library

 
 

? Section 29.6.?libnet: Packet Creation and
Injection Library

 
 

? Section 29.7.?Examining the UDP Checksum Field

 ? Section 29.8.?Summary

Page 12

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


 
 
 

? Exercises

 
 

? ?Chapter 30.?Client/Server Design Alternatives

 
 

? Section 30.1.?Introduction

 
 

? Section 30.2.?TCP Client Alternatives

 
 

? Section 30.3.?TCP Test Client

 
 

? Section 30.4.?TCP Iterative Server

 
 

? Section 30.5.?TCP Concurrent Server, One Child per
Client

 
 

? Section 30.6.?TCP Preforked Server, No Locking
Around accept

 
 

? Section 30.7.?TCP Preforked Server, File Locking
Around accept

 
 

? Section 30.8.?TCP Preforked Server, Thread Locking
Around accept

 
 

? Section 30.9.?TCP Preforked Server, Descriptor
Passing

 
 

? Section 30.10.?TCP Concurrent Server, One Thread
per Client

 
 

? Section 30.11.?TCP Prethreaded Server,
per-Thread accept

 
 

? Section 30.12.?TCP Prethreaded Server, Main
Thread accept

 
 

? Section 30.13.?Summary

 
 

? Exercises

 
 

? ?Chapter 31.?Streams

 
 

? Section 31.1.?Introduction

 
 

? Section 31.2.?Overview

 
 

? Section 31.3.?getmsg and putmsg Functions

 
 

? Section 31.4.?getpmsg and putpmsg Functions

 
 

? Section 31.5.?ioctl Function

 
 

? Section 31.6.?Transport Provider Interface (TPI)

 
 

? Section 31.7.?Summary

 
 

? Exercises

 
 

?Appendix A.?IPv4, IPv6, ICMPv4, and ICMPv6

 
 

? Section A.1.?Introduction

 
 

? Section A.2.?IPv4 Header

 
 

? Section A.3.?IPv6 Header

 
 

? Section A.4.?IPv4 Addresses

 
 

? Section A.5.?IPv6 Addresses

 
 

? Section A.6.?Internet Control Message Protocols
(ICMPv4 and ICMPv6)

 
 

?Appendix B.?Virtual Networks

 
 

? Section B.1.?Introduction

 
 

? Section B.2.?The MBone

 
 

? Section B.3.?The 6bone

 ? Section B.4.?IPv6 Transition: 6to4

Page 13

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


 

 
 

?Appendix C.?Debugging Techniques

 
 

? Section C.1.?System Call Tracing

 
 

? Section C.2.?Standard Internet Services

 
 

? Section C.3.?sock Program

 
 

? Section C.4.?Small Test Programs

 
 

? Section C.5.?tcpdump Program

 
 

? Section C.6.?netstat Program

 
 

? Section C.7.?lsof Program

 
 

?Appendix D.?Miscellaneous Source Code

 
 

? Section D.1.?unp.h Header

 
 

? Section D.2.?config.h Header

 
 

? Section D.3.?Standard Error Functions

 
 

?Appendix E.?Solutions to Selected Exercises

 
 

? Chapter 1

 
 

? Chapter 2

 
 

? Chapter 3

 
 

? Chapter 4

 
 

? Chapter 5

 
 

? Chapter 6

 
 

? Chapter 7

 
 

? Chapter 8

 
 

? Chapter 9

 
 

? Chapter 10

 
 

? Chapter 11

 
 

? Chapter 12

 
 

? Chapter 13

 
 

? Chapter 14

 
 

? Chapter 15

 
 

? Chapter 16

 
 

? Chapter 17

 
 

? Chapter 18

 
 

? Chapter 20

 
 

? Chapter 21

 
 

? Chapter 22

 
 

? Chapter 24

 
 

? Chapter 25

 
 

? Chapter 26

 
 

? Chapter 27

 ? Chapter 28

Page 14

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


 
 
 

? Chapter 29

 
 

? Chapter 30

 
 

? Chapter 31

 
 

?Bibliography

[ Team LiB ]

Page 15

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Copyright
Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and
Addison-Wesley was aware of a trademark claim, the designations have been printed with
initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

The publisher offers discounts on this book when ordered in quantity for bulk purchases
and special sales. For more information, please contact:

   .S. orporate nd overnment ales
  ?800)?82-3419
   corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact:

International ales
  ?317)?81-3793
   international@pearsontechgroup.com

Visit Addison-Wesley on the Web: www.awprofessional.com

Library of Congress Cataloging-in-Publication Data

A CIP catalog record for this book can be obtained from the Library of Congress.

Copyright ?2004 by Pearson Education, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form, or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior consent of the publisher. Printed in
the United States of America. Published simultaneously in Canada.

For information on obtaining permission for use of material from this work, please submit a
written request to:

   earson ducation, nc.
   ights nd ontracts epartment
  ?5 rlington treet, uite?00
   oston, A?2116
   ax:?617)?48-7047

Text printed on recycled paper

First printing

Dedication
To Rich.

Aloha nui loa.

[ Team LiB ]

Page 16

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

mailto:corpsales@pearsontechgroup.com
mailto:international@pearsontechgroup.com
http://www.awprofessional.com/default.htm
http://www.processtext.com/abcchm.html


[ Team LiB ]

Addison-Wesley Professional Computing
Series
Brian W. Kernighan and Craig Partridge, Consulting Editors

Matthew H. Austern, Generic Programming and the STL: Using and Extending the C++
Standard Template Library

David R. Butenhof, Programming with POSIX?Threads

Brent Callaghan, NFS Illustrated

Tom Cargill, C++ Programming Style

William R. Cheswick/Steven M. Bellovin/Aviel D. Rubin, Firewalls and Internet Security,
Second Edition: Repelling the Wily Hacker

David A. Curry, UNIX?System Security: A Guide for Users and System Administrators

Stephen C. Dewhurst, C++ Gotchas: Avoiding Common Problems in Coding and Design

Erich Gamma/Richard Helm/Ralph Johnson/John Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software

Erich Gamma/Richard Helm/Ralph Johnson/John Vlissides, Design Patterns CD: Elements
of Reusable Object-Oriented Software

Peter Haggar, Practical Java?Programming Language Guide

David R. Hanson, C Interfaces and Implementations: Techniques for Creating Reusable
Software

Mark Harrison/Michael McLennan, Effective Tcl/Tk Programming: Writing Better Programs
with Tcl and Tk

Michi Henning/Steve Vinoski, Advanced CORBA?Programming with C++

Brian W. Kernighan/Rob Pike, The Practice of Programming

S. Keshav, An Engineering Approach to Computer Networking: ATM Networks, the Internet,
and the Telephone Network

John Lakos, Large-Scale C++ Software Design

Scott Meyers, Effective C++ CD: 85 Specific Ways to Improve Your Programs and Designs

Scott Meyers, Effective C++, Second Edition: 50 Specific Ways to Improve Your Programs
and Designs

Scott Meyers, More Effective C++: 35 New Ways to Improve Your Programs and Designs

Scott Meyers, Effective STL: 50 Specific Ways to Improve Your Use of the Standard
Template Library

Robert B. Murray, C++ Strategies and Tactics

David R. Musser/Gillmer J. Derge/Atul Saini, STL Tutorial and Reference Guide, Second
Edition: C++ Programming with the Standard Template Library

Page 17

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


John K. Ousterhout, Tcl and the Tk Toolkit

Craig Partridge, Gigabit Networking

Radia Perlman, Interconnections, Second Edition: Bridges, Routers, Switches, and
Internetworking Protocols

Stephen A. Rago, UNIX?System V Network Programming

Curt Schimmel, UNIX?Systems for Modern Architectures: Symmetric Multiprocessing and
Caching for Kernel Programmers

W. Richard Stevens/Bill Fenner/Andrew M. Rudoff, UNIX Network Programming Volume 1,
Third Edition: The Sockets Networking API

W. Richard Stevens, Advanced Programming in the UNIX?Environment

W. Richard Stevens, TCP/IP Illustrated, Volume 1: The Protocols

W. Richard Stevens, TCP/IP Illustrated, Volume 3: TCP for Transactions, HTTP, NNTP, and
the UNIX?Domain Protocols

W. Richard Stevens/Gary R. Wright, TCP/IP Illustrated Volumes 1-3 Boxed Set

John Viega/Gary McGraw, Building Secure Software: How to Avoid Security Problems the
Right Way

Gary R. Wright/W. Richard Stevens, TCP/IP Illustrated, Volume 2: The Implementation

Ruixi Yuan/ W. Timothy Strayer, Virtual Private Networks: Technologies and Solutions

Visit www.awprofessional.com/series/professionalcomputing for more
information about these titles.

[ Team LiB ]

Page 18

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.awprofessional.com/series/professionalcomputing
http://www.processtext.com/abcchm.html


[ Team LiB ]

Foreword
When the original text of this book arrived in 1990, it was quickly recognized as the
definitive reference for programmers to learn network programming techniques. Since
then, the art of computer networking has changed dramatically. All it takes is a look at the
return address for comments from the original text ("uunet!hsi!netbook") to make this
clear. (How many readers will even recognize this as an address in the UUCP dialup
network that was commonplace in the 1980s?)

Today, UUCP networks are a rarity and new technologies such as wireless networks are
becoming ubiquitous! With these changes, new network protocols and programming
paradigms have been developed. But, programmers have lacked a good reference from
which to learn the intricacies of these new techniques.

This book fills that void. Readers who have a dog-eared copy of the original book will want
a new copy for the updated programming techniques and the substantial new material
describing next-generation protocols such as IPv6. Everyone will want this book because it
provides a great mix of practical experience, historical perspective, and a depth of
understanding that only comes from being intimately involved in the field.

I've already enjoyed and learned from reading this book, and surely you will, too.

Sam Leffler

[ Team LiB ]

Page 19

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Preface
Introduction

Changes from the Second Edition

Using This Book

Source Code and Errata Availability

Acknowledgments

[ Team LiB ]

Page 20

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Introduction
This book is for people who want to write programs that communicate with each other
using an application program interface (API) known as sockets. Some readers may be very
familiar with sockets already, as that model has become synonymous with network
programming. Others may need an introduction to sockets from the ground up. The goal of
this book is to offer guidance on network programming for beginners as well as
professionals, for those developing new network-aware applications as well as those
maintaining existing code, and for people who simply want to understand how the
networking components of their system function.

All the examples in this text are actual, runnable code tested on Unix systems. However,
many non-Unix systems support the sockets API and the examples are largely operating
system-independent, as are the general concepts we present. Virtually every operating
system (OS) provides numerous network-aware applications such as Web browsers, email
clients, and file-sharing servers. We discuss the usual partitioning of these applications
into client and server and write our own small examples of these many times throughout
the text.

Presenting this material in a Unix-oriented fashion has the natural side effect of providing
background on Unix itself, and on TCP/IP as well. Where more extensive background may
be interesting, we refer the reader to other texts. Four texts are so commonly mentioned in
this book that we've assigned them the following abbreviations: 

 APUE: Advanced Programming in the UNIX Environment [Stevens 1992]

 TCPv1: TCP/IP Illustrated, Volume 1 [Stevens 1994]

 TCPv2: TCP/IP Illustrated, Volume 2 [Wright and Stevens 1995]

 TCPv3: TCP/IP Illustrated, Volume 3 [Stevens 1996]

TCPv2 contains a high level of detail very closely related to the material in this book, as it
describes and presents the actual 4.4BSD implementation of the network programming
functions for the sockets API (socket, bind, connect, and so on). If one understands the
implementation of a feature, the use of that feature in an application makes more sense. 

[ Team LiB ]

Page 21

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Changes from the Second Edition
Sockets have been around, more or less in their current form, since the 1980s, and it is a
tribute to their initial design that they have continued to be the network API of choice.
Therefore, it may come as a surprise to learn that quite a bit has changed since the second
edition of this book was published in 1998. The changes we've made to the text are
summarized as follows: 

 This new edition contains updated information on IPv6, which was only in draft form
at the time of publication of the second edition and has evolved somewhat. 

 The descriptions of functions and the examples have all been updated to reflect the
most recent POSIX specification (POSIX 1003.1-2001), also known as the Single
Unix Specification Version 3.

 The coverage of the X/Open Transport Interface (XTI) has been dropped. That API
has fallen out of common use and even the most recent POSIX specification does
not bother to cover it. 

 The coverage of TCP for transactions (T/TCP) has been dropped.

 Three chapters have been added to describe a relatively new transport protocol,
SCTP. This reliable, message-oriented protocol provides multiple streams between
endpoints and transport-level support for multihoming. It was originally designed
for transport of telephony signaling across the Internet, but provides some features
that many applications could take advantage of.

 A chapter has been added on key management sockets, which may be used with
Internet Protocol Security (IPsec) and other network security services.

 The machines used, as well as the versions of their variants of Unix, have all been
updated, and the examples have been updated to reflect how these machines
behave. In many cases, examples were updated because OS vendors fixed bugs or
added features, but as one might expect, we've discovered the occasional new bug
here and there. The machines used for testing the examples in this book were:

o Apple Power PC running MacOS/X 10.2.6

o HP PA-RISC running HP-UX 11i

o IBM Power PC running AIX 5.1

o Intel x86 running FreeBSD 4.8

o Intel x86 running Linux 2.4.7

o Sun SPARC running FreeBSD 5.1

o Sun SPARC running Solaris 9

See Figure 1.16 for details on how these machines were used.

Volume 2 of this UNIX Network Programming series, subtitled Interprocess
Communications, builds on the material presented here to cover message passing,
synchronization, shared memory, and remote procedure calls.

[ Team LiB ]

Page 22

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Using This Book
This text can be used as either a tutorial on network programming or as a reference for
experienced programmers. When used as a tutorial or for an introductory class on network
programming, the emphasis should be on Part 2, "Elementary Sockets" (Chapters 3
through 11), followed by whatever additional topics are of interest. Part 2 covers the basic
socket functions for both TCP and UDP, along with SCTP, I/O multiplexing, socket options,
and basic name and address conversions. Chapter 1 should be read by all readers,
especially Section 1.4, which describes some wrapper functions used throughout the text.
Chapter 2 and perhaps Appendix A should be referred to as necessary, depending on the
reader's background. Most of the chapters in Part 3, "Advanced Sockets," can be read
independently of the others in that part of the book. 

To aid in the use of this book as a reference, a thorough index is provided, along with
summaries on the end papers of where to find detailed descriptions of all the functions and
structures. To help those reading topics in a random order, numerous references to related
topics are provided throughout the text.

[ Team LiB ]

Page 23

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Source Code and Errata Availability
The source code for all the examples that appear in the book is available on the Web at 
www.unpbook.com. The best way to learn network programming is to take these programs,
modify them, and enhance them. Actually writing code of this form is the only way to
reinforce the concepts and techniques. Numerous exercises are also provided at the end of
each chapter, and most answers are provided in Appendix E.

A current errata for the book is also available from the same Web site.

[ Team LiB ]

Page 24

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.unpbook.com/default.htm
http://www.processtext.com/abcchm.html


[ Team LiB ]

Acknowledgments
The first and second editions of this book were written solely by W. Richard Stevens, who
passed away on September 1, 1999. His books have set a high standard and are largely
regarded as concise, laboriously detailed, and extremely readable works of art. In providing
this revision, the authors struggled to maintain the quality and thorough coverage of Rich's
earlier editions and any shortcomings in this area are entirely the fault of the new authors.

The work of an author is only as good as the support from family members and friends. Bill
Fenner would like to thank his dear wife, Peggy (beach ?mile champion), and their
housemate, Christopher Boyd for letting him off all his household chores while working in
the treehouse on this project. Thanks are also due to his friend, Jerry Winner, whose
prodding and encouragement were invaluable. Likewise, Andy Rudoff wants to specifically
thank his wife, Ellen, and girls, Jo and Katie, for their understanding and encouragement
throughout this project. We simply could not have done this without all of you.

Randall Stewart with Cisco Systems, Inc. provided much of the SCTP material and
deserves a special acknowledgment for this much-valued contribution. The coverage of this
new and interesting topic simply would not exist without Randall's work.

The feedback from our reviewers was invaluable for catching errors, pointing out areas that
required more explanation, and suggesting improvements to our text and code examples.
The authors would like to thank: James Carlson, Wu-Chang Feng, Rick Jones, Brian
Kernighan, Sam Leffler, John McCann, Craig Metz, Ian Lance Taylor, David Schwartz, and
Gary Wright.

Numerous individuals and their organizations went beyond the normal call of duty to
provide either a loaner system, software, or access to a system, all of which were used to
test some of the examples in the text.

 Jessie Haug of IBM Austin provided an AIX system and compilers.

 Rick Jones and William Gilliam of Hewlett-Packard provided access to multiple
systems running HP-UX.

The staff at Addison Wesley has been a true pleasure to work with: Noreen Regina,
Kathleen Caren, Dan DePasquale, Anthony Gemellaro, and a very special thanks to our
editor, Mary Franz.

In a trend that Rich Stevens instituted (but contrary to popular fads), we produced
camera-ready copy of the book using the wonderful Groff package written by James Clark,
created the illustrations using the gpic program (using many of Gary Wright's macros),
produced the tables using the gtbl program, performed all the indexing, and did the final
page layout. Dave Hanson's loom program and some scripts by Gary Wright were used to
include the source code in the book. A set of awk scripts written by Jon Bentley and Brian
Kernighan helped in producing the final index.

The authors welcome electronic mail from any readers with comments, suggestions, or bug
fixes.

Bill enner
Woodside, alifornia

Andrew . udoff
Boulder, olorado

October?003
authors@unpbook.com

Page 25

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

mailto:authors@unpbook.com
http://www.processtext.com/abcchm.html


http://www.unpbook.com

[ Team LiB ]

Page 26

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.unpbook.com/default.htm
http://www.unpbook.com
http://www.processtext.com/abcchm.html


[ Team LiB ]

Part 1: Introduction and TCP/IP
Chapter 1.?Introduction

Chapter 2.?The Transport Layer: TCP, UDP, and SCTP

[ Team LiB ]

Page 27

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Chapter 1. Introduction
Section 1.1.?Introduction

Section 1.2.?A Simple Daytime Client

Section 1.3.?Protocol Independence

Section 1.4.?Error Handling: Wrapper Functions

Section 1.5.?A Simple Daytime Server

Section 1.6.?Roadmap to Client/Server Examples in the Text

Section 1.7.?OSI Model

Section 1.8.?BSD Networking History

Section 1.9.?Test Networks and Hosts

Section 1.10.?Unix Standards

Section 1.11.?64-Bit Architectures

Section 1.12.?Summary

Exercises

[ Team LiB ]

Page 28

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

1.1 Introduction
When writing programs that communicate across a computer network, one must first
invent a protocol, an agreement on how those programs will communicate. Before delving
into the design details of a protocol, high-level decisions must be made about which
program is expected to initiate communication and when responses are expected. For
example, a Web server is typically thought of as a long-running program (or daemon) that
sends network messages only in response to requests coming in from the network. The
other side of the protocol is a Web client, such as a browser, which always initiates
communication with the server. This organization into client and server is used by most
network-aware applications. Deciding that the client always initiates requests tends to
simplify the protocol as well as the programs themselves. Of course, some of the more
complex network applications also require asynchronous callback communication, where
the server initiates a message to the client. But it is far more common for applications to
stick to the basic client/server model shown in Figure 1.1.

Figure 1.1. Network application: client and server.

Clients normally communicate with one server at a time, although using a Web browser as
an example, we might communicate with many different Web servers over, say, a
10-minute time period. But from the server's perspective, at any given point in time, it is
not unusual for a server to be communicating with multiple clients. We show this in Figure
1.2. Later in this text, we will cover several different ways for a server to handle multiple
clients at the same time.

Figure 1.2. Server handling multiple clients at the same time.

The client application and the server application may be thought of as communicating via a
network protocol, but actually, multiple layers of network protocols are typically involved.
In this text, we focus on the TCP/IP protocol suite, also called the Internet protocol suite.
For example, Web clients and servers communicate using the Transmission Control
Protocol, or TCP. TCP, in turn, uses the Internet Protocol, or IP, and IP communicates with
a datalink layer of some form. If the client and server are on the same Ethernet, we would
have the arrangement shown in Figure 1.3.

Figure 1.3. Client and server on the same Ethernet communicating
using TCP.

Page 29

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


Even though the client and server communicate using an application protocol, the
transport layers communicate using TCP. Note that the actual flow of information between
the client and server goes down the protocol stack on one side, across the network, and up
the protocol stack on the other side. Also note that the client and server are typically user
processes, while the TCP and IP protocols are normally part of the protocol stack within the
kernel. We have labeled the four layers on the right side of Figure 1.3.

TCP and IP are not the only protocols that we will discuss. Some clients and servers use
the User Datagram Protocol (UDP) instead of TCP, and we will discuss both protocols in
more detail in Chapter 2. Furthermore, we have used the term "IP," but the protocol, which
has been in use since the early 1980s, is officially called IP version 4 (IPv4). A new
version, IP version 6 (IPv6) was developed during the mid-1990s and could potentially
replace IPv4 in the years to come. This text covers the development of network
applications using both IPv4 and IPv6. Appendix A provides a comparison of IPv4 and
IPv6, along with other protocols that we will discuss.

The client and server need not be attached to the same local area network (LAN) as we
show in Figure 1.3. For instance, in Figure 1.4, we show the client and server on different
LANs, with both LANs connected to a wide area network (WAN) using routers.

Figure 1.4. Client and server on different LANs connected through a
WAN.

Routers are the building blocks of WANs. The largest WAN today is the Internet. Many
companies build their own WANs and these private WANs may or may not be connected to
the Internet.

The remainder of this chapter provides an introduction to the various topics that are
covered in detail later in the text. We start with a complete example of a TCP client, albeit
a simple one, that demonstrates many of the function calls and concepts that we will
encounter throughout the text. This client works with IPv4 only, and we show the changes

Page 30

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


required to work with IPv6. A better solution is to write protocol-independent clients and
servers, and we will discuss this in Chapter 11. This chapter also shows a complete TCP
server that works with our client.

To simplify all our code, we define our own wrapper functions for most of the system
functions that we call throughout the text. We can use these wrapper functions most of the
time to check for an error, print an appropriate message, and terminate when an error
occurs. We also show the test network, hosts, and routers used for most examples in the
text, along with their hostnames, IP addresses, and operating systems.

Most discussions of Unix these days include the term "X," which is the standard that most
vendors have adopted. We describe the history of POSIX and how it affects the Application
Programming Interfaces (APIs) that we describe in this text, along with the other players
in the standards arena.

[ Team LiB ]

Page 31

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

1.2 A Simple Daytime Client
Let's consider a specific example to introduce many of the concepts and terms that we will
encounter throughout the book. Figure 1.5 is an implementation of a TCP time-of-day
client. This client establishes a TCP connection with a server and the server simply sends
back the current time and date in a human-readable format.

Figure 1.5 TCP daytime client.

intro/daytimetcpcli.c

 1 #include  "unp.h"

 2 int

 3 main(int argc, char **argv)

 4 {

 5     int     sockfd, n;

 6     char    recvline[MAXLINE + 1];

 7     struct sockaddr_in servaddr;

 8     if (argc != 2)

 9         err_quit("usage: a.out <IPaddress>");

10     if ( (sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)

11         err_sys("socket error");

12     bzero(&servaddr, sizeof(servaddr));

13     servaddr.sin_family = AF_INET;

14     servaddr.sin_port = htons(13);  /* daytime server */

15     if (inet_pton(AF_INET, argv[1], &servaddr.sin_addr) <= 0)

16         err_quit("inet_pton error for %s", argv[1]);

17     if (connect(sockfd, (SA *) &servaddr, sizeof(servaddr)) < 0)

18         err_sys("connect error");

19     while ( (n = read(sockfd, recvline, MAXLINE)) > 0) {

20         recvline[n] = 0;        /* null terminate */

21         if (fputs(recvline, stdout) == EOF)

22             err_sys("fputs error");

23     }

24     if (n < 0)

25         err_sys("read error");

26     exit(0);

27 }

This is the format that we will use for all the source code in the text. Each nonblank line is
numbered. The text describing portions of the code notes the starting and ending line
numbers in the left margin, as shown shortly. Sometimes a paragraph is preceded by a
short, descriptive, bold heading, providing a summary statement of the code being
described.

The horizontal rules at the beginning and end of a code fragment specify the source code
filename: the file daytimetcpcli.c in the directory intro for this example. Since the
source code for all the examples in the text is freely available (see the Preface), this lets
you locate the appropriate source file. Compiling, running, and especially modifying these
programs while reading this text is an excellent way to learn the concepts of network

Page 32

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


programming.

Throughout the text, we will use indented, parenthetical notes such as this to describe
implementation details and historical points.

If we compile the program into the default a.out file and execute it, we will have the
following output:

solaris % a.out 206.168.112.96 our input

Mon May 26 20:58:40 2003 the program's output

Whenever we display interactive input and output, we will show our typed input in bold
and the computer output like this. Comments are added on the right side in italics. We
will always include the name of the system as part of the shell prompt (solaris in this
example) to show on which host the command was run. Figure 1.16 shows the systems
used to run most of the examples in this book. The hostnames usually describe the
operating system (OS) as well.

There are many details to consider in this 27-line program. We mention them briefly here,
in case this is your first encounter with a network program, and provide more information
on these topics later in the text.

Include our own header
1 We include our own header, unp.h, which we will show in Section D.1. This header
includes numerous system headers that are needed by most network programs and defines
various constants that we use (e.g., MAXLINE).

Command-line arguments
2 3 This is the definition of the main function along with the command-line arguments. We
have written the code in this text assuming an American National Standards Institute
(ANSI) C compiler (also referred to as an ISO C compiler).

Create TCP socket
10 11 The socket function creates an Internet (AF_INET) stream (SOCK_STREAM) socket,
which is a fancy name for a TCP socket. The function returns a small integer descriptor that
we can use to identify the socket in all future function calls (e.g., the calls to connect and
read that follow).

The if statement contains a call to the socket function, an assignment of the return value
to the variable named sockfd, and then a test of whether this assigned value is less than
0. While we could break this into two C statements,

sockfd = socket(AF_INET, SOCK_STREAM, 0);

if (sockfd < 0)

it is a common C idiom to combine the two lines. The set of parentheses around the
function call and assignment is required, given the precedence rules of C (the less-than
operator has a higher precedence than assignment). As a matter of coding style, the
authors always place a space between the two opening parentheses, as a visual indicator
that the left-hand side of the comparison is also an assignment. (This style is copied from
the Minix source code [Tanenbaum 1987].) We use this same style in the while statement
later in the program.

Page 33

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


We will encounter many different uses of the term "socket." First, the API that we are
using is called the sockets API. In the preceding paragraph, we referred to a function
named socket that is part of the sockets API. In the preceding paragraph, we also referred
to a TCP socket, which is synonymous with a TCP endpoint.

If the call to socket fails, we abort the program by calling our own err_sys function. It
prints our error message along with a description of the system error that occurred (e.g.,
"Protocol not supported" is one possible error from socket) and terminates the process.
This function, and a few others of our own that begin with err_, are called throughout the
text. We will describe them in Section D.3.

Specify server's IP address and port
12 16 We fill in an Internet socket address structure (a sockaddr_in structure named
servaddr) with the server's IP address and port number. We set the entire structure to 0
using bzero, set the address family to AF_INET, set the port number to 13 (which is the
well-known port of the daytime server on any TCP/IP host that supports this service, as
shown in Figure 2.18), and set the IP address to the value specified as the first
command-line argument (argv[1]). The IP address and port number fields in this structure
must be in specific formats: We call the library function htons ("host to network short") to
convert the binary port number, and we call the library function inet_pton ("presentation
to numeric") to convert the ASCII command-line argument (such as 206.62.226.35 when
we ran this example) into the proper format.

bzero is not an ANSI C function. It is derived from early Berkeley networking code.
Nevertheless, we use it throughout the text, instead of the ANSI C memset function,
because bzero is easier to remember (with only two arguments) than memset (with three
arguments). Almost every vendor that supports the sockets API also provides bzero, and if
not, we provide a macro definition of it in our unp.h header.

Indeed, the author of TCPv3 made the mistake of swapping the second and third
arguments to memset in 10 occurrences in the first printing. A C compiler cannot catch this
error because both arguments are of the same type. (Actually, the second argument is an 
int and the third argument is size_t, which is typically an unsigned int, but the values
specified, 0 and 16, respectively, are still acceptable for the other type of argument.) The
call to memset still worked, but did nothing. The number of bytes to initialize was specified
as 0. The programs still worked, because only a few of the socket functions actually require
that the final 8 bytes of an Internet socket address structure be set to 0. Nevertheless, it
was an error, and one that could be avoided by using bzero, because swapping the two
arguments to bzero will always be caught by the C compiler if function prototypes are
used.

This may be your first encounter with the inet_pton function. It is new with IPv6 (which
we will talk more about in Appendix A). Older code uses the inet_addr function to convert
an ASCII dotted-decimal string into the correct format, but this function has numerous
limitations that inet_pton corrects. Do not worry if your system does not (yet) support this
function; we will provide an implementation of it in Section 3.7.

Establish connection with server
17 18 The connect function, when applied to a TCP socket, establishes a TCP connection
with the server specified by the socket address structure pointed to by the second
argument. We must also specify the length of the socket address structure as the third
argument to connect, and for Internet socket address structures, we always let the
compiler calculate the length using C's sizeof operator.

In the unp.h header, we #define SA to be struct sockaddr, that is, a generic socket
address structure. Everytime one of the socket functions requires a pointer to a socket

Page 34

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


address structure, that pointer must be cast to a pointer to a generic socket address
structure. This is because the socket functions predate the ANSI C standard, so the void *
pointer type was not available in the early 1980s when these functions were developed.
The problem is that "struct sockaddr" is 15 characters and often causes the source code
line to extend past the right edge of the screen (or page, in the case of a book), so we
shorten it to SA. We will talk more about generic socket address structures when
explaining Figure 3.3.

Read and display server's reply
19 25 We read the server's reply and display the result using the standard I/O fputs
function. We must be careful when using TCP because it is a byte-stream protocol with no
record boundaries. The server's reply is normally a 26-byte string of the form

Mon May 26 20 : 58 : 40 2003\r\n

where \r is the ASCII carriage return and \n is the ASCII linefeed. With a byte-stream
protocol, these 26 bytes can be returned in numerous ways: a single TCP segment
containing all 26 bytes of data, in 26 TCP segments each containing 1 byte of data, or any
other combination that totals to 26 bytes. Normally, a single segment containing all 26
bytes of data is returned, but with larger data sizes, we cannot assume that the server's
reply will be returned by a single read. Therefore, when reading from a TCP socket, we
always need to code the read in a loop and terminate the loop when either read returns 0
(i.e., the other end closed the connection) or a value less than 0 (an error).

In this example, the end of the record is being denoted by the server closing the
connection. This technique is also used by version 1.0 of the Hypertext Transfer Protocol
(HTTP). Other techniques are available. For example, the Simple Mail Transfer Protocol
(SMTP) marks the end of a record with the two-byte sequence of an ASCII carriage return
followed by an ASCII linefeed. Sun Remote Procedure Call (RPC) and the Domain Name
System (DNS) place a binary count containing the record length in front of each record
that is sent when using TCP. The important concept here is that TCP itself provides no
record markers: If an application wants to delineate the ends of records, it must do so
itself and there are a few common ways to accomplish this.

Terminate program
26 exit terminates the program. Unix always closes all open descriptors when a process
terminates, so our TCP socket is now closed.

As we mentioned, the text will go into much more detail on all the points we just
described.

[ Team LiB ]

Page 35

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

1.3 Protocol Independence
Our program in Figure 1.5 is protocol-dependent on IPv4. We allocate and initialize a
sockaddr_in structure, we set the family of this structure to AF_INET, and we specify the
first argument to socket as AF_INET.

To modify the program to work under IPv6, we must change the code. Figure 1.6 shows a
version that works under IPv6, with the changes highlighted in bold.

Figure 1.6 Version of Figure 1.5 for IPv6.

intro/daytimetcpcliv6.c

 1 #include     "unp.h"

 2 int

 3 main(int argc, char **argv)

 4 {

 5     int     sockfd, n;

 6     char    recvline[MAXLINE + 1];

 7     struct sockaddr_in6 servaddr;

 8     if (argc != 2)

 9         err_quit("usage: a.out <IPaddress>");

10     if ( (sockfd = socket(AF_INET6, SOCK_STREAM, 0)) < 0)

11         err_sys("socket error");

12     bzero(&servaddr, sizeof(servaddr));

13     servaddr.sin6_family = AF_INET6;

14     servaddr.sin6_port = htons(13);    /* daytime server */

15     if (inet_pton(AF_INET6, argv[1], &servaddr.sin6_addr) <= 0)

16         err_quit("inet_pton error for %s", argv[1]);

17     if (connect(sockfd, (SA *) &servaddr, sizeof(servaddr)) < 0)

18         err_sys("connect error");

19     while ( (n = read(sockfd, recvline, MAXLINE)) > 0) {

20         recvline[n] = 0;    /* null terminate */

21         if (fputs(recvline, stdout) == EOF)

22             err_sys("fputs error");

23     }

24     if (n < 0)

25         err_sys("read error");

26     exit(0);

27 }

Only five lines are changed, but what we now have is another protocol-dependent
program; this time, it is dependent on IPv6. It is better to make a program 
protocol-independent. Figure 11.11 will show a version of this client that is
protocol-independent by using the getaddrinfo function (which is called by tcp_connect).

Another deficiency in our programs is that the user must enter the server's IP address as a
dotted-decimal number (e.g., 206.168.112.219 for the IPv4 version). Humans work better
with names instead of numbers (e.g., www.unpbook.com). In Chapter 11, we will discuss
the functions that convert between hostnames and IP addresses, and between service

Page 36

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


names and ports. We purposely put off the discussion of these functions and continue
using IP addresses and port numbers so we know exactly what goes into the socket
address structures that we must fill in and examine. This also avoids complicating our
discussion of network programming with the details of yet another set of functions.

[ Team LiB ]

Page 37

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

1.4 Error Handling: Wrapper Functions
In any real-world program, it is essential to check every function call for an error return.
In Figure 1.5, we check for errors from socket, inet_pton, connect, read, and fputs, and
when one occurs, we call our own functions, err_quit and err_sys, to print an error
message and terminate the program. We find that most of the time, this is what we want
to do. Occasionally, we want to do something other than terminate when one of these
functions returns an error, as in Figure 5.12, when we must check for an interrupted
system call.

Since terminating on an error is the common case, we can shorten our programs by
defining a wrapper function that performs the actual function call, tests the return value,
and terminates on an error. The convention we use is to capitalize the name of the
function, as in

sockfd = Socket(AF_INET, SOCK_STREAM, 0);

Our wrapper function is shown in Figure 1.7.

Figure 1.7 Our wrapper function for the socket function.

lib/wrapsock.c

236 int

237 Socket(int family, int type, int protocol)

238 {

239     int     n;

240     if ( (n = socket(family, type, protocol)) < 0)

241         err_sys("socket error");

242     return (n);

243 }

Whenever you encounter a function name in the text that begins with an uppercase letter,
that is one of our wrapper functions. It calls a function whose name is the same but begins
with the lowercase letter.

When describing the source code that is presented in the text, we always refer to the
lowest level function being called (e.g., socket), not the wrapper function (e.g., Socket).

While these wrapper functions might not seem like a big savings, when we discuss threads
in Chapter 26, we will find that thread functions do not set the standard Unix errno
variable when an error occurs; instead, the errno value is the return value of the function.
This means that every time we call one of the pthread_ functions, we must allocate a
variable, save the return value in that variable, and then set errno to this value before
calling err_sys. To avoid cluttering the code with braces, we can use C's comma operator
to combine the assignment into errno and the call of err_sys into a single statement, as
in the following:

int    n;

if ( (n = pthread_mutex_lock(&ndone_mutex)) != 0)

Page 38

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


    errno = n, err_sys("pthread_mutex_lock error");

Alternately, we could define a new error function that takes the system's error number as
an argument. But, we can make this piece of code much easier to read as just

Pthread_mutex_lock(&ndone_mutex);

by defining our own wrapper function, as shown in Figure 1.8.

Figure 1.8 Our wrapper function for pthread_mutex_lock.

lib/wrappthread.c

72 void

73 Pthread_mutex_lock(pthread_mutex_t *mptr)

74 {

75     int     n;

76     if ( (n = pthread_mutex_lock(mptr)) == 0)

77         return;

78     errno = n;

79     err_sys("pthread_mutex_lock error");

80 }

With careful C coding, we could use macros instead of functions, providing a little run-time
efficiency, but these wrapper functions are rarely the performance bottleneck of a program.

Our choice of capitalizing the first character of a function name is a compromise. Many
other styles were considered: prefixing the function name with an "e" (as done on p. 182
of [Kernighan and Pike 1984]), appending "_e" to the function name, and so on. Our style
seems the least distracting while still providing a visual indication that some other function
is really being called.

This technique has the side benefit of checking for errors from functions whose error
returns are often ignored: close and listen, for example.

Throughout the rest of this book, we will use these wrapper functions unless we need to
check for an explicit error and handle it in some way other than terminating the process.
We do not show the source code for all our wrapper functions, but the code is freely
available (see the Preface).

Unix errno Value
When an error occurs in a Unix function (such as one of the socket functions), the global
variable errno is set to a positive value indicating the type of error and the function
normally returns  1. Our err_sys function looks at the value of errno and prints the
corresponding error message string (e.g., "Connection timed out" if errno equals
ETIMEDOUT).

The value of errno is set by a function only if an error occurs. Its value is undefined if the
function does not return an error. All of the positive error values are constants with
all-uppercase names beginning with "E," and are normally defined in the <sys/errno.h>
header. No error has a value of 0.

Storing errno in a global variable does not work with multiple threads that share all global
variables. We will talk about solutions to this problem in Chapter 26.

Page 39

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


Throughout the text, we will use phrases such as "the connect function returns
ECONNREFUSED" as shorthand to mean that the function returns an error (typically with a
return value of  1), with errno set to the specified constant.

[ Team LiB ]

Page 40

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

1.5 A Simple Daytime Server
We can write a simple version of a TCP daytime server, which will work with the client
from Section 1.2. We use the wrapper functions that we described in the previous section
and show this server in Figure 1.9.

Figure 1.9 TCP daytime server.

intro/daytimetcpsrv.c

 1 #include     "unp.h".

 2 #include     <time.h>

 3 int

 4 main(int argc, char **argv)

 5 {

 6     int     listenfd, connfd;

 7     struct sockaddr_in servaddr;

 8     char    buff[MAXLINE];

 9     time_t ticks;

10     listenfd = Socket(AF_INET, SOCK_STREAM, 0);

11     bzeros(&servaddr, sizeof(servaddr));

12     servaddr.sin_family = AF_INET;

13     servaddr.sin_addr.s_addr = htonl(INADDR_ANY);

14     servaddr.sin_port = htons(13); /* daytime server */

15     Bind(listenfd, (SA *) &servaddr, sizeof(servaddr));

16     Listen(listenfd, LISTENQ);

17     for ( ; ; ) {

18         connfd = Accept(listenfd, (SA *) NULL, NULL);

19         ticks = time(NULL);

20         snprintf(buff, sizeof(buff), "%.24s\r\n", ctime(&ticks));

21         Write(connfd, buff, strlen(buff));

22         Close(connfd);

23     }

24 }

Create a TCP socket
10 The creation of the TCP socket is identical to the client code.

Bind server's well-known port to socket
11 15 The server's well-known port (13 for the daytime service) is bound to the socket by
filling in an Internet socket address structure and calling bind. We specify the IP address
as INADDR_ANY, which allows the server to accept a client connection on any interface, in
case the server host has multiple interfaces. Later we will see how we can restrict the
server to accepting a client connection on just a single interface.

Convert socket to listening socket

Page 41

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


16 By calling listen, the socket is converted into a listening socket, on which incoming
connections from clients will be accepted by the kernel. These three steps, socket, bind,
and listen, are the normal steps for any TCP server to prepare what we call the listening
descriptor (listenfd in this example).

The constant LISTENQ is from our unp.h header. It specifies the maximum number of client
connections that the kernel will queue for this listening descriptor. We say much more
about this queueing in Section 4.5.

Accept client connection, send reply
17 21 Normally, the server process is put to sleep in the call to accept, waiting for a client
connection to arrive and be accepted. A TCP connection uses what is called a three-way
handshake to establish a connection. When this handshake completes, accept returns, and
the return value from the function is a new descriptor (connfd) that is called the connected
descriptor. This new descriptor is used for communication with the new client. A new
descriptor is returned by accept for each client that connects to our server.

The style used throughout the book for an infinite loop is

for ( ; ; ) {

    . . .

}

The current time and date are returned by the library function time, which returns the
number of seconds since the Unix Epoch: 00:00:00 January 1, 1970, Coordinated Universal
Time (UTC). The next library function, ctime, converts this integer value into a
human-readable string such as

Mon May 26 20:58:40 2003

A carriage return and linefeed are appended to the string by snprintf, and the result is
written to the client by write.

If you're not already in the habit of using snprintf instead of the older sprintf, now's the
time to learn. Calls to sprintf cannot check for overflow of the destination buffer.
snprintf, on the other hand, requires that the second argument be the size of the
destination buffer, and this buffer will not overflow.

snprintf was a relatively late addition to the ANSI C standard, introduced in the version
referred to as ISO C99. Virtually all vendors provide it as part of the standard C library, and
many freely available versions are also available. We use snprintf throughout the text,
and we recommend using it instead of sprintf in all your programs for reliability.

It is remarkable how many network break-ins have occurred by a hacker sending data to
cause a server's call to sprintf to overflow its buffer. Other functions that we should be
careful with are gets, strcat, and strcpy, normally calling fgets, strncat, and strncpy
instead. Even better are the more recently available functions strlcat and strlcpy, which
ensure the result is a properly terminated string. Additional tips on writing secure network
programs are found in Chapter 23 of [Garfinkel, Schwartz, and Spafford 2003].

Terminate connection

Page 42

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


22 The server closes its connection with the client by calling close. This initiates the
normal TCP connection termination sequence: a FIN is sent in each direction and each FIN
is acknowledged by the other end. We will say much more about TCP's three-way
handshake and the four TCP packets used to terminate a TCP connection in Section 2.6.

As with the client in the previous section, we have only examined this server briefly, saving
all the details for later in the book. Note the following points:

 As with the client, the server is protocol-dependent on IPv4. We will show a
protocol-independent version that uses the getaddrinfo function in Figure 11.13.

 Our server handles only one client at a time. If multiple client connections arrive at
about the same time, the kernel queues them, up to some limit, and returns them
to accept one at a time. This daytime server, which requires calling two library
functions, time and ctime, is quite fast. But if the server took more time to service
each client (say a few seconds or a minute), we would need some way to overlap
the service of one client with another client.

 The server that we show in Figure 1.9 is called an iterative server because it iterates
through each client, one at a time. There are numerous techniques for writing a 
concurrent server, one that handles multiple clients at the same time. The simplest
technique for a concurrent server is to call the Unix fork function (Section 4.7),
creating one child process for each client. Other techniques are to use threads
instead of fork (Section 26.4), or to pre-fork a fixed number of children when the
server starts (Section 30.6).

 If we start a server like this from a shell command line, we might want the server to
run for a long time, since servers often run for as long as the system is up. This
requires that we add code to the server to run correctly as a Unix daemon: a process
that can run in the background, unattached to a terminal. We will cover this in 
Section 13.4.

[ Team LiB ]

Page 43

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

1.6 Roadmap to Client/Server Examples in the Text
Two client/server examples are used predominantly throughout the text to illustrate the
various techniques used in network programming:

 A daytime client/server (which we started in Figures 1.5, 1.6, and 1.9)

 An echo client/server (which will start in Chapter 5)

To provide a roadmap for the different topics that are covered in this text, we will
summarize the programs that we will develop, and give the starting figure number and
page number in which the source code appears. Figure 1.10 lists the versions of the
daytime client, two versions of which we have already seen. Figure 1.11 lists the versions
of the daytime server. Figure 1.12 lists the versions of the echo client, and Figure 1.13 lists
the versions of the echo server.

Figure 1.10. Different versions of the daytime client developed in the
text.

Figure 1.11. Different versions of the daytime server developed in the
text.

Figure 1.12. Different versions of the echo client developed in the text.

Page 44

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


Figure 1.13. Different versions of the echo server developed in the
text.

[ Team LiB ]

Page 45

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

1.7 OSI Model
A common way to describe the layers in a network is to use the International Organization
for Standardization (ISO) open systems interconnection (OSI) model for computer
communications. This is a seven-layer model, which we show in Figure 1.14, along with the
approximate mapping to the Internet protocol suite.

Figure 1.14. Layers in OSI model and Internet protocol suite.

We consider the bottom two layers of the OSI model as the device driver and networking
hardware that are supplied with the system. Normally, we need not concern ourselves with
these layers other than being aware of some properties of the datalink, such as the
1500-byte Ethernet maximum transfer unit (MTU), which we describe in Section 2.11.

The network layer is handled by the IPv4 and IPv6 protocols, both of which we will describe
in Appendix A. The transport layers that we can choose from are TCP and UDP, and we will
describe these in Chapter 2. We show a gap between TCP and UDP in Figure 1.14 to
indicate that it is possible for an application to bypass the transport layer and use IPv4 or
IPv6 directly. This is called a raw socket, and we will talk about this in Chapter 28.

The upper three layers of the OSI model are combined into a single layer called the
application. This is the Web client (browser), Telnet client, Web server, FTP server, or
whatever application we are using. With the Internet protocols, there is rarely any
distinction between the upper three layers of the OSI model.

The sockets programming interfaces described in this book are interfaces from the upper
three layers (the "application") into the transport layer. This is the focus of this book: how
to write applications using sockets that use either TCP or UDP. We already mentioned raw
sockets, and in Chapter 29 we will see that we can even bypass the IP layer completely to
read and write our own datalink-layer frames.

Why do sockets provide the interface from the upper three layers of the OSI model into the
transport layer? There are two reasons for this design, which we note on the right side of 
Figure 1.14. First, the upper three layers handle all the details of the application (FTP,
Telnet, or HTTP, for example) and know little about the communication details. The lower
four layers know little about the application, but handle all the communication details:
sending data, waiting for acknowledgments, sequencing data that arrives out of order,
calculating and verifying checksums, and so on. The second reason is that the upper three
layers often form what is called a user process while the lower four layers are normally
provided as part of the operating system (OS) kernel. Unix provides this separation
between the user process and the kernel, as do many other contemporary operating
systems. Therefore, the interface between layers 4 and 5 is the natural place to build the
API.

Page 46

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Page 47

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

1.8 BSD Networking History
The sockets API originated with the 4.2BSD system, released in 1983. Figure 1.15 shows
the development of the various BSD releases, noting the major TCP/IP developments. A
few changes to the sockets API also took place in 1990 with the 4.3BSD Reno release,
when the OSI protocols went into the BSD kernel.

Figure 1.15. History of various BSD releases.

The path down the figure from 4.2BSD through 4.4BSD shows the releases from the
Computer Systems Research Group (CSRG) at Berkeley, which required the recipient to
already have a source code license for Unix. But all the networking code, both the kernel
support (such as the TCP/IP and Unix domain protocol stacks and the socket interface),
along with the applications (such as the Telnet and FTP clients and servers), were
developed independently from the AT&T-derived Unix code. Therefore, starting in 1989,
Berkeley provided the first of the BSD networking releases, which contained all the
networking code and various other pieces of the BSD system that were not constrained by
the Unix source code license requirement. These releases were "publicly available" and
eventually became available by anonymous FTP to anyone.

The final releases from Berkeley were 4.4BSD-Lite in 1994 and 4.4BSD-Lite2 in 1995. We
note that these two releases were then used as the base for other systems: BSD/OS,
FreeBSD, NetBSD, and OpenBSD, most of which are still being actively developed and
enhanced. More information on the various BSD releases, and on the history of the various
Unix systems in general, can be found in Chapter 01 of [McKusick et al. 1996].

Page 48

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


Many Unix systems started with some version of the BSD networking code, including the
sockets API, and we refer to these implementations as Berkeley-derived implementations.
Many commercial versions of Unix are based on System V Release 4 (SVR4). Some of these
versions have Berkeley-derived networking code (e.g., UnixWare 2.x), while the networking
code in other SVR4 systems has been independently derived (e.g., Solaris 2.x). We also
note that Linux, a popular, freely available implementation of Unix, does not fit into the
Berkeley-derived classification: Its networking code and sockets API were developed from
scratch.

[ Team LiB ]

Page 49

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

1.9 Test Networks and Hosts
Figure 1.16 shows the various networks and hosts used in the examples throughout the
text. For each host, we show the OS and the type of hardware (since some of the operating
systems run on more than one type of hardware). The name within each box is the
hostname that appears in the text.

The topology shown in Figure 1.16 is interesting for the sake of our examples, but the
machines are largely spread out across the Internet and the physical topology becomes
less interesting in practice. Instead, virtual private networks (VPNs) or secure shell (SSH)
connections provide connectivity between these machines regardless of where they live
physically.

Figure 1.16. Networks and hosts used for most examples in the text.

The notation "/24" indicates the number of consecutive bits starting from the leftmost bit
of the address used to identify the network and subnet. Section A.4 will talk about the /n
notation used today to designate subnet boundaries.

The real name of the Sun OS is SunOS 5.x and not Solaris 2.x, but everyone refers to it as
Solaris, the name given to the sum of the OS and other software bundled with the base
OS.

Discovering Network Topology
We show the network topology in Figure 1.16 for the hosts used for the examples
throughout this text, but you may need to know your own network topology to run the
examples and exercises on your own network. Although there are no current Unix
standards with regard to network configuration and administration, two basic commands
are provided by most Unix systems and can be used to discover some details of a
network: netstat and ifconfig. Check the manual (man) pages for these commands on
your system to see the details on the information that is output. Also be aware that some
vendors place these commands in an administrative directory, such as /sbin or /usr/sbin,
instead of the normal /usr/bin, and these directories might not be in your normal shell
search path (PATH).

1. netstat -i provides information on the interfaces. We also specify the -n flag to
print numeric addresses, instead of trying to find names for the networks. This
shows us the interfaces and their names.

2.
3.

Page 50

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


4.
5. linux % netstat -ni

6. Kernel Interface table

7. Iface   MTU Met   RX-OK RX-ERR RX-DRP RX-OVR   TX-OK TX-ERR TX-DRP TX-OVR

Flg

8. eth0   1500   049211085      0      0      040540958      0      0      0

BMRU

9. lo    16436   098613572      0      0      098613572      0      0      0

LRU

10.

The loopback interface is called lo and the Ethernet is called eth0. The next
example shows a host with IPv6 support.

freebsd % netstat -ni

Name    Mtu Network       Address              Ipkts Ierrs    Opkts Oerrs

Coll

hme0   1500 <Link#1>      08:00:20:a7:68:6b 29100435    35 46561488     0

   0

hme0   1500 12.106.32/24  12.106.32.254     28746630     - 46617260     -

   -

hme0   1500 fe80:1::a00:20ff:fea7:686b/64

                          fe80:1::a00:20ff:fea7:686b

                                                   0     -        0     -

   -

hme0   1500 3ffe:b80:1f8d:1::1/64

                          3ffe:b80:1f8d:1::1       0     -        0     -

   -

hme1   1500 <Link#2>      08:00:20:a7:68:6b    51092     0    31537     0

   0

hme1   1500 fe80:2::a00:20ff:fea7:686b/64

                          fe80:2::a00:20ff:fea7:686b

                                                   0     -       90     -

   -

hme1   1500 192.168.42    192.168.42.1         43584     -    24173     -

   -

hme1   1500 3ffe:b80:1f8d:2::1/64

                          3ffe:b80:1f8d:2::1      78     -        8     -

   -

lo0   16384 <Link#6>                           10198     0    10198     0

   0

lo0   16384 ::1/128       ::1                     10     -       10     -

   -

lo0   16384 fe80:6::1/64  fe80:6::1                0     -        0     -

   -

lo0   16384 127           127.0.0.1            10167     -    10167     -

   -

gif0   1280 <Link#8>                               6     0        5     0

   0

gif0   1280 3ffe:b80:3:9ad1::2/128

                          3ffe:b80:3:9ad1::2       0     -        0     -

   -

gif0   1280 fe80:8::a00:20ff:fea7:686b/64

                          fe80:8::a00:20ff:fea7:686b

                                                   0     -        0     -

   -

11. netstat -r shows the routing table, which is another way to determine the

Page 51

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


interfaces. We normally specify the -n flag to print numeric addresses. This also
shows the IP address of the default router.

12.
13.
14.
15. freebad % netstat -nr
16. Routing tables
17.
18. Internet:
19. Destination        Gateway            Flags    Refs       Use  Netif

Expire

20. default            12.106.32.1        UGSc       10      6877   hme0
21. 12.106.32/24       link#1             UC          3         0   hme0
22. 12.106.32.1        00:b0:8e:92:2c:00  UHLW        9         7   hme0  

1187

23. 12.106.32.253      08:00:20:b8:f7:e0  UHLW        0         1   hme0   
140

24. 12.106.32.254      08:00:20:a7:6e:6b  UHLW        0         2    lo0
25. 127.0.0.1          127.0.0.1          UH          1     10167    lo0
26. 192.168.42         link#2             UC          2         0   hme1
27. 192.168.42.1       08:00:20:a7:68:6b  UHLW        0        11    lo0
28. 192.168.42.2       00:04:ac:17:bf:38  UHLW        2     24108   hme1   

210

29.
30. Internet6:
31. Destination                       Gateway                        Flags   

 Netif Expire

32. ::/96                             ::1                            UGRSc   
  lo0 =>

33. default                           3ffe:b80:3:9ad1::1             UGSc    
 gif0

34. ::1                               ::1                            UH      
  lo0

35. ::ffff:0.0.0.0/96                 ::1                            UGRSc   
  lo0

36. 3ffe:b80:3:9adl::1                3ffe:b80:3:9adl::2             UH      
 gif0

37. 3ffe:b80:3:9adl::2                link#8                         UHL     
  lo0

38. 3ffe:b80:1f8d::/48                lo0                            USc     
  lo0

39. 3ffe:b80:1f8d:1::/64              link#1                         UC      
 hme0

40. 3ffe:b80:lf8d:1::1                08:00:20:a7:68:6b              UHL     
  lo0

41. 3ffe:b80:lf8d:2::/64              link#2                         UC      
 hme1

42. 3ffe:b80:lf8d:2::1                08:00:20:a7:68:6b              UHL     
  lo0

43. 3ffe:b80:lf8d:2:204:acff:fe17:bf38 00:04:ac:17:bf:38             UHLW    
 hme1

44. fe80::/10                         ::1                            UGRSc   
  lo0

45. fe80::%hme0/64                    link#1                         UC      
 hme0

46. fe80::a00:20ff:fea7:686b%hme0     08:00:20:a7:68:6b              UHL     
  lo0

47. fe80::%hme1/64                    link#2                         UC      
 hme1

48. fe80::a00:20ff:fea7:686b%hme1     08:00:20:a7:68:6b              UHL     

Page 52

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


  lo0

49. fe80::%lo0/64                     fe80::1%lo0                    Uc      
  lo0

50. fe80::1%lo0                       link#6                         UHL     
  lo0

51. fe80::%gif0/64                    link#8                         UC      
 gif0

52. fe80::a00:20ff:fea7:686b%gif0     link#8                         UC      
  lo0

53. ff01::/32                         ::1                            U       
  lo0

54. ff02::/16                         ::1                            UGRS    
  lo0

55. ff02::%hme0/32                    link#1                         UC      
 hme0

56. ff02::%hme1/32                    link#2                         UC      
 hme1

57. ff02::%lo0/32                     ::1                            UC      
  lo0

58. ff02::%gif0/32                    link#8                         UC      
 gif0

59.

60. Given the interface names, we execute ifconfig to obtain the details for each
interface.

61.
62.
63.
64. linux % ifconfig eth0
65. eth0      Link encap:Ethernet  HWaddr 00:C0:9F:06:B0:E1
66.           inet addr:206.168.112.96  Bcast:206.168.112.127 

Mask:255.255.255.128

67.           UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1
68.           RX packets:49214397 errors:0 dropped:0 overruns:0 frame:0
69.           TX packets:40543799 errors:0 dropped:0 overruns:0 carrier:0
70.           collisions:0 txqueuelen:100
71.           RX bytes:1098069974 (1047.2 Mb)  TX bytes:3360546472 (3204.8

Mb)

72.           Interrupt:11 Base address:0x6000
73.

This shows the IP address, subnet mask, and broadcast address. The MULTICAST flag
is often an indication that the host supports multicasting. Some implementations
provide a -a flag, which prints information on all configured interfaces.

74. One way to find the IP address of many hosts on the local network is to ping the
broadcast address (which we found in the previous step).

75.
76.
77.
78. linux % ping -b 206.168.112.127
79. WARNING: pinging broadcast address
80. PING 206.168.112.127 (206.168.112.127) from 206.168.112.96 : 56(84) bytes

of data.

81. 64 bytes from 206.168.112.96: icmp_seq=0 ttl=255 time=241 usec
82. 64 bytes from 206.168.112.40: icmp_seq=0 ttl=255 time=2.566 msec (DUP!)
83. 64 bytes from 206.168.112.118: icmp_seq=0 ttl=255 time=2.973 msec (DUP!)
84. 64 bytes from 206.168.112.14: icmp_seq=0 ttl=255 time=3.089 msec (DUP!)
85. 64 bytes from 206.168.112.126: icmp_seq=0 ttl=255 time=3.200 msec (DUP!)
86. 64 bytes from 206.168.112.71: icmp_seq=0 ttl=255 time=3.311 msec (DUP!)
87. 64 bytes from 206.168.112.31: icmp_seq=0 ttl=64 time=3.541 msec (DUP!)

Page 53

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


88. 64 bytes from 206.168.112.7: icmp_seq=0 ttl=255 time=3.636 msec (DUP!)
89. ...
90.

[ Team LiB ]

Page 54

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

1.10 Unix Standards
At the time of this writing, the most interesting Unix standardization activity was being
done by The Austin Common Standards Revision Group (CSRG). Their efforts have
produced roughly 4,000 pages of specifications covering over 1,700 programming
interfaces [Josey 2002]. These specifications carry both the IEEE POSIX designation as well
as The Open Group's Technical Standard designation. The net result is that you'll likely
encounter references to the same standard by various names: ISO/IEC 9945:2002, IEEE
Std 1003.1-2001, and the Single Unix Specification Version 3, for example. In this text, we
will refer to this standard as simply The POSIX Specification, except in sections like this
one where we are discussing specifics of various older standards.

The easiest way to acquire a copy of this consolidated standard is to either order it on
CD-ROM or access it via the Web (free of charge). The starting point for either of these
methods is

http://www.UNIX.org/version3

Background on POSIX
POSIX is an acronym for Portable Operating System Interface. POSIX is not a single
standard, but a family of standards being developed by the Institute for Electrical and
Electronics Engineers, Inc., normally called the IEEE. The POSIX standards have also been
adopted as international standards by ISO and the International Electrotechnical
Commission (IEC), called ISO/IEC. The POSIX standards have an interesting history, which
we cover only briefly here:

 IEEE Std 1003.1 1988 (317 pages) was the first POSIX standard. It specified the C
language interface into a Unix-like kernel and covered the following areas: process
primitives (fork, exec, signals, and timers), the environment of a process (user IDs
and process groups), files and directories (all the I/O functions), terminal I/O,
system databases (password file and group file), and the tar and cpio archive
formats.

The first POSIX standard was a trial-use version in 1986 known as "IEEE-IX." The
name "POSIX" was suggested by Richard Stallman.

 IEEE Std 1003.1 1990 (356 pages) was next, and it was also known as ISO/IEC
9945 1: 1990. Minimal changes were made from the 1988 to the 1990 version.
Appended to the title was "Part 1: System Application Program Interface (API) [C
Language]," indicating that this standard was the C language API.

 IEEE Std 1003.2 1992 came next in two volumes (about 1,300 pages). Its title
contained "Part 2: Shell and Utilities." This part defined the shell (based on the
System V Bourne shell) and about 100 utilities (programs normally executed from a
shell, from awk and basename to vi and yacc). Throughout this text, we will refer to
this standard as POSIX.2.

 IEEE Std 1003.1b 1993 (590 pages) was originally known as IEEE P1003.4. This
was an update to the 1003.1 1990 standard to include the real-time extensions
developed by the P1003.4 working group. The 1003.1b 1993 standard added the
following items to the 1990 standard: file synchronization, asynchronous I/O,
semaphores, memory management (mmap and shared memory), execution
scheduling, clocks and timers, and message queues.

Page 55

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.UNIX.org/version3
http://www.processtext.com/abcchm.html


 IEEE Std 1003.1, 1996 Edition [IEEE 1996] (743 pages) came next and included
1003.1 1990 (the base API), 1003.1b 1993 (real-time extensions), 1003.1c 
1995 (pthreads), and 1003.1i 1995 (technical corrections to 1003.1b). This
standard was also called ISO/IEC 9945 1: 1996. Three chapters on threads were
added, along with additional sections on thread synchronization (mutexes and
condition variables), thread scheduling, and synchronization scheduling. Throughout
this text, we will refer to this standard as POSIX.1. This standard also contains a
Foreword stating that ISO/IEC 9945 consists of the following parts:

o Part 1: System API (C language)

o Part 2: Shell and utilities

o Part 3: System administration (under development)

Parts 1 and 2 are what we call POSIX.1 and POSIX.2.

Over one-quarter of the 743 pages are an appendix titled "Rationale and Notes."
This appendix contains historical information and reasons why certain features were
included or omitted. Often, the rationale is as informative as the official standard.

 IEEE Std 1003.1g: Protocol-independent interfaces (PII) became an approved
standard in 2000. Until the introduction of The Single Unix Specification Version 3,
this POSIX work was the most relevant to the topics covered in this book. This is the
networking API standard and it defines two APIs, which it calls Detailed Network
Interfaces (DNIs):

o DNI/Socket, based on the 4.4BSD sockets API

o DNI/XTI, based on the X/Open XPG4 specification

Work on this standard started in the late 1980s as the P1003.12 working group
(later renamed P1003.1g). Throughout this text, we will refer to this standard as 
POSIX.1g.

The current status of the various POSIX standards is available from

http://www.pasc.org/standing/sd11.html

Background on The Open Group
The Open Group was formed in 1996 by the consolidation of the X/Open Company
(founded in 1984) and the Open Software Foundation (OSF, founded in 1988). It is an
international consortium of vendors and end-user customers from industry, government,
and academia. Here is a brief background on the standards they produced:

 X/Open published the X/Open Portability Guide, Issue 3 (XPG3) in 1989.

 Issue 4 was published in 1992, followed by Issue 4, Version 2 in 1994. This latest
version was also known as "Spec 1170," with the magic number 1,170 being the
sum of the number of system interfaces (926), the number of headers (70), and the
number of commands (174). The latest name for this set of specifications is the
"X/Open Single Unix Specification," although it is also called "Unix 95."

 In March 1997, Version 2 of the Single Unix Specification was announced. Products
conforming to this specification were called "Unix 98." We will refer to this
specification as just "Unix 98" throughout this text. The number of interfaces
required by Unix 98 increases from 1,170 to 1,434, although for a workstation this
jumps to 3,030, because it includes the Common Desktop Environment (CDE),
which in turn requires the X Window System and the Motif user interface. Details
are available in [Josey 1997] and at http://www.UNIX.org/version2. The networking

Page 56

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.pasc.org/standing/sdll.html
http://www.unix.org/version2
http://www.pasc.org/standing/sd11.html
http://www.UNIX.org/version2
http://www.processtext.com/abcchm.html


services that are part of Unix 98 are defined for both the sockets and XTI APIs. This
specification is nearly identical to POSIX.1g.

Unfortunately, Unix 98 referred to networking standards as XNS: X/Open
Networking Services. The version of this document that defines sockets and XTI for
Unix 98 ([Open Group 1997]) is called "XNS Issue 5." In the networking world XNS
has always been an abbreviation for the Xerox Network Systems architecture. We
will avoid this use of XNS and refer to this X/Open document as just the Unix 98
network API standard.

Unification of Standards
The above brief backgrounds on POSIX and The Open Group both continue with The Austin
Group's publication of The Single Unix Specification Version 3, as mentioned at the
beginning of this section. Getting over 50 companies to agree on a single standard is
certainly a landmark in the history of Unix. Most Unix systems today conform to some
version of POSIX.1 and POSIX.2; many comply with The Single Unix Specification Version
3.

Historically, most Unix systems show either a Berkeley heritage or a System V heritage,
but these differences are slowly disappearing as most vendors adopt the standards. The
main differences still existing deal with system administration, one area that no standard
currently addresses.

The focus of this book is on The Single Unix Specification Version 3, with our main focus on
the sockets API. Whenever possible we will use the standard functions.

Internet Engineering Task Force (IETF)
The Internet Engineering Task Force (IETF) is a large, open, international community of
network designers, operators, vendors, and researchers concerned with the evolution of the
Internet architecture and the smooth operation of the Internet. It is open to any interested
individual.

The Internet standards process is documented in RFC 2026 [Bradner 1996]. Internet
standards normally deal with protocol issues and not with programming APIs.
Nevertheless, two RFCs (RFC 3493 [Gilligan et al. 2003] and RFC 3542 [Stevens et al.
2003]) specify the sockets API for IPv6. These are informational RFCs, not standards, and
were produced to speed the deployment of portable applications by the numerous vendors
working on early releases of IPv6. Although standards bodies tend to take a long time,
many APIs were standardized in The Single Unix Specification Version 3.

[ Team LiB ]

Page 57

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

1.11 64-Bit Architectures
During the mid to late 1990s, the trend began toward 64-bit architectures and 64-bit
software. One reason is for larger addressing within a process (i.e., 64-bit pointers), which
can address large amounts of memory (more than 232 bytes). The common programming
model for existing 32-bit Unix systems is called the ILP32 model, denoting that integers
(I), long integers (L), and pointers (P) occupy 32 bits. The model that is becoming most
prevalent for 64-bit Unix systems is called the LP64 model, meaning only long integers (L)
and pointers (P) require 64 bits. Figure 1.17 compares these two models.

Figure 1.17. Comparison of number of bits to hold various datatypes
for the ILP32 and LP64 models.

From a programming perspective, the LP64 model means we cannot assume that a pointer
can be stored in an integer. We must also consider the effect of the LP64 model on existing
APIs.

ANSI C invented the size_t datatype, which is used, for example, as the argument to
malloc (the number of bytes to allocate), and as the third argument to read and write
(the number of bytes to read or write). On a 32-bit system, size_t is a 32-bit value, but
on a 64-bit system, it must be a 64-bit value, to take advantage of the larger addressing
model. This means a 64-bit system will probably contain a typedef of size_t to be an
unsigned long. The networking API problem is that some drafts of POSIX.1g specified that
function arguments containing the size of a socket address structures have the size_t
datatype (e.g., the third argument to bind and connect). Some XTI structures also had
members with a datatype of long (e.g., the t_info and t_opthdr structures). If these had
been left as is, both would change from 32-bit values to 64-bit values when a Unix system
changes from the ILP32 to the LP64 model. In both instances, there is no need for a 64-bit
datatype: The length of a socket address structure is a few hundred bytes at most, and the
use of long for the XTI structure members was a mistake.

The solution is to use datatypes designed specifically to handle these scenarios. The
sockets API uses the socklen_t datatype for lengths of socket address structures, and XTI
uses the t_scalar_t and t_uscalar_t datatypes. The reason for not changing these values
from 32 bits to 64 bits is to make it easier to provide binary compatibility on the new
64-bit systems for applications compiled under 32-bit systems.

[ Team LiB ]

Page 58

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

1.12 Summary
Figure 1.5 shows a complete, albeit simple, TCP client that fetches the current time and
date from a specified server, and Figure 1.9 shows a complete version of the server. These
two examples introduce many of the terms and concepts that are expanded on throughout
the rest of the book.

Our client was protocol-dependent on IPv4 and we modified it to use IPv6 instead. But this
just gave us another protocol-dependent program. In Chapter 11, we will develop some
functions to let us write protocol-independent code, which will be important as the Internet
starts using IPv6.

Throughout the text, we will use the wrapper functions developed in Section 1.4 to reduce
the size of our code, yet still check every function call for an error return. Our wrapper
functions all begin with a capital letter.

The Single Unix Specification Version 3, known by several other names and called simply 
The POSIX Specification by us, is the confluence of two long-running standards efforts,
finally drawn together by The Austin Group.

Readers interested in the history of Unix networking should consult [Salus 1994] for a
description of Unix history, and [Salus 1995] for the history of TCP/IP and the Internet.

[ Team LiB ]

Page 59

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Exercises
1.1 Go through the steps at the end of Section 1.9 to discover information

about your network topology.

1.2 Obtain the source code for the examples in this text (see the Preface).
Compile and test the TCP daytime client in Figure 1.5. Run the program
a few times, specifying a different IP address as the command-line
argument each time.

1.3 Modify the first argument to socket in Figure 1.5 to be 9999. Compile
and run the program. What happens? Find the errno value corresponding
to the error that is printed. How can you find more information on this
error?

1.4 Modify Figure 1.5 by placing a counter in the while loop, counting the
number of times read returns a value greater than 0. Print the value of
the counter before terminating. Compile and run your new client.

1.5 Modify Figure 1.9 as follows: First, change the port number assigned to
the sin_port member from 13 to 9999. Next, change the single call to
write into a loop that calls write for each byte of the result string.
Compile this modified server and start it running in the background.
Next, modify the client from the previous exercise (which prints the
counter before terminating), changing the port number assigned to the 
sin_port member from 13 to 9999. Start this client, specifying the IP
address of the host on which the modified server is running as the
command-line argument. What value is printed as the client's counter? If
possible, also try to run the client and server on different hosts.

[ Team LiB ]

Page 60

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Chapter 2. The Transport Layer: TCP,
UDP, and SCTP

Section 2.1.?Introduction

Section 2.2.?The Big Picture

Section 2.3.?User Datagram Protocol (UDP)

Section 2.4.?Transmission Control Protocol (TCP)

Section 2.5.?Stream Control Transmission Protocol (SCTP)

Section 2.6.?TCP Connection Establishment and Termination

Section 2.7.?TIME_WAIT State

Section 2.8.?SCTP Association Establishment and Termination

Section 2.9.?Port Numbers

Section 2.10.?TCP Port Numbers and Concurrent Servers

Section 2.11.?Buffer Sizes and Limitations

Section 2.12.?Standard Internet Services

Section 2.13.?Protocol Usage by Common Internet Applications

Section 2.14.?Summary

Exercises

[ Team LiB ]

Page 61

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

2.1 Introduction
This chapter provides an overview of the protocols in the TCP/IP suite that are used in the
examples throughout the book. Our goal is to provide enough detail from a network
programming perspective to understand how to use the protocols and provide references to
more detailed descriptions of their actual design, implementation, and history.

This chapter focuses on the transport layer: TCP, UDP, and Stream Control Transmission
Protocol (SCTP). Most client/server applications use either TCP or UDP. SCTP is a newer
protocol, originally designed for transport of telephony signaling across the Internet. These
transport protocols use the network-layer protocol IP, either IPv4 or IPv6. While it is
possible to use IPv4 or IPv6 directly, bypassing the transport layer, this technique, often
called raw sockets, is used much less frequently. Therefore, we have a more detailed
description of IPv4 and IPv6, along with ICMPv4 and ICMPv6, in Appendix A.

UDP is a simple, unreliable datagram protocol, while TCP is a sophisticated, reliable
byte-stream protocol. SCTP is similar to TCP as a reliable transport protocol, but it also
provides message boundaries, transport-level support for multihoming, and a way to
minimize head-of-line blocking. We need to understand the services provided by these
transport protocols to the application, so that we know what is handled by the protocol and
what we must handle in the application.

There are features of TCP that, when understood, make it easier for us to write robust
clients and servers. Also, when we understand these features, it becomes easier to debug
our clients and servers using commonly provided tools such as netstat. We cover various
topics in this chapter that fall into this category: TCP's three-way handshake, TCP's
connection termination sequence, and TCP's TIME_WAIT state; SCTP's four-way handshake
and SCTP's connection termination; plus SCTP, TCP, and UDP buffering by the socket layer,
and so on.

[ Team LiB ]

Page 62

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

2.2 The Big Picture
Although the protocol suite is called "TCP/IP," there are more members of this family than
just TCP and IP. Figure 2.1 shows an overview of these protocols.

Figure 2.1. Overview of TCP/IP protocols.

We show both IPv4 and IPv6 in this figure. Moving from right to left, the rightmost five
applications are using IPv6; we will talk about the AF_INET6 constant in Chapter 3, along
with the sockaddr_in6 structure. The next six applications use IPv4.

The leftmost application, tcpdump, communicates directly with the datalink using either the
BSD packet filter (BPF) or the datalink provider interface (DLPI). We mark the dashed line
beneath the nine applications on the right as the API, which is normally sockets or XTI. The
interface to either BPF or DLPI does not use sockets or XTI.

There is an exception to this, which we will describe in more detail in Chapter 28: Linux
provides access to the datalink using a special type of socket called SOCK_PACKET.

We also note in Figure 2.1 that the traceroute program uses two sockets: one for IP and
another for ICMP. In Chapter 28, we will develop IPv4 and IPv6 versions of both ping and
traceroute.

We now describe each of the protocol boxes in this figure.

IPv4 Internet Protocol version 4. IPv4, which we often denote as just IP, has been the
workhorse protocol of the IP suite since the early 1980s. It uses 32-bit
addresses (Section A.4). IPv4 provides packet delivery service for TCP, UDP,
SCTP, ICMP, and IGMP.

IPv6 Internet Protocol version 6. IPv6 was designed in the mid-1990s as a
replacement for IPv4. The major change is a larger address comprising 128 bits
(Section A.5), to deal with the explosive growth of the Internet in the 1990s.
IPv6 provides packet delivery service for TCP, UDP, SCTP, and ICMPv6.

We often use the word "IP" as an adjective, as in IP layer and IP address, when
the distinction between IPv4 and IPv6 is not needed.

TCP Transmission Control Protocol. TCP is a connection-oriented protocol that

Page 63

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


IPv4 Internet Protocol version 4. IPv4, which we often denote as just IP, has been the
workhorse protocol of the IP suite since the early 1980s. It uses 32-bit
addresses (Section A.4). IPv4 provides packet delivery service for TCP, UDP,
SCTP, ICMP, and IGMP.

provides a reliable, full-duplex byte stream to its users. TCP sockets are an
example of stream sockets. TCP takes care of details such as acknowledgments,
timeouts, retransmissions, and the like. Most Internet application programs use
TCP. Notice that TCP can use either IPv4 or IPv6.

UDP User Datagram Protocol. UDP is a connectionless protocol, and UDP sockets are
an example of datagram sockets. There is no guarantee that UDP datagrams
ever reach their intended destination. As with TCP, UDP can use either IPv4 or
IPv6.

SCTP Stream Control Transmission Protocol. SCTP is a connection-oriented protocol
that provides a reliable full-duplex association. The word "association" is used
when referring to a connection in SCTP because SCTP is multihomed, involving a
set of IP addresses and a single port for each side of an association. SCTP
provides a message service, which maintains record boundaries. As with TCP
and UDP, SCTP can use either IPv4 or IPv6, but it can also use both IPv4 and
IPv6 simultaneously on the same association.

ICMP Internet Control Message Protocol. ICMP handles error and control information
between routers and hosts. These messages are normally generated by and
processed by the TCP/IP networking software itself, not user processes, although
we show the ping and traceroute programs, which use ICMP. We sometimes
refer to this protocol as ICMPv4 to distinguish it from ICMPv6.

IGMP Internet Group Management Protocol. IGMP is used with multicasting (Chapter
21), which is optional with IPv4.

ARP Address Resolution Protocol. ARP maps an IPv4 address into a hardware address
(such as an Ethernet address). ARP is normally used on broadcast networks such
as Ethernet, token ring, and FDDI, and is not needed on point-to-point
networks.

RARP Reverse Address Resolution Protocol. RARP maps a hardware address into an
IPv4 address. It is sometimes used when a diskless node is booting.

ICMPv6 Internet Control Message Protocol version 6. ICMPv6 combines the functionality
of ICMPv4, IGMP, and ARP.

BPF BSD packet filter. This interface provides access to the datalink layer. It is
normally found on Berkeley-derived kernels.

DLPI Datalink provider interface. This interface also provides access to the datalink
layer. It is normally provided with SVR4.

Each Internet protocol is defined by one or more documents called a Request for
Comments (RFC), which are their formal specifications. The solution to Exercise 2.1 shows
how to obtain RFCs.

We use the terms "IPv4/IPv6 host" and "dual-stack host" to denote hosts that support both
IPv4 and IPv6.

Additional details on the TCP/IP protocols themselves are in TCPv1. The 4.4BSD

Page 64

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


implementation of TCP/IP is described in TCPv2.

[ Team LiB ]

Page 65

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

2.3 User Datagram Protocol (UDP)
UDP is a simple transport-layer protocol. It is described in RFC 768 [Postel 1980]. The
application writes a message to a UDP socket, which is then encapsulated in a UDP
datagram, which is then further encapsulated as an IP datagram, which is then sent to its
destination. There is no guarantee that a UDP datagram will ever reach its final destination,
that order will be preserved across the network, or that datagrams arrive only once.

The problem that we encounter with network programming using UDP is its lack of
reliability. If a datagram reaches its final destination but the checksum detects an error, or
if the datagram is dropped in the network, it is not delivered to the UDP socket and is not
automatically retransmitted. If we want to be certain that a datagram reaches its
destination, we can build lots of features into our application: acknowledgments from the
other end, timeouts, retransmissions, and the like.

Each UDP datagram has a length. The length of a datagram is passed to the receiving
application along with the data. We have already mentioned that TCP is a byte-stream
protocol, without any record boundaries at all (Section 1.2), which differs from UDP.

We also say that UDP provides a connectionless service, as there need not be any
long-term relationship between a UDP client and server. For example, a UDP client can
create a socket and send a datagram to a given server and then immediately send another
datagram on the same socket to a different server. Similarly, a UDP server can receive
several datagrams on a single UDP socket, each from a different client.

[ Team LiB ]

Page 66

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

2.4 Transmission Control Protocol (TCP)
The service provided by TCP to an application is different from the service provided by UDP.
TCP is described in RFC 793 [Postel 1981c], and updated by RFC 1323 [Jacobson, Braden,
and Borman 1992], RFC 2581 [Allman, Paxson, and Stevens 1999], RFC 2988 [Paxson and
Allman 2000], and RFC 3390 [Allman, Floyd, and Partridge 2002]. First, TCP provides 
connections between clients and servers. A TCP client establishes a connection with a given
server, exchanges data with that server across the connection, and then terminates the
connection.

TCP also provides reliability. When TCP sends data to the other end, it requires an
acknowledgment in return. If an acknowledgment is not received, TCP automatically
retransmits the data and waits a longer amount of time. After some number of
retransmissions, TCP will give up, with the total amount of time spent trying to send data
typically between 4 and 10 minutes (depending on the implementation).

Note that TCP does not guarantee that the data will be received by the other endpoint, as
this is impossible. It delivers data to the other endpoint if possible, and notifies the user
(by giving up on retransmissions and breaking the connection) if it is not possible.
Therefore, TCP cannot be described as a 100% reliable protocol; it provides reliable
delivery of data or reliable notification of failure.

TCP contains algorithms to estimate the round-trip time (RTT) between a client and server
dynamically so that it knows how long to wait for an acknowledgment. For example, the
RTT on a LAN can be milliseconds while across a WAN, it can be seconds. Furthermore, TCP
continuously estimates the RTT of a given connection, because the RTT is affected by
variations in the network traffic.

TCP also sequences the data by associating a sequence number with every byte that it
sends. For example, assume an application writes 2,048 bytes to a TCP socket, causing TCP
to send two segments, the first containing the data with sequence numbers 1 1,024 and
the second containing the data with sequence numbers 1,025 2,048. (A segment is the
unit of data that TCP passes to IP.) If the segments arrive out of order, the receiving TCP
will reorder the two segments based on their sequence numbers before passing the data to
the receiving application. If TCP receives duplicate data from its peer (say the peer thought
a segment was lost and retransmitted it, when it wasn't really lost, the network was just
overloaded), it can detect that the data has been duplicated (from the sequence numbers),
and discard the duplicate data.

There is no reliability provided by UDP. UDP itself does not provide anything like
acknowledgments, sequence numbers, RTT estimation, timeouts, or retransmissions. If a
UDP datagram is duplicated in the network, two copies can be delivered to the receiving
host. Also, if a UDP client sends two datagrams to the same destination, they can be
reordered by the network and arrive out of order. UDP applications must handle all these
cases, as we will show in Section 22.5.

TCP provides flow control. TCP always tells its peer exactly how many bytes of data it is
willing to accept from the peer at any one time. This is called the advertised window. At
any time, the window is the amount of room currently available in the receive buffer,
guaranteeing that the sender cannot overflow the receive buffer. The window changes
dynamically over time: As data is received from the sender, the window size decreases, but
as the receiving application reads data from the buffer, the window size increases. It is
possible for the window to reach 0: when TCP's receive buffer for a socket is full and it
must wait for the application to read data from the buffer before it can take any more data
from the peer.

UDP provides no flow control. It is easy for a fast UDP sender to transmit datagrams at a
rate that the UDP receiver cannot keep up with, as we will show in Section 8.13.

Page 67

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


Finally, a TCP connection is full-duplex. This means that an application can send and
receive data in both directions on a given connection at any time. This means that TCP
must keep track of state information such as sequence numbers and window sizes for each
direction of data flow: sending and receiving. After a full-duplex connection is established,
it can be turned into a simplex connection if desired (see Section 6.6).

UDP can be full-duplex.

[ Team LiB ]

Page 68

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

2.5 Stream Control Transmission Protocol (SCTP)
SCTP provides services similar to those offered by UDP and TCP. SCTP is described in RFC
2960 [Stewart et al. 2000], and updated by RFC 3309 [Stone, Stewart, and Otis 2002]. An
introduction to SCTP is available in RFC 3286 [Ong and Yoakum 2002]. SCTP provides 
associations between clients and servers. SCTP also provides applications with reliability,
sequencing, flow control, and full-duplex data transfer, like TCP. The word "association" is
used in SCTP instead of "connection" to avoid the connotation that a connection involves
communication between only two IP addresses. An association refers to a communication
between two systems, which may involve more than two addresses due to multihoming.

Unlike TCP, SCTP is message-oriented. It provides sequenced delivery of individual records.
Like UDP, the length of a record written by the sender is passed to the receiving
application.

SCTP can provide multiple streams between connection endpoints, each with its own
reliable sequenced delivery of messages. A lost message in one of these streams does not
block delivery of messages in any of the other streams. This approach is in contrast to TCP,
where a loss at any point in the single stream of bytes blocks delivery of all future data on
the connection until the loss is repaired.

SCTP also provides a multihoming feature, which allows a single SCTP endpoint to support
multiple IP addresses. This feature can provide increased robustness against network
failure. An endpoint can have multiple redundant network connections, where each of these
networks has a different connection to the Internet infrastructure. SCTP can work around a
failure of one network or path across the Internet by switching to another address already
associated with the SCTP association.

Similar robustness can be obtained from TCP with help from routing protocols. For
example, BGP connections within a domain (iBGP) often use addresses that are assigned to
a virtual interface within the router as the endpoints of the TCP connection. The domain's
routing protocol ensures that if there is a route between two routers, it can be used, which
would not be possible if the addresses used belonged to an interface that went down, for
example. SCTP's multihoming feature allows hosts to multihome, not just routers, and
allows this multihoming to occur across different service providers, which the
routing-based TCP method cannot allow.

[ Team LiB ]

Page 69

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

2.6 TCP Connection Establishment and Termination
To aid in our understanding of the connect, accept, and close functions and to help us
debug TCP applications using the netstat program, we must understand how TCP
connections are established and terminated, and TCP's state transition diagram.

Three-Way Handshake
The following scenario occurs when a TCP connection is established:

1. The server must be prepared to accept an incoming connection. This is normally
done by calling socket, bind, and listen and is called a passive open.

2. The client issues an active open by calling connect. This causes the client TCP to
send a "synchronize" (SYN) segment, which tells the server the client's initial
sequence number for the data that the client will send on the connection. Normally,
there is no data sent with the SYN; it just contains an IP header, a TCP header, and
possible TCP options (which we will talk about shortly).

3. The server must acknowledge (ACK) the client's SYN and the server must also send
its own SYN containing the initial sequence number for the data that the server will
send on the connection. The server sends its SYN and the ACK of the client's SYN in
a single segment.

4. The client must acknowledge the server's SYN.

The minimum number of packets required for this exchange is three; hence, this is called
TCP's three-way handshake. We show the three segments in Figure 2.2.

Figure 2.2. TCP three-way handshake.

We show the client's initial sequence number as J and the server's initial sequence number
as K. The acknowledgment number in an ACK is the next expected sequence number for
the end sending the ACK. Since a SYN occupies one byte of the sequence number space,
the acknowledgment number in the ACK of each SYN is the initial sequence number plus
one. Similarly, the ACK of each FIN is the sequence number of the FIN plus one.

An everyday analogy for establishing a TCP connection is the telephone system [Nemeth
1997]. The socket function is the equivalent of having a telephone to use. bind is telling
other people your telephone number so that they can call you. listen is turning on the
ringer so that you will hear when an incoming call arrives. connect requires that we know
the other person's phone number and dial it. accept is when the person being called
answers the phone. Having the client's identity returned by accept (where the identify is
the client's IP address and port number) is similar to having the caller ID feature show the
caller's phone number. One difference, however, is that accept returns the client's identity
only after the connection has been established, whereas the caller ID feature shows the

Page 70

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


caller's phone number before we choose whether to answer the phone or not. If the DNS is
used (Chapter 11), it provides a service analogous to a telephone book. getaddrinfo is
similar to looking up a person's phone number in the phone book. getnameinfo would be
the equivalent of having a phone book sorted by telephone numbers that we could search,
instead of a book sorted by name.

TCP Options
Each SYN can contain TCP options. Commonly used options include the following:

 MSS option. With this option, the TCP sending the SYN announces its maximum
segment size, the maximum amount of data that it is willing to accept in each TCP
segment, on this connection. The sending TCP uses the receiver's MSS value as the
maximum size of a segment that it sends. We will see how to fetch and set this TCP
option with the TCP_MAXSEG socket option (Section 7.9).

 Window scale option. The maximum window that either TCP can advertise to the
other TCP is 65,535, because the corresponding field in the TCP header occupies 16
bits. But, high-speed connections, common in today's Internet (45 Mbits/sec and
faster, as described in RFC 1323 [Jacobson, Braden, and Borman 1992]), or long
delay paths (satellite links) require a larger window to obtain the maximum
throughput possible. This newer option specifies that the advertised window in the
TCP header must be scaled (left-shifted) by 0 14 bits, providing a maximum
window of almost one gigabyte (65,535 x 214). Both end-systems must support this
option for the window scale to be used on a connection. We will see how to affect
this option with the SO_RCVBUF socket option (Section 7.5).

To provide interoperability with older implementations that do not support this
option, the following rules apply. TCP can send the option with its SYN as part of an
active open. But, it can scale its windows only if the other end also sends the option
with its SYN. Similarly, the server's TCP can send this option only if it receives the
option with the client's SYN. This logic assumes that implementations ignore options
that they do not understand, which is required and common, but unfortunately, not
guaranteed with all implementations.

 Timestamp option. This option is needed for high-speed connections to prevent
possible data corruption caused by old, delayed, or duplicated segments. Since it is
a newer option, it is negotiated similarly to the window scale option. As network
programmers there is nothing we need to worry about with this option.

These common options are supported by most implementations. The latter two are
sometimes called the "RFC 1323 options," as that RFC [Jacobson, Braden, and Borman
1992] specifies the options. They are also called the "long fat pipe options," since a
network with either a high bandwidth or a long delay is called a long fat pipe. Chapter 24
of TCPv1 contains more details on these options.

TCP Connection Termination
While it takes three segments to establish a connection, it takes four to terminate a
connection.

1. One application calls close first, and we say that this end performs the active close.
This end's TCP sends a FIN segment, which means it is finished sending data.

2. The other end that receives the FIN performs the passive close. The received FIN is
acknowledged by TCP. The receipt of the FIN is also passed to the application as an
end-of-file (after any data that may have already been queued for the application to
receive), since the receipt of the FIN means the application will not receive any
additional data on the connection.

Page 71

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


3. Sometime later, the application that received the end-of-file will close its socket.
This causes its TCP to send a FIN.

4. The TCP on the system that receives this final FIN (the end that did the active
close) acknowledges the FIN.

Since a FIN and an ACK are required in each direction, four segments are normally
required. We use the qualifier "normally" because in some scenarios, the FIN in Step 1 is
sent with data. Also, the segments in Steps 2 and 3 are both from the end performing the
passive close and could be combined into one segment. We show these packets in Figure
2.3.

Figure 2.3. Packets exchanged when a TCP connection is closed.

A FIN occupies one byte of sequence number space just like a SYN. Therefore, the ACK of
each FIN is the sequence number of the FIN plus one.

Between Steps 2 and 3 it is possible for data to flow from the end doing the passive close
to the end doing the active close. This is called a half-close and we will talk about this in
detail with the shutdown function in Section 6.6.

The sending of each FIN occurs when a socket is closed. We indicated that the application
calls close for this to happen, but realize that when a Unix process terminates, either
voluntarily (calling exit or having the main function return) or involuntarily (receiving a
signal that terminates the process), all open descriptors are closed, which will also cause a
FIN to be sent on any TCP connection that is still open.

Although we show the client in Figure 2.3 performing the active close, either end the
client or the server can perform the active close. Often the client performs the active
close, but with some protocols (notably HTTP/1.0), the server performs the active close.

TCP State Transition Diagram
The operation of TCP with regard to connection establishment and connection termination
can be specified with a state transition diagram. We show this in Figure 2.4.

Figure 2.4. TCP state transition diagram.

Page 72

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


There are 11 different states defined for a connection and the rules of TCP dictate the
transitions from one state to another, based on the current state and the segment received
in that state. For example, if an application performs an active open in the CLOSED state,
TCP sends a SYN and the new state is SYN_SENT. If TCP next receives a SYN with an ACK,
it sends an ACK and the new state is ESTABLISHED. This final state is where most data
transfer occurs.

The two arrows leading from the ESTABLISHED state deal with the termination of a
connection. If an application calls close before receiving a FIN (an active close), the
transition is to the FIN_WAIT_1 state. But if an application receives a FIN while in the
ESTABLISHED state (a passive close), the transition is to the CLOSE_WAIT state.

We denote the normal client transitions with a darker solid line and the normal server
transitions with a darker dashed line. We also note that there are two transitions that we
have not talked about: a simultaneous open (when both ends send SYNs at about the
same time and the SYNs cross in the network) and a simultaneous close (when both ends
send FINs at the same time). Chapter 18 of TCPv1 contains examples and a discussion of
both scenarios, which are possible but rare.

One reason for showing the state transition diagram is to show the 11 TCP states with their
names. These states are displayed by netstat, which is a useful tool when debugging
client/server applications. We will use netstat to monitor state changes in Chapter 5.

Watching the Packets
Figure 2.5 shows the actual packet exchange that takes place for a complete TCP
connection: the connection establishment, data transfer, and connection termination. We

Page 73

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


also show the TCP states through which each endpoint passes.

Figure 2.5. Packet exchange for TCP connection.

The client in this example announces an MSS of 536 (indicating that it implements only
the minimum reassembly buffer size) and the server announces an MSS of 1,460 (typical
for IPv4 on an Ethernet). It is okay for the MSS to be different in each direction (see 
Exercise 2.5).

Once a connection is established, the client forms a request and sends it to the server. We
assume this request fits into a single TCP segment (i.e., less than 1,460 bytes given the
server's announced MSS). The server processes the request and sends a reply, and we
assume that the reply fits in a single segment (less than 536 in this example). We show
both data segments as bolder arrows. Notice that the acknowledgment of the client's
request is sent with the server's reply. This is called piggybacking and will normally
happen when the time it takes the server to process the request and generate the reply is
less than around 200 ms. If the server takes longer, say one second, we would see the
acknowledgment followed later by the reply. (The dynamics of TCP data flow are covered in
detail in Chapters 19 and 20 of TCPv1.)

We then show the four segments that terminate the connection. Notice that the end that
performs the active close (the client in this scenario) enters the TIME_WAIT state. We will
discuss this in the next section.

It is important to notice in Figure 2.5 that if the entire purpose of this connection was to
send a one-segment request and receive a one-segment reply, there would be eight
segments of overhead involved when using TCP. If UDP was used instead, only two packets
would be exchanged: the request and the reply. But switching from TCP to UDP removes all
the reliability that TCP provides to the application, pushing lots of these details from the
transport layer (TCP) to the UDP application. Another important feature provided by TCP is
congestion control, which must then be handled by the UDP application. Nevertheless, it is
important to understand that many applications are built using UDP because the
application exchanges small amounts of data and UDP avoids the overhead of TCP
connection establishment and connection termination.

[ Team LiB ]

Page 74

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

2.7 TIME_WAIT State
Undoubtedly, one of the most misunderstood aspects of TCP with regard to network
programming is its TIME_WAIT state. We can see in Figure 2.4 that the end that performs
the active close goes through this state. The duration that this endpoint remains in this
state is twice the maximum segment lifetime (MSL), sometimes called 2MSL.

Every implementation of TCP must choose a value for the MSL. The recommended value in
RFC 1122 [Braden 1989] is 2 minutes, although Berkeley-derived implementations have
traditionally used a value of 30 seconds instead. This means the duration of the
TIME_WAIT state is between 1 and 4 minutes. The MSL is the maximum amount of time
that any given IP datagram can live in a network. We know this time is bounded because
every datagram contains an 8-bit hop limit (the IPv4 TTL field in Figure A.1 and the IPv6
hop limit field in Figure A.2) with a maximum value of 255. Although this is a hop limit
and not a true time limit, the assumption is made that a packet with the maximum hop
limit of 255 cannot exist in a network for more than MSL seconds.

The way in which a packet gets "lost" in a network is usually the result of routing
anomalies. A router crashes or a link between two routers goes down and it takes the
routing protocols seconds or minutes to stabilize and find an alternate path. During that
time period, routing loops can occur (router A sends packets to router B, and B sends them
back to A) and packets can get caught in these loops. In the meantime, assuming the lost
packet is a TCP segment, the sending TCP times out and retransmits the packet, and the
retransmitted packet gets to the final destination by some alternate path. But sometime
later (up to MSL seconds after the lost packet started on its journey), the routing loop is
corrected and the packet that was lost in the loop is sent to the final destination. This
original packet is called a lost duplicate or a wandering duplicate. TCP must handle these
duplicates.

There are two reasons for the TIME_WAIT state:

1. To implement TCP's full-duplex connection termination reliably

2. To allow old duplicate segments to expire in the network

The first reason can be explained by looking at Figure 2.5 and assuming that the final ACK
is lost. The server will resend its final FIN, so the client must maintain state information,
allowing it to resend the final ACK. If it did not maintain this information, it would respond
with an RST (a different type of TCP segment), which would be interpreted by the server as
an error. If TCP is performing all the work necessary to terminate both directions of data
flow cleanly for a connection (its full-duplex close), then it must correctly handle the loss of
any of these four segments. This example also shows why the end that performs the active
close is the end that remains in the TIME_WAIT state: because that end is the one that
might have to retransmit the final ACK.

To understand the second reason for the TIME_WAIT state, assume we have a TCP
connection between 12.106.32.254 port 1500 and 206.168.112.219 port 21. This
connection is closed and then sometime later, we establish another connection between
the same IP addresses and ports: 12.106.32.254 port 1500 and 206.168.112.219 port 21.
This latter connection is called an incarnation of the previous connection since the IP
addresses and ports are the same. TCP must prevent old duplicates from a connection from
reappearing at some later time and being misinterpreted as belonging to a new incarnation
of the same connection. To do this, TCP will not initiate a new incarnation of a connection
that is currently in the TIME_WAIT state. Since the duration of the TIME_WAIT state is
twice the MSL, this allows MSL seconds for a packet in one direction to be lost, and another
MSL seconds for the reply to be lost. By enforcing this rule, we are guaranteed that when
we successfully establish a TCP connection, all old duplicates from previous incarnations of
the connection have expired in the network.

Page 75

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


There is an exception to this rule. Berkeley-derived implementations will initiate a new
incarnation of a connection that is currently in the TIME_WAIT state if the arriving SYN has
a sequence number that is "greater than" the ending sequence number from the previous
incarnation. Pages 958 959 of TCPv2 talk about this in more detail. This requires the
server to perform the active close, since the TIME_WAIT state must exist on the end that
receives the next SYN. This capability is used by the rsh command. RFC 1185 [Jacobson,
Braden, and Zhang 1990] talks about some pitfalls in doing this.

[ Team LiB ]

Page 76

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

2.8 SCTP Association Establishment and Termination
SCTP is connection-oriented like TCP, so it also has association establishment and
termination handshakes. However, SCTP's handshakes are different than TCP's, so we
describe them here.

Four-Way Handshake
The following scenario, similar to TCP, occurs when an SCTP association is established:

1. The server must be prepared to accept an incoming association. This preparation is
normally done by calling socket, bind, and listen and is called a passive open.

2. The client issues an active open by calling connect or by sending a message, which
implicitly opens the association. This causes the client SCTP to send an INIT
message (which stands for "initialization") to tell the server the client's list of IP
addresses, initial sequence number, initiation tag to identify all packets in this
association, number of outbound streams the client is requesting, and number of
inbound streams the client can support.

3. The server acknowledges the client's INIT message with an INIT-ACK message,
which contains the server's list of IP addresses, initial sequence number, initiation
tag, number of outbound streams the server is requesting, number of inbound
streams the server can support, and a state cookie. The state cookie contains all of
the state that the server needs to ensure that the association is valid, and is
digitally signed to ensure its validity.

4. The client echos the server's state cookie with a COOKIE-ECHO message. This
message may also contain user data bundled within the same packet.

5. The server acknowledges that the cookie was correct and that the association was
established with a COOKIE-ACK message. This message may also contain user data
bundled within the same packet.

The minimum number of packets required for this exchange is four; hence, this process is
called SCTP's four-way handshake. We show a picture of the four segments in Figure 2.6.

Figure 2.6. SCTP four-way handshake.

The SCTP four-way handshake is similar in many ways to TCP's three-way handshake,
except for the cookie generation, which is an integral part. The INIT carries with it (along
with its many parameters) a verification tag, Ta, and an initial sequence number, J. The
tag Ta must be present in every packet sent by the peer for the life of the association. The
initial sequence number J is used as the starting sequence number for DATA messages
termed DATA chunks. The peer also chooses a verification tag, Tz, which must be present
in each of its packets for the life of the association. Along with the verification tag and

Page 77

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


initial sequence number, K, the receiver of the INIT also sends a cookie, C. The cookie
contains all the state needed to set up the SCTP association, so that the server's SCTP
stack does not need to keep information about the associating client. Further details on
SCTP's association setup can be found in Chapter 4 of [Stewart and Xie 2001].

At the conclusion of the four-way handshake, each side chooses a primary destination
address. The primary destination address is used as the default destination to which data
will be sent in the absence of network failure.

The four-way handshake is used in SCTP to avoid a form of denial-of-service attack we will
discuss in Section 4.5.

SCTP's four-way handshake using Cookies formalizes a method of protection against this
attack. Many TCP implementations use a similar method; the big difference is that in TCP,
the cookie state must be encoded into the initial sequence number, which is only 32 bits.
SCTP provides an arbitrary-length field, and requires cryptographic security to prevent
attacks.

Association Termination
Unlike TCP, SCTP does not permit a "half-closed" association. When one end shuts down an
association, the other end must stop sending new data. The receiver of the shutdown
request sends the data that was queued, if any, and then completes the shutdown. We
show this exchange in Figure 2.7.

Figure 2.7. Packets exchanged when an SCTP association is closed.

SCTP does not have a TIME_WAIT state like TCP, due to its use of verification tags. All
chunks are tagged with the tag exchanged in the INIT chunks; a chunk from an old
connection will arrive with an incorrect tag. Therefore, in lieu of keeping an entire
connection in TIME_WAIT, SCTP instead places verification tag values in TIME_WAIT.

SCTP State Transition Diagram
The operation of SCTP with regard to association establishment and termination can be
specified with a state transition diagram. We show this in Figure 2.8.

Figure 2.8. SCTP state transition diagram.

Page 78

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


As in Figure 2.4, the transitions from one state to another in the state machine are dictated
by the rules of SCTP, based on the current state and the chunk received in that state. For
example, if an application performs an active open in the CLOSED state, SCTP sends an
INIT and the new state is COOKIE-WAIT. If SCTP next receives an INIT ACK, it sends a
COOKIE ECHO and the new state is COOKIE-ECHOED. If SCTP then receives a COOKIE
ACK, it moves to the ESTABLISHED state. This final state is where most data transfer
occurs, although DATA chunks can be piggybacked on COOKIE ECHO and COOKIE ACK
chunks.

The two arrows leading from the ESTABLISHED state deal with the termination of an
association. If an application calls close before receiving a SHUTDOWN (an active close),
the transition is to the SHUTDOWN-PENDING state. However, if an application receives a
SHUTDOWN while in the ESTABLISHED state (a passive close), the transition is to the
SHUTDOWN-RECEIVED state.

Watching the Packets
Figure 2.9 shows the actual packet exchange that takes place for a sample SCTP
association: the association establishment, data transfer, and association termination. We
also show the SCTP states through which each endpoint passes.

Figure 2.9. Packet exchange for SCTP association.

Page 79

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


In this example, the client piggybacks its first data chunk on the COOKIE ECHO, and the
server replies with data on the COOKIE ACK. In general, the COOKIE ECHO will often have
one or more DATA chunks bundled with it when the application is using the one-to-many
interface style (we will discuss the one-to-one and one-to-many interface styles in Section
9.2).

The unit of information within an SCTP packet is a "chunk." A "chunk" is self-descriptive
and contains a chunk type, chunk flags, and a chunk length. This approach facilitates the
bundling of chunks simply by combining multiple chunks into an SCTP outbound packet
(details on chunk bundling and normal data transmission procedures can be found in
Chapter 5 of [Stewart and Xie 2001]).

SCTP Options
SCTP uses parameters and chunks to facilitate optional features. New features are defined
by adding either of these two items, and allowing normal SCTP processing rules to report
unknown parameters and unknown chunks. The upper two bits of both the parameter
space and the chunk space dictate what an SCTP receiver should do with an unknown
parameter or chunk (further details can be found in Section 3.1 of [Stewart and Xie
2001]).

Currently, two extensions for SCTP are under development:

1. The dynamic address extension, which allows cooperating SCTP endpoints to
dynamically add and remove IP addresses from an existing association.

2. The partial reliability extension, which allows cooperating SCTP endpoints, under
application direction, to limit the retransmission of data. When a message becomes
too old to send (according to the application's direction), the message will be
skipped and thus no longer sent to the peer. This means that not all data is assured
of arrival at the other end of the association.

[ Team LiB ]

Page 80

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

2.9 Port Numbers
At any given time, multiple processes can be using any given transport: UDP, SCTP, or
TCP. All three transport layers use 16-bit integer port numbers to differentiate between
these processes.

When a client wants to contact a server, the client must identify the server with which it
wants to communicate. TCP, UDP, and SCTP define a group of well-known ports to identify
well-known services. For example, every TCP/IP implementation that supports FTP assigns
the well-known port of 21 (decimal) to the FTP server. Trivial File Transfer Protocol (TFTP)
servers are assigned the UDP port of 69.

Clients, on the other hand, normally use ephemeral ports, that is, short-lived ports. These
port numbers are normally assigned automatically by the transport protocol to the client.
Clients normally do not care about the value of the ephemeral port; the client just needs to
be certain that the ephemeral port is unique on the client host. The transport protocol code
guarantees this uniqueness.

The Internet Assigned Numbers Authority (IANA) maintains a list of port number
assignments. Assignments were once published as RFCs; RFC 1700 [Reynolds and Postel
1994] is the last in this series. RFC 3232 [Reynolds 2002] gives the location of the online
database that replaced RFC 1700: http://www.iana.org/. The port numbers are divided
into three ranges:

1. The well-known ports: 0 through 1023. These port numbers are controlled and
assigned by the IANA. When possible, the same port is assigned to a given service
for TCP, UDP, and SCTP. For example, port 80 is assigned for a Web server, for both
TCP and UDP, even though all implementations currently use only TCP.

At the time that port 80 was assigned, SCTP did not yet exist. New port
assignments are made for all three protocols, and RFC 2960 states that all existing
TCP port numbers should be valid for the same service using SCTP.

2. The registered ports: 1024 through 49151. These are not controlled by the IANA,
but the IANA registers and lists the uses of these ports as a convenience to the
community. When possible, the same port is assigned to a given service for both
TCP and UDP. For example, ports 6000 through 6063 are assigned for an X Window
server for both protocols, even though all implementations currently use only TCP.
The upper limit of 49151 for these ports was introduced to allow a range for
ephemeral ports; RFC 1700 [Reynolds and Postel 1994] lists the upper range as
65535.

3. The dynamic or private ports, 49152 through 65535. The IANA says nothing about
these ports. These are what we call ephemeral ports. (The magic number 49152 is
three-fourths of 65536.)

Figure 2.10 shows this division, along with the common allocation of the port numbers.

Figure 2.10. Allocation of port numbers.

Page 81

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.iana.org/default.htm
http://www.iana.org/
http://www.processtext.com/abcchm.html


We note the following points from this figure:

 Unix systems have the concept of a reserved port, which is any port less than 1024.
These ports can only be assigned to a socket by an appropriately privileged process.
All the IANA well-known ports are reserved ports; hence, the server allocating this
port (such as the FTP server) must have superuser privileges when it starts.

 Historically, Berkeley-derived implementations (starting with 4.3BSD) have
allocated ephemeral ports in the range 1024 5000. This was fine in the early
1980s, but it is easy today to find a host that can support more than 3977
connections at any given time. Therefore, many newer systems allocate ephemeral
ports differently to provide more ephemeral ports, either using the IANA-defined
ephemeral range or a larger range (e.g., Solaris as we show in Figure 2.10).

As it turns out, the upper limit of 5000 for the ephemeral ports, which many older
systems implement, was a typo [Borman 1997a]. The limit should have been
50,000.

 There are a few clients (not servers) that require a reserved port as part of the
client/server authentication: the rlogin and rsh clients are common examples.
These clients call the library function rresvport to create a TCP socket and assign
an unused port in the range 513 1023 to the socket. This function normally tries to
bind port 1023, and if that fails, it tries to bind 1022, and so on, until it either
succeeds or fails on port 513.

Notice that the BSD reserved ports and the rresvport function both overlap with
the upper half of the IANA well-known ports. This is because the IANA well-known
ports used to stop at 255. RFC 1340 (a previous "Assigned Numbers" RFC) in 1992
started assigning well-known ports between 256 and 1023. The previous "Assigned
Numbers" document, RFC 1060 in 1990, called ports 256 1023 the Unix Standard
Services. There are numerous Berkeley-derived servers that picked their well-known
ports in the 1980s starting at 512 (leaving 256 511 untouched). The rresvport
function chose to start at the top of the 512 1023 range and work down.

Socket Pair
The socket pair for a TCP connection is the four-tuple that defines the two endpoints of the
connection: the local IP address, local port, foreign IP address, and foreign port. A socket
pair uniquely identifies every TCP connection on a network. For SCTP, an association is
identified by a set of local IP addresses, a local port, a set of foreign IP addresses, and a
foreign port. In its simplest form, where neither endpoint is multihomed, this results in the
same four-tuple socket pair used with TCP. However, when either of the endpoints of an
association are multihomed, then multiple four-tuple sets (with different IP addresses but
the same port numbers) may identify the same association.

The two values that identify each endpoint, an IP address and a port number, are often
called a socket.

We can extend the concept of a socket pair to UDP, even though UDP is connectionless.
When we describe the socket functions (bind, connect, getpeername, etc.), we will note

Page 82

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


which functions specify which values in the socket pair. For example, bind lets the
application specify the local IP address and local port for TCP, UDP, and SCTP sockets.

[ Team LiB ]

Page 83

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

2.10 TCP Port Numbers and Concurrent Servers
With a concurrent server, where the main server loop spawns a child to handle each new
connection, what happens if the child continues to use the well-known port number while
servicing a long request? Let's examine a typical sequence. First, the server is started on
the host freebsd, which is multihomed with IP addresses 12.106.32.254 and
192.168.42.1, and the server does a passive open using its well-known port number (21,
for this example). It is now waiting for a client request, which we show in Figure 2.11.

Figure 2.11. TCP server with a passive open on port 21.

We use the notation {*:21, *:*} to indicate the server's socket pair. The server is waiting
for a connection request on any local interface (the first asterisk) on port 21. The foreign IP
address and foreign port are not specified and we denote them as *:*. We also call this a
listening socket.

We use a colon to separate the IP address from the port number because that is what HTTP
uses and is commonly seen elsewhere. The netstat program uses a period to separate the
IP address and port, but this is sometimes confusing because decimal points are used in
both domain names (freebsd.unpbook.com.21) and in IPv4 dotted-decimal notation (
12.106.32.254.21).

When we specify the local IP address as an asterisk, it is called the wildcard character. If
the host on which the server is running is multihomed (as in this example), the server can
specify that it wants only to accept incoming connections that arrive destined to one
specific local interface. This is a one-or-any choice for the server. The server cannot specify
a list of multiple addresses. The wildcard local address is the "any" choice. In Figure 1.9,
the wildcard address was specified by setting the IP address in the socket address
structure to INADDR_ANY before calling bind.

At some later time, a client starts on the host with IP address 206.168.112.219 and
executes an active open to the server's IP address of 12.106.32.254. We assume the
ephemeral port chosen by the client TCP is 1500 for this example. This is shown in Figure
2.12. Beneath the client we show its socket pair.

Figure 2.12. Connection request from client to server.

When the server receives and accepts the client's connection, it forks a copy of itself,
letting the child handle the client, as we show in Figure 2.13. (We will describe the fork
function in Section 4.7.)

Figure 2.13. Concurrent server has child handle client.

Page 84

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


At this point, we must distinguish between the listening socket and the connected socket
on the server host. Notice that the connected socket uses the same local port (21) as the
listening socket. Also notice that on the multihomed server, the local address is filled in for
the connected socket (12.106.32.254) once the connection is established.

The next step assumes that another client process on the client host requests a connection
with the same server. The TCP code on the client host assigns the new client socket an
unused ephemeral port number, say 1501. This gives us the scenario shown in Figure 2.14.
On the server, the two connections are distinct: the socket pair for the first connection
differs from the socket pair for the second connection because the client's TCP chooses an
unused port for the second connection (1501).

Figure 2.14. Second client connection with same server.

Notice from this example that TCP cannot demultiplex incoming segments by looking at
just the destination port number. TCP must look at all four elements in the socket pair to
determine which endpoint receives an arriving segment. In Figure 2.14, we have three
sockets with the same local port (21). If a segment arrives from 206.168.112.219 port
1500 destined for 12.106.32.254 port 21, it is delivered to the first child. If a segment
arrives from 206.168.112.219 port 1501 destined for 12.106.32.254 port 21, it is delivered
to the second child. All other TCP segments destined for port 21 are delivered to the
original server with the listening socket.

[ Team LiB ]

Page 85

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

2.11 Buffer Sizes and Limitations
Certain limits affect the size of IP datagrams. We first describe these limits and then tie
them all together with regard to how they affect the data an application can transmit.

 The maximum size of an IPv4 datagram is 65,535 bytes, including the IPv4 header.
This is because of the 16-bit total length field in Figure A.1.

 The maximum size of an IPv6 datagram is 65,575 bytes, including the 40-byte IPv6
header. This is because of the 16-bit payload length field in Figure A.2. Notice that
the IPv6 payload length field does not include the size of the IPv6 header, while the
IPv4 total length field does include the header size.

IPv6 has a jumbo payload option, which extends the payload length field to 32 bits,
but this option is supported only on datalinks with a maximum transmission unit
(MTU) that exceeds 65,535. (This is intended for host-to-host interconnects, such as
HIPPI, which often have no inherent MTU.)

 Many networks have an MTU which can be dictated by the hardware. For example,
the Ethernet MTU is 1,500 bytes. Other datalinks, such as point-to-point links using
the Point-to-Point Protocol (PPP), have a configurable MTU. Older SLIP links often
used an MTU of 1,006 or 296 bytes.

The minimum link MTU for IPv4 is 68 bytes. This permits a maximum-sized IPv4
header (20 bytes of fixed header, 30 bytes of options) and minimum-sized fragment
(the fragment offset is in units of 8 bytes). The minimum link MTU for IPv6 is 1,280
bytes. IPv6 can run over links with a smaller MTU, but requires link-specific
fragmentation and reassembly to make the link appear to have an MTU of at least
1,280 bytes (RFC 2460 [Deering and Hinden 1998]).

 The smallest MTU in the path between two hosts is called the path MTU. Today, the
Ethernet MTU of 1,500 bytes is often the path MTU. The path MTU need not be the
same in both directions between any two hosts because routing in the Internet is
often asymmetric [Paxson 1996]. That is, the route from A to B can differ from the
route from B to A.

 When an IP datagram is to be sent out an interface, if the size of the datagram
exceeds the link MTU, fragmentation is performed by both IPv4 and IPv6. The
fragments are not normally reassembled until they reach the final destination. IPv4
hosts perform fragmentation on datagrams that they generate and IPv4 routers
perform fragmentation on datagrams that they forward. But with IPv6, only hosts
perform fragmentation on datagrams that they generate; IPv6 routers do not
fragment datagrams that they are forwarding.

We must be careful with our terminology. A box labeled as an IPv6 router may
indeed perform fragmentation, but only on datagrams that the router itself
generates, never on datagrams that it is forwarding. When this box generates IPv6
datagrams, it is really acting as a host. For example, most routers support the
Telnet protocol and this is used for router configuration by administrators. The IP
datagrams generated by the router's Telnet server are generated by the router, not
forwarded by the router.

You may notice that fields exist in the IPv4 header (Figure A.1) to handle IPv4
fragmentation, but there are no fields in the IPv6 header (Figure A.2) for
fragmentation. Since fragmentation is the exception, rather than the rule, IPv6
contains an option header with the fragmentation information.

Certain firewalls, which usually act as routers, may reassemble fragmented packets

Page 86

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


to allow inspection of the entire packet contents. This allows the prevention of
certain attacks at the cost of additional complexity in the firewall device. It also
requires the firewall device to be part of the only path to the network, reducing the
opportunities for redundancy.

 If the "don't fragment" (DF) bit is set in the IPv4 header (Figure A.1), it specifies
that this datagram must not be fragmented, either by the sending host or by any
router. A router that receives an IPv4 datagram with the DF bit set whose size
exceeds the outgoing link's MTU generates an ICMPv4 "destination unreachable,
fragmentation needed but DF bit set" error message (Figure A.15).

Since IPv6 routers do not perform fragmentation, there is an implied DF bit with
every IPv6 datagram. When an IPv6 router receives a datagram whose size exceeds
the outgoing link's MTU, it generates an ICMPv6 "packet too big" error message (
Figure A.16).

The IPv4 DF bit and its implied IPv6 counterpart can be used for path MTU discovery
(RFC 1191 [Mogul and Deering 1990] for IPv4 and RFC 1981 [McCann, Deering, and
Mogul 1996] for IPv6). For example, if TCP uses this technique with IPv4, then it
sends all its datagrams with the DF bit set. If some intermediate router returns an
ICMP "destination unreachable, fragmentation needed but DF bit set" error, TCP
decreases the amount of data it sends per datagram and retransmits. Path MTU
discovery is optional with IPv4, but IPv6 implementations all either support path
MTU discovery or always send using the minimum MTU.

Path MTU discovery is problematic in the Internet today; many firewalls drop all
ICMP messages, including the fragmentation required message, meaning that TCP
never gets the signal that it needs to decrease the amount of data it is sending. As
of this writing, an effort is beginning in the IETF to define another method for path
MTU discovery that does not rely on ICMP errors.

 IPv4 and IPv6 define a minimum reassembly buffer size, the minimum datagram
size that we are guaranteed any implementation must support. For IPv4, this is 576
bytes. IPv6 raises this to 1,500 bytes. With IPv4, for example, we have no idea
whether a given destination can accept a 577-byte datagram or not. Therefore,
many IPv4 applications that use UDP (e.g., DNS, RIP, TFTP, BOOTP, SNMP) prevent
applications from generating IP datagrams that exceed this size.

 TCP has a maximum segment size (MSS) that announces to the peer TCP the
maximum amount of TCP data that the peer can send per segment. We saw the
MSS option on the SYN segments in Figure 2.5. The goal of the MSS is to tell the
peer the actual value of the reassembly buffer size and to try to avoid
fragmentation. The MSS is often set to the interface MTU minus the fixed sizes of
the IP and TCP headers. On an Ethernet using IPv4, this would be 1,460, and on an
Ethernet using IPv6, this would be 1,440. (The TCP header is 20 bytes for both, but
the IPv4 header is 20 bytes and the IPv6 header is 40 bytes.)

The MSS value in the TCP MSS option is a 16-bit field, limiting the value to 65,535.
This is fine for IPv4, since the maximum amount of TCP data in an IPv4 datagram is
65,495 (65,535 minus the 20-byte IPv4 header and minus the 20-byte TCP
header). But with the IPv6 jumbo payload option, a different technique is used (RFC
2675 [Borman, Deering, and Hinden 1999]). First, the maximum amount of TCP
data in an IPv6 datagram without the jumbo payload option is 65,515 (65,535
minus the 20-byte TCP header). Therefore, the MSS value of 65,535 is considered a
special case that designates "infinity." This value is used only if the jumbo payload
option is being used, which requires an MTU that exceeds 65,535. If TCP is using
the jumbo payload option and receives an MSS announcement of 65,535 from the
peer, the limit on the datagram sizes that it sends is just the interface MTU. If this
turns out to be too large (i.e., there is a link in the path with a smaller MTU), then
path MTU discovery will determine the smaller value.

Page 87

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


 SCTP keeps a fragmentation point based on the smallest path MTU found to all the
peer's addresses. This smallest MTU size is used to split large user messages into
smaller pieces that can be sent in one IP datagram. The SCTP_MAXSEG socket option
can influence this value, allowing the user to request a smaller fragmentation point.

TCP Output
Given all these terms and definitions, Figure 2.15 shows what happens when an application
writes data to a TCP socket.

Figure 2.15. Steps and buffers involved when an application writes to
a TCP socket.

Every TCP socket has a send buffer and we can change the size of this buffer with the 
SO_SNDBUF socket option (Section 7.5). When an application calls write, the kernel copies
all the data from the application buffer into the socket send buffer. If there is insufficient
room in the socket buffer for all the application's data (either the application buffer is
larger than the socket send buffer, or there is already data in the socket send buffer), the
process is put to sleep. This assumes the normal default of a blocking socket. (We will talk
about nonblocking sockets in Chapter 16.) The kernel will not return from the write until
the final byte in the application buffer has been copied into the socket send buffer.
Therefore, the successful return from a write to a TCP socket only tells us that we can
reuse our application buffer. It does not tell us that either the peer TCP has received the
data or that the peer application has received the data. (We will talk about this more with
the SO_LINGER socket option in Section 7.5.)

TCP takes the data in the socket send buffer and sends it to the peer TCP based on all the
rules of TCP data transmission (Chapter 19 and 20 of TCPv1). The peer TCP must
acknowledge the data, and as the ACKs arrive from the peer, only then can our TCP discard
the acknowledged data from the socket send buffer. TCP must keep a copy of our data until
it is acknowledged by the peer.

TCP sends the data to IP in MSS-sized or smaller chunks, prepending its TCP header to
each segment, where the MSS is the value announced by the peer, or 536 if the peer did
not send an MSS option. IP prepends its header, searches the routing table for the
destination IP address (the matching routing table entry specifies the outgoing interface),
and passes the datagram to the appropriate datalink. IP might perform fragmentation
before passing the datagram to the datalink, but as we said earlier, one goal of the MSS
option is to try to avoid fragmentation and newer implementations also use path MTU
discovery. Each datalink has an output queue, and if this queue is full, the packet is
discarded and an error is returned up the protocol stack: from the datalink to IP and then
from IP to TCP. TCP will note this error and try sending the segment later. The application

Page 88

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


is not told of this transient condition.

UDP Output
Figure 2.16 shows what happens when an application writes data to a UDP socket.

Figure 2.16. Steps and buffers involved when an application writes to
a UDP socket.

This time, we show the socket send buffer as a dashed box because it doesn't really exist.
A UDP socket has a send buffer size (which we can change with the SO_SNDBUF socket
option, Section 7.5), but this is simply an upper limit on the maximum-sized UDP
datagram that can be written to the socket. If an application writes a datagram larger than
the socket send buffer size, EMSGSIZE is returned. Since UDP is unreliable, it does not need
to keep a copy of the application's data and does not need an actual send buffer. (The
application data is normally copied into a kernel buffer of some form as it passes down the
protocol stack, but this copy is discarded by the datalink layer after the data is
transmitted.)

UDP simply prepends its 8-byte header and passes the datagram to IP. IPv4 or IPv6
prepends its header, determines the outgoing interface by performing the routing function,
and then either adds the datagram to the datalink output queue (if it fits within the MTU)
or fragments the datagram and adds each fragment to the datalink output queue. If a UDP
application sends large datagrams (say 2,000-byte datagrams), there is a much higher
probability of fragmentation than with TCP, because TCP breaks the application data into
MSS-sized chunks, something that has no counterpart in UDP.

The successful return from a write to a UDP socket tells us that either the datagram or all
fragments of the datagram have been added to the datalink output queue. If there is no
room on the queue for the datagram or one of its fragments, ENOBUFS is often returned to
the application.

Unfortunately, some implementations do not return this error, giving the application no
indication that the datagram was discarded without even being transmitted.

SCTP Output
Figure 2.17 shows what happens when an application writes data to an SCTP socket.

Figure 2.17. Steps and buffers involved when an application writes to
an SCTP socket.

Page 89

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


SCTP, since it is a reliable protocol like TCP, has a send buffer. As with TCP, an application
can change the size of this buffer with the SO_SNDBUF socket option (Section 7.5). When
the application calls write, the kernel copies all the data from the application buffer into
the socket send buffer. If there is insufficient room in the socket buffer for all of the
application's data (either the application buffer is larger than the socket send buffer, or
there is already data in the socket send buffer), the process is put to sleep. This sleeping
assumes the normal default of a blocking socket. (We will talk about nonblocking sockets
in Chapter 16.) The kernel will not return from the write until the final byte in the
application buffer has been copied into the socket send buffer. Therefore, the successful
return from a write to an SCTP socket only tells the sender that it can reuse the
application buffer. It does not tell us that either the peer SCTP has received the data, or
that the peer application has received the data.

SCTP takes the data in the socket send buffer and sends it to the peer SCTP based on all
the rules of SCTP data transmission (for details of data transfer, see Chapter 5 of [Stewart
and Xie 2001]). The sending SCTP must await a SACK in which the cumulative
acknowledgment point passes the sent data before that data can be removed from the
socket buffer.

[ Team LiB ]

Page 90

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

2.12 Standard Internet Services
Figure 2.18 lists several standard services that are provided by most implementations of
TCP/IP. Notice that all are provided using both TCP and UDP and the port number is the
same for both protocols.

Figure 2.18. Standard TCP/IP services provided by most
implementations.

Often these services are provided by the inetd daemon on Unix hosts (Section 13.5).
These standard services provide an easy testing facility using the standard Telnet client.
For example, the following tests both the daytime and echo servers:

aix % telnet freebsd daytime

Trying 12.106.32.254... output by Telnet client

Connected to freebsd.unpbook.com. output by Telnet client

Escape character is '^]'. output by Telnet client

Mon Jul 28 11:56:22 2003 output by daytime server

Connection closed by foreign host. output by Telnet client (server closes
connection)

 

aix % telnet freebsd echo

Trying 12.106.32.254... output by Telnet client

Connected to freebsd.unpbook.com. output by Telnet client

Escape character is '^]'. output by Telnet client

hello, world we type this

hello, world and it is echoed back by the server

^] we type control and right bracket to talk to
Telnet client

telnet> quit and tell client we are done

Page 91

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


aix % telnet freebsd daytime

Connection closed. client closes the connection this time

In these two examples, we type the name of the host and the name of the service (
daytime and echo). These service names are mapped into the port numbers shown in
Figure 2.18 by the /etc/services file, as we will describe in Section 11.5.

Notice that when we connect to the daytime server, the server performs the active close,
while with the echo server, the client performs the active close. Recall from Figure 2.4 that
the end performing the active close is the end that goes through the TIME_WAIT state.

These "simple services" are often disabled by default on modern systems due to
denial-of-service and other resource utilization attacks against them.

[ Team LiB ]

Page 92

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

2.13 Protocol Usage by Common Internet Applications
Figure 2.19 summarizes the protocol usage of various common Internet applications.

Figure 2.19. Protocol usage of various common Internet applications.

The first two applications, ping and traceroute, are diagnostic applications that use ICMP.
traceroute builds its own UDP packets to send and reads ICMP replies.

The three popular routing protocols demonstrate the variety of transport protocols used by
routing protocols. OSPF uses IP directly, employing a raw socket, while RIP uses UDP and
BGP uses TCP.

The next five are UDP-based applications, followed by seven TCP applications and four that
use both UDP and TCP. The final five are IP telephony applications that use SCTP
exclusively or optionally UDP, TCP, or SCTP.

[ Team LiB ]

Page 93

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

2.14 Summary
UDP is a simple, unreliable, connectionless protocol, while TCP is a complex, reliable,
connection-oriented protocol. SCTP combines some of the features of both protocols,
providing additional features beyond those found in TCP. While most applications on the
Internet use TCP (the Web, Telnet, FTP, and email), there is a need for all three transport
layers. In Section 22.4, we will discuss the reasons to choose UDP instead of TCP. In
Section 23.12, we will discuss the reasons to choose SCTP instead of TCP.

TCP establishes connections using a three-way handshake and terminates connections
using a four-packet exchange. When a TCP connection is established, it goes from the
CLOSED state to the ESTABLISHED state, and when it is terminated, it goes back to the
CLOSED state. There are 11 states in which a TCP connection can be, and a state transition
diagram gives the rules on how to go between the states. Understanding this diagram is
essential to diagnosing problems using the netstat command and understanding what
happens when an application calls functions such as connect, accept, and close.

TCP's TIME_WAIT state is a continual source of confusion with network programmers. This
state exists to implement TCP's full-duplex connection termination (i.e., to handle the case
of the final ACK being lost), and to allow old duplicate segments to expire in the network.

SCTP establishes an association by using a four-way handshake and terminates
connections using a three-packet exchange. When an SCTP association is established, it
goes from the CLOSED state to the ESTABLISHED state, and when it is terminated, it goes
back to the CLOSED state. There are eight states in which an SCTP association can be, and
a state transition diagram gives the rules on how to go between the states. SCTP does not
need the TIME_WAIT state as TCP does due to its use of verification tags.

[ Team LiB ]

Page 94

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Exercises
2.1 We have mentioned IP versions 4 and 6. What happened to version 5

and what were versions 0, 1, 2, and 3? (Hint: Find the IANA's "Internet
Protocol" registry. Feel free to skip ahead to the solution if you cannot
visit http://www.iana.org.)

2.2 Where would you look to find more information about the protocol that is
assigned IP version 5?

2.3 With Figure 2.15, we said that TCP assumes an MSS of 536 if it does not
receive an MSS option from the peer. Why is this value used?

2.4 Draw a figure like Figure 2.5 for the daytime client/server in Chapter 1,
assuming the server returns the 26 bytes of data in a single TCP
segment.

2.5 A connection is established between a host on an Ethernet, whose TCP
advertises an MSS of 1,460, and a host on a Token Ring, whose TCP
advertises an MSS of 4,096. Neither host implements path MTU
discovery. Watching the packets, we never see more than 1,460 bytes of
data in either direction. Why?

2.6 In Figure 2.19, we said that OSPF uses IP directly. What is the value of
the protocol field in the IPv4 header (Figure A.1) for these OSPF
datagrams?

2.7 In discussing SCTP output, we said that the SCTP sender must wait for
the cumulative acknowledgment point to pass sent data before the data
could be freed from the socket buffer. If a selective acknowledgment
shows that data is acknowledged beyond the cumulative
acknowledgment point, why can't the data be freed?

[ Team LiB ]

Page 95

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.iana.org/default.htm
http://www.iana.org
http://www.processtext.com/abcchm.html


[ Team LiB ]

Part 2: Elementary Sockets
Chapter 3.?Sockets Introduction

Chapter 4.?Elementary TCP Sockets

Chapter 5.?TCP Client/Server Example

Chapter 6.?I/O Multiplexing: The select and poll Functions

Chapter 7.?Socket Options

Chapter 8.?Elementary UDP Sockets

Chapter 9.?Elementary SCTP Sockets

Chapter 10.?SCTP Client/Server Example

Chapter 11.?Name and Address Conversions

[ Team LiB ]

Page 96

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Chapter 3. Sockets Introduction
Section 3.1.?Introduction

Section 3.2.?Socket Address Structures

Section 3.3.?Value-Result Arguments

Section 3.4.?Byte Ordering Functions

Section 3.5.?Byte Manipulation Functions

Section 3.6.?inet_aton, inet_addr, and inet_ntoa Functions

Section 3.7.?inet_pton and inet_ntop Functions

Section 3.8.?sock_ntop and Related Functions

Section 3.9.?readn, writen, and readline Functions

Section 3.10.?Summary

Exercises

[ Team LiB ]

Page 97

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

3.1 Introduction
This chapter begins the description of the sockets API. We begin with socket address
structures, which will be found in almost every example in the text. These structures can
be passed in two directions: from the process to the kernel, and from the kernel to the
process. The latter case is an example of a value-result argument, and we will encounter
other examples of these arguments throughout the text.

The address conversion functions convert between a text representation of an address and
the binary value that goes into a socket address structure. Most existing IPv4 code uses 
inet_addr and inet_ntoa, but two new functions, inet_pton and inet_ntop, handle both
IPv4 and IPv6.

One problem with these address conversion functions is that they are dependent on the
type of address being converted: IPv4 or IPv6. We will develop a set of functions whose
names begin with sock_ that work with socket address structures in a
protocol-independent fashion. We will use these throughout the text to make our code
protocol-independent.

[ Team LiB ]

Page 98

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

3.2 Socket Address Structures
Most socket functions require a pointer to a socket address structure as an argument. Each
supported protocol suite defines its own socket address structure. The names of these
structures begin with sockaddr_ and end with a unique suffix for each protocol suite.

IPv4 Socket Address Structure
An IPv4 socket address structure, commonly called an "Internet socket address structure,"
is named sockaddr_in and is defined by including the <netinet/in.h> header. Figure 3.1
shows the POSIX definition.

Figure 3.1 The Internet (IPv4) socket address structure: sockaddr_in.

struct in_addr {

  in_addr_t   s_addr;           /* 32-bit IPv4 address */

                                /* network byte ordered */

};

struct sockaddr_in {

  uint8_t         sin_len;      /* length of structure (16) */

  sa_family_t     sin_family;   /* AF_INET */

  in_port_t       sin_port;     /* 16-bit TCP or UDP port number */

                                /* network byte ordered */

  struct in_addr  sin_addr;     /* 32-bit IPv4 address */

                                /* network byte ordered */

  char            sin_zero[8];  /* unused */

};

There are several points we need to make about socket address structures in general using
this example:

 The length member, sin_len, was added with 4.3BSD-Reno, when support for the
OSI protocols was added (Figure 1.15). Before this release, the first member was
sin_family, which was historically an unsigned short. Not all vendors support a
length field for socket address structures and the POSIX specification does not
require this member. The datatype that we show, uint8_t, is typical, and
POSIX-compliant systems provide datatypes of this form (Figure 3.2).

Figure 3.2. Datatypes required by the POSIX specification.

Having a length field simplifies the handling of variable-length socket address
structures.

 Even if the length field is present, we need never set it and need never examine it,
unless we are dealing with routing sockets (Chapter 18). It is used within the kernel
by the routines that deal with socket address structures from various protocol

Page 99

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


families (e.g., the routing table code).

The four socket functions that pass a socket address structure from the process to
the kernel, bind, connect, sendto, and sendmsg, all go through the sockargs
function in a Berkeley-derived implementation (p. 452 of TCPv2). This function
copies the socket address structure from the process and explicitly sets its sin_len
member to the size of the structure that was passed as an argument to these four
functions. The five socket functions that pass a socket address structure from the
kernel to the process, accept, recvfrom, recvmsg, getpeername, and getsockname,
all set the sin_len member before returning to the process.

Unfortunately, there is normally no simple compile-time test to determine whether
an implementation defines a length field for its socket address structures. In our
code, we test our own HAVE_SOCKADDR_SA_LEN constant (Figure D.2), but whether to
define this constant or not requires trying to compile a simple test program that
uses this optional structure member and seeing if the compilation succeeds or not.
We will see in Figure 3.4 that IPv6 implementations are required to define SIN6_LEN
if socket address structures have a length field. Some IPv4 implementations provide
the length field of the socket address structure to the application based on a
compile-time option (e.g., _SOCKADDR_LEN). This feature provides compatibility for
older programs.

 The POSIX specification requires only three members in the structure: sin_family,
sin_addr, and sin_port. It is acceptable for a POSIX-compliant implementation to
define additional structure members, and this is normal for an Internet socket
address structure. Almost all implementations add the sin_zero member so that all
socket address structures are at least 16 bytes in size.

 We show the POSIX datatypes for the s_addr, sin_family, and sin_port members.
The in_addr_t datatype must be an unsigned integer type of at least 32 bits,
in_port_t must be an unsigned integer type of at least 16 bits, and sa_family_t
can be any unsigned integer type. The latter is normally an 8-bit unsigned integer if
the implementation supports the length field, or an unsigned 16-bit integer if the
length field is not supported. Figure 3.2 lists these three POSIX-defined datatypes,
along with some other POSIX datatypes that we will encounter.

 You will also encounter the datatypes u_char, u_short, u_int, and u_long, which
are all unsigned. The POSIX specification defines these with a note that they are
obsolete. They are provided for backward compatibility.

 Both the IPv4 address and the TCP or UDP port number are always stored in the
structure in network byte order. We must be cognizant of this when using these
members. We will say more about the difference between host byte order and
network byte order in Section 3.4.

 The 32-bit IPv4 address can be accessed in two different ways. For example, if serv
is defined as an Internet socket address structure, then serv.sin_addr references
the 32-bit IPv4 address as an in_addr structure, while serv.sin_addr.s_addr
references the same 32-bit IPv4 address as an in_addr_t (typically an unsigned
32-bit integer). We must be certain that we are referencing the IPv4 address
correctly, especially when it is used as an argument to a function, because
compilers often pass structures differently from integers.

The reason the sin_addr member is a structure, and not just an in_addr_t, is
historical. Earlier releases (4.2BSD) defined the in_addr structure as a union of
various structures, to allow access to each of the 4 bytes and to both of the 16-bit
values contained within the 32-bit IPv4 address. This was used with class A, B, and
C addresses to fetch the appropriate bytes of the address. But with the advent of
subnetting and then the disappearance of the various address classes with classless

Page 100

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


addressing (Section A.4), the need for the union disappeared. Most systems today
have done away with the union and just define in_addr as a structure with a single
in_addr_t member.

 The sin_zero member is unused, but we always set it to 0 when filling in one of
these structures. By convention, we always set the entire structure to 0 before filling
it in, not just the sin_zero member.

Although most uses of the structure do not require that this member be 0, when
binding a non-wildcard IPv4 address, this member must be 0 (pp. 731 732 of
TCPv2).

 Socket address structures are used only on a given host: The structure itself is not
communicated between different hosts, although certain fields (e.g., the IP address
and port) are used for communication.

Generic Socket Address Structure
A socket address structures is always passed by reference when passed as an argument to
any socket functions. But any socket function that takes one of these pointers as an
argument must deal with socket address structures from any of the supported protocol
families.

A problem arises in how to declare the type of pointer that is passed. With ANSI C, the
solution is simple: void * is the generic pointer type. But, the socket functions predate
ANSI C and the solution chosen in 1982 was to define a generic socket address structure in
the <sys/socket.h> header, which we show in Figure 3.3.

Figure 3.3 The generic socket address structure: sockaddr.

struct sockaddr {

  uint8_t      sa_len;

  sa_family_t  sa_family;    /* address family: AF_xxx value */

  char         sa_data[14];  /* protocol-specific address */

};

The socket functions are then defined as taking a pointer to the generic socket address
structure, as shown here in the ANSI C function prototype for the bind function:

int bind(int, struct sockaddr *, socklen_t);

This requires that any calls to these functions must cast the pointer to the protocol-specific
socket address structure to be a pointer to a generic socket address structure. For
example,

struct sockaddr_in  serv;      /* IPv4 socket address structure */

/* fill in serv{} */

bind(sockfd, (struct sockaddr *) &serv, sizeof(serv));

If we omit the cast "(struct sockaddr *)," the C compiler generates a warning of the form
"warning: passing arg 2 of 'bind' from incompatible pointer type," assuming the system's
headers have an ANSI C prototype for the bind function.

Page 101

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


From an application programmer's point of view, the only use of these generic socket
address structures is to cast pointers to protocol-specific structures.

Recall in Section 1.2 that in our unp.h header, we define SA to be the string "struct
sockaddr" just to shorten the code that we must write to cast these pointers.

From the kernel's perspective, another reason for using pointers to generic socket address
structures as arguments is that the kernel must take the caller's pointer, cast it to a 
struct sockaddr *, and then look at the value of sa_family to determine the type of the
structure. But from an application programmer's perspective, it would be simpler if the
pointer type was void *, omitting the need for the explicit cast.

IPv6 Socket Address Structure
The IPv6 socket address is defined by including the <netinet/in.h> header, and we show
it in Figure 3.4.

Figure 3.4 IPv6 socket address structure: sockaddr_in6.

struct in6_addr {

  uint8_t  s6_addr[16];          /* 128-bit IPv6 address */

                                 /* network byte ordered */

};

#define SIN6_LEN      /* required for compile-time tests */

struct sockaddr_in6 {

  uint8_t         sin6_len;      /* length of this struct (28) */

  sa_family_t     sin6_family;   /* AF_INET6 */

  in_port_t       sin6_port;     /* transport layer port# */

                                 /* network byte ordered */

  uint32_t        sin6_flowinfo; /* flow information, undefined */

  struct in6_addr sin6_addr;     /* IPv6 address */

                                 /* network byte ordered */

  uint32_t        sin6_scope_id; /* set of interfaces for a scope */

};

The extensions to the sockets API for IPv6 are defined in RFC 3493 [Gilligan et al. 2003].

Note the following points about Figure 3.4:

 The SIN6_LEN constant must be defined if the system supports the length member
for socket address structures.

 The IPv6 family is AF_INET6, whereas the IPv4 family is AF_INET.

 The members in this structure are ordered so that if the sockaddr_in6 structure is
64-bit aligned, so is the 128-bit sin6_addr member. On some 64-bit processors,
data accesses of 64-bit values are optimized if stored on a 64-bit boundary.

 The sin6_flowinfo member is divided into two fields:

o The low-order 20 bits are the flow label

o The high-order 12 bits are reserved

The flow label field is described with Figure A.2. The use of the flow label field is still
a research topic.

 The sin6_scope_id identifies the scope zone in which a scoped address is
meaningful, most commonly an interface index for a link-local address (Section A.5

Page 102

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


).

New Generic Socket Address Structure
A new generic socket address structure was defined as part of the IPv6 sockets API, to
overcome some of the shortcomings of the existing struct sockaddr. Unlike the struct
sockaddr, the new struct sockaddr_storage is large enough to hold any socket address
type supported by the system. The sockaddr_storage structure is defined by including
the <netinet/in.h> header, which we show in Figure 3.5.

Figure 3.5 The storage socket address structure: sockaddr_storage.

struct sockaddr_storage {

  uint8_t      ss_len;       /* length of this struct (implementation

dependent) */

  sa_family_t  ss_family;    /* address family: AF_xxx value */

  /* implementation-dependent elements to provide:

   * a) alignment sufficient to fulfill the alignment requirements of

   *    all socket address types that the system supports.

   * b) enough storage to hold any type of socket address that the

   *    system supports.

   */

};

The sockaddr_storage type provides a generic socket address structure that is different
from struct sockaddr in two ways:

a. If any socket address structures that the system supports have alignment
requirements, the sockaddr_storage provides the strictest alignment requirement.

b. The sockaddr_storage is large enough to contain any socket address structure that
the system supports.

Note that the fields of the sockaddr_storage structure are opaque to the user, except for
ss_family and ss_len (if present). The sockaddr_storage must be cast or copied to the
appropriate socket address structure for the address given in ss_family to access any
other fields.

Comparison of Socket Address Structures
Figure 3.6 shows a comparison of the five socket address structures that we will encounter
in this text: IPv4, IPv6, Unix domain (Figure 15.1), datalink (Figure 18.1), and storage. In
this figure, we assume that the socket address structures all contain a one-byte length
field, that the family field also occupies one byte, and that any field that must be at least
some number of bits is exactly that number of bits.

Figure 3.6. Comparison of various socket address structures.

Page 103

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


Two of the socket address structures are fixed-length, while the Unix domain structure and
the datalink structure are variable-length. To handle variable-length structures, whenever
we pass a pointer to a socket address structure as an argument to one of the socket
functions, we pass its length as another argument. We show the size in bytes (for the
4.4BSD implementation) of the fixed-length structures beneath each structure.

The sockaddr_un structure itself is not variable-length (Figure 15.1), but the amount of
information the pathname within the structure is variable-length. When passing pointers
to these structures, we must be careful how we handle the length field, both the length
field in the socket address structure itself (if supported by the implementation) and the
length to and from the kernel.

This figure shows the style that we follow throughout the text: structure names are always
shown in a bolder font, followed by braces, as in sockaddr_in{}.

We noted earlier that the length field was added to all the socket address structures with
the 4.3BSD Reno release. Had the length field been present with the original release of
sockets, there would be no need for the length argument to all the socket functions: the
third argument to bind and connect, for example. Instead, the size of the structure could
be contained in the length field of the structure.

[ Team LiB ]

Page 104

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

3.3 Value-Result Arguments
We mentioned that when a socket address structure is passed to any socket function, it is
always passed by reference. That is, a pointer to the structure is passed. The length of the
structure is also passed as an argument. But the way in which the length is passed
depends on which direction the structure is being passed: from the process to the kernel,
or vice versa.

1. Three functions, bind, connect, and sendto, pass a socket address structure from
the process to the kernel. One argument to these three functions is the pointer to
the socket address structure and another argument is the integer size of the
structure, as in

2.
3.
4.
5. struct sockaddr_in serv;

6.
7. /* fill in serv{} */

8. connect (sockfd, (SA *) &serv, sizeof(serv));

9.

Since the kernel is passed both the pointer and the size of what the pointer points
to, it knows exactly how much data to copy from the process into the kernel. Figure
3.7 shows this scenario.

Figure 3.7. Socket address structure passed from process to
kernel.

We will see in the next chapter that the datatype for the size of a socket address
structure is actually socklen_t and not int, but the POSIX specification
recommends that socklen_t be defined as uint32_t.

10. Four functions, accept, recvfrom, getsockname, and getpeername, pass a socket
address structure from the kernel to the process, the reverse direction from the
previous scenario. Two of the arguments to these four functions are the pointer to
the socket address structure along with a pointer to an integer containing the size of
the structure, as in

11.
12.

Page 105

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


13.
14. struct sockaddr_un  cli;   /* Unix domain */
15. socklen_t  len;
16.
17. len = sizeof(cli);         /* len is a value */
18. getpeername(unixfd, (SA *) &cli, &len);
19. /* len may have changed */
20.

The reason that the size changes from an integer to be a pointer to an integer is
because the size is both a value when the function is called (it tells the kernel the
size of the structure so that the kernel does not write past the end of the structure
when filling it in) and a result when the function returns (it tells the process how
much information the kernel actually stored in the structure). This type of argument
is called a value-result argument. Figure 3.8 shows this scenario.

Figure 3.8. Socket address structure passed from kernel to
process.

We will see an example of value-result arguments in Figure 4.11.

We have been talking about socket address structures being passed between the process
and the kernel. For an implementation such as 4.4BSD, where all the socket functions are
system calls within the kernel, this is correct. But in some implementations, notably
System V, socket functions are just library functions that execute as part of a normal user
process. How these functions interface with the protocol stack in the kernel is an
implementation detail that normally does not affect us. Nevertheless, for simplicity, we will
continue to talk about these structures as being passed between the process and the
kernel by functions such as bind and connect. (We will see in Section C.1 that System V
implementations do indeed pass socket address structures between processes and the
kernel, but as part of STREAMS messages.)

Two other functions pass socket address structures: recvmsg and sendmsg (Section 14.5).
But, we will see that the length field is not a function argument but a structure member.

When using value-result arguments for the length of socket address structures, if the
socket address structure is fixed-length (Figure 3.6), the value returned by the kernel will
always be that fixed size: 16 for an IPv4 sockaddr_in and 28 for an IPv6 sockaddr_in6, for
example. But with a variable-length socket address structure (e.g., a Unix domain 
sockaddr_un), the value returned can be less than the maximum size of the structure (as
we will see with Figure 15.2).

With network programming, the most common example of a value-result argument is the

Page 106

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


length of a returned socket address structure. But, we will encounter other value-result
arguments in this text:

 The middle three arguments for the select function (Section 6.3)

 The length argument for the getsockopt function (Section 7.2)

 The msg_namelen and msg_controllen members of the msghdr structure, when used
with recvmsg (Section 14.5)

 The ifc_len member of the ifconf structure (Figure 17.2)

 The first of the two length arguments for the sysctl function (Section 18.4)

[ Team LiB ]

Page 107

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

3.4 Byte Ordering Functions
Consider a 16-bit integer that is made up of 2 bytes. There are two ways to store the two
bytes in memory: with the low-order byte at the starting address, known as little-endian
byte order, or with the high-order byte at the starting address, known as big-endian byte
order. We show these two formats in Figure 3.9.

Figure 3.9. Little-endian byte order and big-endian byte order for a
16-bit integer.

In this figure, we show increasing memory addresses going from right to left in the top,
and from left to right in the bottom. We also show the most significant bit (MSB) as the
leftmost bit of the 16-bit value and the least significant bit (LSB) as the rightmost bit.

The terms "little-endian" and "big-endian" indicate which end of the multibyte value, the
little end or the big end, is stored at the starting address of the value.

Unfortunately, there is no standard between these two byte orderings and we encounter
systems that use both formats. We refer to the byte ordering used by a given system as
the host byte order. The program shown in Figure 3.10 prints the host byte order.

Figure 3.10 Program to determine host byte order.

intro/byteorder.c

 1 #include     "unp.h"

 2 int

 3 main(int argc, char **argv)

 4 {

 5     union {

 6         short   s;

 7         char    c[sizeof(short)];

 8     } un;

 9     un.s = 0x0102;

10     printf("%s: ", CPU_VENDOR_OS);

11     if (sizeof(short) == 2) {

12         if (un.c[0] == 1 && un.c[1] == 2)

13             printf("big-endian\n");

14         else if (un.c[0] == 2 && un.c[1] == 1)

Page 108

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


15             printf("little-endian\n");

16         else

17             printf("unknown\n");

18     } else

19         printf("sizeof(short) = %d\n", sizeof(short));

20     exit(0);

21 }

We store the two-byte value 0x0102 in the short integer and then look at the two
consecutive bytes, c[0] (the address A in Figure 3.9) and c[1] (the address A+1 in Figure
3.9), to determine the byte order.

The string CPU_VENDOR_OS is determined by the GNU autoconf program when the software
in this book is configured, and it identifies the CPU type, vendor, and OS release. We show
some examples here in the output from this program when run on the various systems in 
Figure 1.16.

freebsd4 % byteorder

i386-unknown-freebsd4.8: little-endian

macosx % byteorder

powerpc-apple-darwin6.6: big-endian

freebsd5 % byteorder

sparc64-unknown-freebsd5.1: big-endian

aix % byteorder

powerpc-ibm-aix5.1.0.0: big-endian

hpux % byteorder

hppa1.1-hp-hpux11.11: big-endian

linux % byteorder

i586-pc-linux-gnu: little-endian

solaris % byteorder

sparc-sun-solaris2.9: big-endian

We have talked about the byte ordering of a 16-bit integer; obviously, the same discussion
applies to a 32-bit integer.

There are currently a variety of systems that can change between little-endian and
big-endian byte ordering, sometimes at system reset, sometimes at run-time.

We must deal with these byte ordering differences as network programmers because
networking protocols must specify a network byte order. For example, in a TCP segment,
there is a 16-bit port number and a 32-bit IPv4 address. The sending protocol stack and
the receiving protocol stack must agree on the order in which the bytes of these multibyte
fields will be transmitted. The Internet protocols use big-endian byte ordering for these
multibyte integers.

In theory, an implementation could store the fields in a socket address structure in host
byte order and then convert to and from the network byte order when moving the fields to
and from the protocol headers, saving us from having to worry about this detail. But, both
history and the POSIX specification say that certain fields in the socket address structures
must be maintained in network byte order. Our concern is therefore converting between
host byte order and network byte order. We use the following four functions to convert

Page 109

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


between these two byte orders.

#include <netinet/in.h>

uint16_t htons(uint16_t host16bitvalue) ;

uint32_t htonl(uint32_t host32bitvalue) ;

Both return: value in network byte order

uint16_t ntohs(uint16_t net16bitvalue) ;

uint32_t ntohl(uint32_t net32bitvalue) ;

Both return: value in host byte order

In the names of these functions, h stands for host, n stands for network, s stands for short,
and l stands for long. The terms "short" and "long" are historical artifacts from the Digital
VAX implementation of 4.2BSD. We should instead think of s as a 16-bit value (such as a
TCP or UDP port number) and l as a 32-bit value (such as an IPv4 address). Indeed, on
the 64-bit Digital Alpha, a long integer occupies 64 bits, yet the htonl and ntohl functions
operate on 32-bit values.

When using these functions, we do not care about the actual values (big-endian or
little-endian) for the host byte order and the network byte order. What we must do is call
the appropriate function to convert a given value between the host and network byte order.
On those systems that have the same byte ordering as the Internet protocols (big-endian),
these four functions are usually defined as null macros.

We will talk more about the byte ordering problem, with respect to the data contained in a
network packet as opposed to the fields in the protocol headers, in Section 5.18 and
Exercise 5.8.

We have not yet defined the term "byte." We use the term to mean an 8-bit quantity since
almost all current computer systems use 8-bit bytes. Most Internet standards use the
term octet instead of byte to mean an 8-bit quantity. This started in the early days of
TCP/IP because much of the early work was done on systems such as the DEC-10, which
did not use 8-bit bytes.

Another important convention in Internet standards is bit ordering. In many Internet
standards, you will see "pictures" of packets that look similar to the following (this is the
first 32 bits of the IPv4 header from RFC 791):

This represents four bytes in the order in which they appear on the wire; the leftmost bit is
the most significant. However, the numbering starts with zero assigned to the most
significant bit. This is a notation that you should become familiar with to make it easier to
read protocol definitions in RFCs.

A common network programming error in the 1980s was to develop code on Sun
workstations (big-endian Motorola 68000s) and forget to call any of these four functions.
The code worked fine on these workstations, but would not work when ported to
little-endian machines (such as VAXes).

Page 110

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Page 111

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

3.5 Byte Manipulation Functions
There are two groups of functions that operate on multibyte fields, without interpreting the
data, and without assuming that the data is a null-terminated C string. We need these
types of functions when dealing with socket address structures because we need to
manipulate fields such as IP addresses, which can contain bytes of 0, but are not C
character strings. The functions beginning with str (for string), defined by including the
<string.h> header, deal with null-terminated C character strings.

The first group of functions, whose names begin with b (for byte), are from 4.2BSD and are
still provided by almost any system that supports the socket functions. The second group
of functions, whose names begin with mem (for memory), are from the ANSI C standard and
are provided with any system that supports an ANSI C library.

We first show the Berkeley-derived functions, although the only one we use in this text is 
bzero. (We use it because it has only two arguments and is easier to remember than the
three-argument memset function, as explained on p. 8.) You may encounter the other two
functions, bcopy and bcmp, in existing applications.

#include <strings.h>

void bzero(void *dest, size_t nbytes);

void bcopy(const void *src, void *dest, size_t nbytes);

int bcmp(const void *ptr1, const void *ptr2, size_t nbytes);

Returns: 0 if equal, nonzero if unequal

This is our first encounter with the ANSI C const qualifier. In the three uses here, it
indicates that what is pointed to by the pointer with this qualification, src, ptr1, and ptr2,
is not modified by the function. Worded another way, the memory pointed to by the const
pointer is read but not modified by the function.

bzero sets the specified number of bytes to 0 in the destination. We often use this function
to initialize a socket address structure to 0. bcopy moves the specified number of bytes
from the source to the destination. bcmp compares two arbitrary byte strings. The return
value is zero if the two byte strings are identical; otherwise, it is nonzero.

The following functions are the ANSI C functions:

#include <string.h>

void *memset(void *dest, int c, size_t len);

void *memcpy(void *dest, const void *src, size_t nbytes);

int memcmp(const void *ptr1, const void *ptr2, size_t nbytes);

Returns: 0 if equal, <0 or >0 if unequal (see text)

memset sets the specified number of bytes to the value c in the destination. memcpy is

Page 112

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


similar to bcopy, but the order of the two pointer arguments is swapped. bcopy correctly
handles overlapping fields, while the behavior of memcpy is undefined if the source and
destination overlap. The ANSI C memmove function must be used when the fields overlap.

One way to remember the order of the two pointers for memcpy is to remember that they
are written in the same left-to-right order as an assignment statement in C:

dest = src;

One way to remember the order of the final two arguments to memset is to realize that all
of the ANSI C memXXX functions require a length argument, and it is always the final
argument.

memcmp compares two arbitrary byte strings and returns 0 if they are identical. If not
identical, the return value is either greater than 0 or less than 0, depending on whether the
first unequal byte pointed to by ptr1 is greater than or less than the corresponding byte
pointed to by ptr2. The comparison is done assuming the two unequal bytes are unsigned
chars.

[ Team LiB ]

Page 113

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

3.6 inet_aton, inet_addr, and inet_ntoa Functions
We will describe two groups of address conversion functions in this section and the next.
They convert Internet addresses between ASCII strings (what humans prefer to use) and
network byte ordered binary values (values that are stored in socket address structures).

1. inet_aton, inet_ntoa, and inet_addr convert an IPv4 address from a
dotted-decimal string (e.g., "206.168.112.96") to its 32-bit network byte ordered
binary value. You will probably encounter these functions in lots of existing code.

2. The newer functions, inet_pton and inet_ntop, handle both IPv4 and IPv6
addresses. We describe these two functions in the next section and use them
throughout the text.

#include <arpa/inet.h>

int inet_aton(const char *strptr, struct in_addr *addrptr);

Returns: 1 if string was valid, 0 on error

in_addr_t inet_addr(const char *strptr);

Returns: 32-bit binary network byte ordered IPv4 address; INADDR_NONE if error

char *inet_ntoa(struct in_addr inaddr);

Returns: pointer to dotted-decimal string

The first of these, inet_aton, converts the C character string pointed to by strptr into its
32-bit binary network byte ordered value, which is stored through the pointer addrptr. If
successful, 1 is returned; otherwise, 0 is returned.

An undocumented feature of inet_aton is that if addrptr is a null pointer, the function still
performs its validation of the input string but does not store any result.

inet_addr does the same conversion, returning the 32-bit binary network byte ordered
value as the return value. The problem with this function is that all 232 possible binary
values are valid IP addresses (0.0.0.0 through 255.255.255.255), but the function returns
the constant INADDR_NONE (typically 32 one-bits) on an error. This means the
dotted-decimal string 255.255.255.255 (the IPv4 limited broadcast address, Section 20.2)
cannot be handled by this function since its binary value appears to indicate failure of the
function.

A potential problem with inet_addr is that some man pages state that it returns  1 on an
error, instead of INADDR_NONE. This can lead to problems, depending on the C compiler,
when comparing the return value of the function (an unsigned value) to a negative
constant.

Today, inet_addr is deprecated and any new code should use inet_aton instead. Better
still is to use the newer functions described in the next section, which handle both IPv4
and IPv6.

The inet_ntoa function converts a 32-bit binary network byte ordered IPv4 address into its
corresponding dotted-decimal string. The string pointed to by the return value of the

Page 114

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


function resides in static memory. This means the function is not reentrant, which we will
discuss in Section 11.18. Finally, notice that this function takes a structure as its
argument, not a pointer to a structure.

Functions that take actual structures as arguments are rare. It is more common to pass a
pointer to the structure.

[ Team LiB ]

Page 115

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

3.7 inet_pton and inet_ntop Functions
These two functions are new with IPv6 and work with both IPv4 and IPv6 addresses. We
use these two functions throughout the text. The letters "p" and "n" stand for presentation
and numeric. The presentation format for an address is often an ASCII string and the
numeric format is the binary value that goes into a socket address structure.

#include <arpa/inet.h>

int inet_pton(int family, const char *strptr, void *addrptr);

Returns: 1 if OK, 0 if input not a valid presentation format, -1 on error

const char *inet_ntop(int family, const void *addrptr, char *strptr, size_t len);

Returns: pointer to result if OK, NULL on error

The family argument for both functions is either AF_INET or AF_INET6. If family is not
supported, both functions return an error with errno set to EAFNOSUPPORT.

The first function tries to convert the string pointed to by strptr, storing the binary result
through the pointer addrptr. If successful, the return value is 1. If the input string is not a
valid presentation format for the specified family, 0 is returned.

inet_ntop does the reverse conversion, from numeric (addrptr) to presentation (strptr).
The len argument is the size of the destination, to prevent the function from overflowing
the caller's buffer. To help specify this size, the following two definitions are defined by
including the <netinet/in.h> header:

#define INET_ADDRSTRLEN       16       /* for IPv4 dotted-decimal */

#define INET6_ADDRSTRLEN      46       /* for IPv6 hex string */

If len is too small to hold the resulting presentation format, including the terminating null,
a null pointer is returned and errno is set to ENOSPC.

The strptr argument to inet_ntop cannot be a null pointer. The caller must allocate
memory for the destination and specify its size. On success, this pointer is the return value
of the function.

Figure 3.11 summarizes the five functions that we have described in this section and the
previous section.

Figure 3.11. Summary of address conversion functions.

Page 116

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


Example
Even if your system does not yet include support for IPv6, you can start using these newer
functions by replacing calls of the form

foo.sin_addr.s_addr = inet_addr(cp);

with

inet_pton(AF_INET, cp, &foo.sin_addr);

and replacing calls of the form

ptr = inet_ntoa(foo.sin_addr);

with

char str[INET_ADDRSTRLEN];

ptr = inet_ntop(AF_INET, &foo.sin_addr, str, sizeof(str));

Figure 3.12 shows a simple definition of inet_pton that supports only IPv4. Similarly,
Figure 3.13 shows a simple version of inet_ntop that supports only IPv4.

Figure 3.12 Simple version of inet_pton that supports only IPv4.

libfree/inet_pton_ipv4.c

10 int

11 inet_pton(int family, const char *strptr, void *addrptr)

12 {

13     if (family == AF_INET) {

14         struct in_addr in_val;

Page 117

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


15         if (inet_aton(strptr, &in_val)) {

16             memcpy(addrptr, &in_val, sizeof(struct in_addr));

17             return (1);

18         }

19         return (0);

20     }

21     errno = EAFNOSUPPORT;

22     return (-1);

23 }

Figure 3.13 Simple version of inet_ntop that supports only IPv4.

libfree/inet_ntop_ipv4.c

 8 const char *

 9 inet_ntop(int family, const void *addrptr, char *strptr, size_t len)

10 {

11     const u_char *p = (const u_char *) addrptr;

12     if (family == AF_INET) {

13         char    temp[INET_ADDRSTRLEN];

14         snprintf(temp, sizeof(temp), "%d.%d.%d.%d", p[0], p[1], p[2], p[3]);

15         if (strlen(temp) >= len) {

16             errno = ENOSPC;

17             return (NULL);

18         }

19         strcpy(strptr, temp);

20         return (strptr);

21     }

22     errno = EAFNOSUPPORT;

23     return (NULL);

24 }

[ Team LiB ]

Page 118

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

3.8 sock_ntop and Related Functions
A basic problem with inet_ntop is that it requires the caller to pass a pointer to a binary
address. This address is normally contained in a socket address structure, requiring the
caller to know the format of the structure and the address family. That is, to use it, we
must write code of the form

struct sockaddr_in   addr;

inet_ntop(AF_INET, &addr.sin_addr, str, sizeof(str));

for IPv4, or

struct sockaddr_in6   addr6;

inet_ntop(AF_INET6, &addr6.sin6_addr, str, sizeof(str));

for IPv6. This makes our code protocol-dependent.

To solve this, we will write our own function named sock_ntop that takes a pointer to a
socket address structure, looks inside the structure, and calls the appropriate function to
return the presentation format of the address.

#include "unp.h"

char *sock_ntop(const struct sockaddr *sockaddr, socklen_t addrlen);

Returns: non-null pointer if OK, NULL on error

This is the notation we use for functions of our own (nonstandard system functions) that
we use throughout the book: the box around the function prototype and return value is
dashed. The header is included at the beginning is usually our unp.h header.

sockaddr points to a socket address structure whose length is addrlen. The function uses
its own static buffer to hold the result and a pointer to this buffer is the return value.

Notice that using static storage for the result prevents the function from being re-entrant
or thread-safe. We will talk more about this in Section 11.18. We made this design
decision for this function to allow us to easily call it from the simple examples in the book.

The presentation format is the dotted-decimal form of an IPv4 address or the hex string
form of an IPv6 address surrounded by brackets, followed by a terminator (we use a colon,
similar to URL syntax), followed by the decimal port number, followed by a null character.
Hence, the buffer size must be at least INET_ADDRSTRLEN plus 6 bytes for IPv4 (16 + 6 =
22), or INET6_ADDRSTRLEN plus 8 bytes for IPv6 (46 + 8 = 54).

We show the source code for only the AF_INET case in Figure 3.14.

Figure 3.14 Our sock_ntop function.

lib/sock_ntop.c

Page 119

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


 5 char *

 6 sock_ntop(const struct sockaddr *sa, socklen_t salen)

 7 {

 8     char    portstr[8];

 9     static char str[128];       /* Unix domain is largest */

10     switch (sa->sa_family) {

11     case AF_INET:{

12             struct sockaddr_in *sin = (struct sockaddr_in *) sa;

13             if (inet_ntop(AF_INET, &sin->sin_addr, str, sizeof(str)) ==

NULL)

14                 return (NULL);

15             if (ntohs(sin->sin_port) != 0) {

16                 snprintf(portstr, sizeof(portstr), ":%d",

17                          ntohs(sin->sin_port));

18                 strcat(str, portstr);

19             }

20             return (str);

21        }

There are a few other functions that we define to operate on socket address structures, and
these will simplify the portability of our code between IPv4 and IPv6.

#include "unp.h"

int sock_bind_wild(int sockfd, int family);

Returns: 0 if OK, -1 on error

int sock_cmp_addr(const struct sockaddr *sockaddr1,

const struct sockaddr *sockaddr2, socklen_t addrlen);

Returns: 0 if addresses are of the same family and ports are equal, else nonzero

int sock_cmp_port(const struct sockaddr *sockaddr1,

const struct sockaddr *sockaddr2, socklen_t addrlen);

Returns: 0 if addresses are of the same family and ports are equal, else nonzero

int sock_get_port(const struct sockaddr *sockaddr, socklen_t addrlen);

Returns: non-negative port number for IPv4 or IPv6 address, else -1

char *sock_ntop_host(const struct sockaddr *sockaddr, socklen_t addrlen);

Returns: non-null pointer if OK, NULL on error

void sock_set_addr(const struct sockaddr *sockaddr, socklen_t addrlen, void *ptr
);

void sock_set_port(const struct sockaddr *sockaddr, socklen_t addrlen, int port);

Page 120

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


#include "unp.h"

void sock_set_wild(struct sockaddr *sockaddr, socklen_t addrlen);

sock_bind_wild binds the wildcard address and an ephemeral port to a socket.
sock_cmp_addr compares the address portion of two socket address structures, and
sock_cmp_port compares the port number of two socket address structures.
sock_get_port returns just the port number, and sock_ntop_host converts just the host
portion of a socket address structure to presentation format (not the port number). 
sock_set_addr sets just the address portion of a socket address structure to the value
pointed to by ptr, and sock_set_port sets just the port number of a socket address
structure. sock_set_wild sets the address portion of a socket address structure to the
wildcard. As with all the functions in the text, we provide a wrapper function whose name
begins with "S" for all of these functions that return values other than void and normally
call the wrapper function from our programs. We do not show the source code for all these
functions, but it is freely available (see the Preface).

[ Team LiB ]

Page 121

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

3.9 readn, writen, and readline Functions
Stream sockets (e.g., TCP sockets) exhibit a behavior with the read and write functions
that differs from normal file I/O. A read or write on a stream socket might input or output
fewer bytes than requested, but this is not an error condition. The reason is that buffer
limits might be reached for the socket in the kernel. All that is required to input or output
the remaining bytes is for the caller to invoke the read or write function again. Some
versions of Unix also exhibit this behavior when writing more than 4,096 bytes to a pipe.
This scenario is always a possibility on a stream socket with read, but is normally seen
with write only if the socket is nonblocking. Nevertheless, we always call our writen
function instead of write, in case the implementation returns a short count.

We provide the following three functions that we use whenever we read from or write to a
stream socket:

#include "unp.h"

ssize_t readn(int filedes, void *buff, size_t nbytes);

ssize_t writen(int filedes, const void *buff, size_t nbytes);

ssize_t readline(int filedes, void *buff, size_t maxlen);

All return: number of bytes read or written,  1 on error

Figure 3.15 shows the readn function, Figure 3.16 shows the writen function, and Figure
3.17 shows the readline function.

Figure 3.15 readn function: Read n bytes from a descriptor.

lib/readn.c

 1 #include     "unp.h"

 2 ssize_t                         /* Read "n" bytes from a descriptor. */

 3 readn(int fd, void *vptr, size_t n)

 4 {

 5     size_t  nleft;

 6     ssize_t nread;

 7     char   *ptr;

 8     ptr = vptr;

 9     nleft = n;

10     while (nleft > 0) {

11         if ( (nread = read(fd, ptr, nleft)) < 0) {

12             if (errno == EINTR)

13                 nread = 0;      /* and call read() again */

14             else

15                 return (-1);

16         } else if (nread == 0)

17             break;              /* EOF */

18         nleft -= nread;

19         ptr += nread;

Page 122

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


20     }

21     return (n - nleft);         /* return >= 0 */

22 }

Figure 3.16 writen function: Write n bytes to a descriptor.

lib/writen.c

 1 #include    "unp.h"

 2 ssize_t                         /* Write "n" bytes to a descriptor. */

 3 writen(int fd, const void *vptr, size_t n)

 4 {

 5     size_t nleft;

 6     ssize_t nwritten;

 7     const char *ptr;

 8     ptr = vptr;

 9     nleft = n;

10     while (nleft > 0) {

11         if ( (nwritten = write(fd, ptr, nleft)) <= 0) {

12             if (nwritten < 0 && errno == EINTR)

13                 nwritten = 0;   /* and call write() again */

14             else

15                 return (-1);    /* error */

16          }

17          nleft -= nwritten;

18          ptr += nwritten;

19     }

20     return (n);

21 }

Figure 3.17 readline function: Read a text line from a descriptor, one
byte at a time.

test/readline1.c

 1 #include     "unp.h"

 2 /* PAINFULLY SLOW VERSION -- example only */

 3 ssize_t

 4 readline(int fd, void *vptr, size_t maxlen)

 5 {

 6     ssize_t n, rc;

 7     char    c, *ptr;

 8     ptr = vptr;

 9     for (n = 1; n < maxlen; n++) {

10       again:

11         if ( (rc = read(fd, &c, 1)) == 1) {

12             *ptr++ = c;

13             if (c == '\n')

14                 break;          /* newline is stored, like fgets() */

15         } else if (rc == 0) {

16             *ptr = 0;

17             return (n - 1);     /* EOF, n - 1 bytes were read */

18         } else {

19             if (errno == EINTR)

20                 goto again;

Page 123

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


21             return (-1);        /* error, errno set by read() */

22         }

23     }

24     *ptr = 0;                   /* null terminate like fgets() */

25     return (n);

26 }

Our three functions look for the error EINTR (the system call was interrupted by a caught
signal, which we will discuss in more detail in Section 5.9) and continue reading or writing
if the error occurs. We handle the error here, instead of forcing the caller to call readn or
writen again, since the purpose of these three functions is to prevent the caller from
having to handle a short count.

In Section 14.3, we will mention that the MSG_WAITALL flag can be used with the recv
function to replace the need for a separate readn function.

Note that our readline function calls the system's read function once for every byte of
data. This is very inefficient, and why we've commented the code to state it is "PAINFULLY
SLOW." When faced with the desire to read lines from a socket, it is quite tempting to turn
to the standard I/O library (referred to as "stdio"). We will discuss this approach at length
in Section 14.8, but it can be a dangerous path. The same stdio buffering that solves this
performance problem creates numerous logistical problems that can lead to well-hidden
bugs in your application. The reason is that the state of the stdio buffers is not exposed. To
explain this further, consider a line-based protocol between a client and a server, where
several clients and servers using that protocol may be implemented over time (really quite
common; for example, there are many Web browsers and Web servers independently
written to the HTTP specification). Good "defensive programming" techniques require these
programs to not only expect their counterparts to follow the network protocol, but to check
for unexpected network traffic as well. Such protocol violations should be reported as errors
so that bugs are noticed and fixed (and malicious attempts are detected as well), and also
so that network applications can recover from problem traffic and continue working if
possible. Using stdio to buffer data for performance flies in the face of these goals since the
application has no way to tell if unexpected data is being held in the stdio buffers at any
given time.

There are many line-based network protocols such as SMTP, HTTP, the FTP control
connection protocol, and finger. So, the desire to operate on lines comes up again and
again. But our advice is to think in terms of buffers and not lines. Write your code to read
buffers of data, and if a line is expected, check the buffer to see if it contains that line.

Figure 3.18 shows a faster version of the readline function, which uses its own buffering
rather than stdio buffering. Most importantly, the state of readline's internal buffer is
exposed, so callers have visibility into exactly what has been received. Even with this
feature, readline can be problematic, as we'll see in Section 6.3. System functions like
select still won't know about readline's internal buffer, so a carelessly written program
could easily find itself waiting in select for data already received and stored in readline's
buffers. For that matter, mixing readn and readline calls will not work as expected unless
readn is modified to check the internal buffer as well.

Figure 3.18 Better version of readline function.

lib/readline.c

 1 #include    "unp.h"

 2 static int read_cnt;

 3 static char *read_ptr;

 4 static char read_buf[MAXLINE];

Page 124

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


 5 static ssize_t

 6 my_read(int fd, char *ptr)

 7 {

 8     if (read_cnt <= 0) {

 9       again:

10         if ( (read_cnt = read(fd, read_buf, sizeof(read_buf))) < 0) {

11             if (errno == EINTR)

12                 goto again;

13             return (-1);

14         } else if (read_cnt == 0)

15             return (0);

16         read_ptr = read_buf;

17     }

18     read_cnt--;

19     *ptr = *read_ptr++;

20     return (1);

21 }

22 ssize_t

23 readline(int fd, void *vptr, size_t maxlen)

24 {

25     ssize_t n, rc;

26     char    c, *ptr;

27     ptr = vptr;

28     for (n = 1; n < maxlen; n++) {

29         if ( (rc = my_read(fd, &c)) == 1) {

30             *ptr++ = c;

31             if (c  == '\n')

32                 break;          /* newline is stored, like fgets() */

33         } else if (rc == 0) {

34             *ptr = 0;

35             return (n - 1);     /* EOF, n - 1 bytes were read */

36         } else

37             return (-1);        /* error, errno set by read() */

38     }

39     *ptr  = 0;                  /* null terminate like fgets() */

40     return (n);

41 }

42 ssize_t

43 readlinebuf(void **vptrptr)

44 {

45     if (read_cnt)

46         *vptrptr = read_ptr;

47     return (read_cnt);

48 }

2 21 The internal function my_read reads up to MAXLINE characters at a time and then
returns them, one at a time.

29 The only change to the readline function itself is to call my_read instead of read.

42 48 A new function, readlinebuf, exposes the internal buffer state so that callers can
check and see if more data was received beyond a single line.

Unfortunately, by using static variables in readline.c to maintain the state information
across successive calls, the functions are not re-entrant or thread-safe. We will discuss this
in Sections 11.18 and 26.5. We will develop a thread-safe version using thread-specific

Page 125

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


data in Figure 26.11.

[ Team LiB ]

Page 126

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

3.10 Summary
Socket address structures are an integral part of every network program. We allocate them,
fill them in, and pass pointers to them to various socket functions. Sometimes we pass a
pointer to one of these structures to a socket function and it fills in the contents. We
always pass these structures by reference (that is, we pass a pointer to the structure, not
the structure itself), and we always pass the size of the structure as another argument.
When a socket function fills in a structure, the length is also passed by reference, so that
its value can be updated by the function. We call these value-result arguments.

Socket address structures are self-defining because they always begin with a field (the
"family") that identifies the address family contained in the structure. Newer
implementations that support variable-length socket address structures also contain a
length field at the beginning, which contains the length of the entire structure.

The two functions that convert IP addresses between presentation format (what we write,
such as ASCII characters) and numeric format (what goes into a socket address structure)
are inet_pton and inet_ntop. Although we will use these two functions in the coming
chapters, they are protocol-dependent. A better technique is to manipulate socket address
structures as opaque objects, knowing just the pointer to the structure and its size. We
used this method to develop a set of sock_ functions that helped to make our programs
protocol-independent. We will complete the development of our protocol-independent tools
in Chapter 11 with the getaddrinfo and getnameinfo functions.

TCP sockets provide a byte stream to an application: There are no record markers. The
return value from a read can be less than what we asked for, but this does not indicate an
error. To help read and write a byte stream, we developed three functions, readn, writen,
and readline, which we will use throughout the text. However, network programs should
be written to act on buffers rather than lines.

[ Team LiB ]

Page 127

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Exercises
3.1 Why must value-result arguments such as the length of a socket address

structure be passed by reference?

3.2 Why do both the readn and writen functions copy the void* pointer into
a char* pointer?

3.3 The inet_aton and inet_addr functions have traditionally been liberal in
what they accept as a dotted-decimal IPv4 address string: allowing from
one to four numbers separated by decimal points, and allowing a leading 
0x to specify a hexadecimal number, or a leading 0 to specify an octal
number. (Try telnet 0xe to see this behavior.) inet_pton is much
stricter with IPv4 address and requires exactly four numbers separated
by three decimal points, with each number being a decimal number
between 0 and 255. inet_pton does not allow a dotted-decimal number
to be specified when the address family is AF_INET6, although one could
argue that these should be allowed and the return value should be the
IPv4-mapped IPv6 address for the dotted-decimal string (Figure A.10).

Write a new function named inet_pton_loose that handles these
scenarios: If the address family is AF_INET and inet_pton returns 0, call
inet_aton and see if it succeeds. Similarly, if the address family is
AF_INET6 and inet_pton returns 0, call inet_aton and if it succeeds,
return the IPv4-mapped IPv6 address.

[ Team LiB ]

Page 128

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Chapter 4. Elementary TCP Sockets
Section 4.1.?Introduction

Section 4.2.?socket Function

Section 4.3.?connect Function

Section 4.4.?bind Function

Section 4.5.?listen Function

Section 4.6.?accept Function

Section 4.7.?fork and exec Functions

Section 4.8.?Concurrent Servers

Section 4.9.?close Function

Section 4.10.?getsockname and getpeername Functions

Section 4.11.?Summary

Exercises

[ Team LiB ]

Page 129

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

4.1 Introduction
This chapter describes the elementary socket functions required to write a complete TCP
client and server. We will first describe all the elementary socket functions that we will be
using and then develop the client and server in the next chapter. We will work with this
client and server throughout the text, enhancing it many times (Figures 1.12 and 1.13).

We will also describe concurrent servers, a common Unix technique for providing
concurrency when numerous clients are connected to the same server at the same time.
Each client connection causes the server to fork a new process just for that client. In this
chapter, we consider only the one-process-per-client model using fork, but we will
consider a different one-thread-per-client model when we describe threads in Chapter 26.

Figure 4.1 shows a timeline of the typical scenario that takes place between a TCP client
and server. First, the server is started, then sometime later, a client is started that
connects to the server. We assume that the client sends a request to the server, the server
processes the request, and the server sends a reply back to the client. This continues until
the client closes its end of the connection, which sends an end-of-file notification to the
server. The server then closes its end of the connection and either terminates or waits for a
new client connection.

Figure 4.1. Socket functions for elementary TCP client/server.

[ Team LiB ]

Page 130

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

4.2 socket Function
To perform network I/O, the first thing a process must do is call the socket function,
specifying the type of communication protocol desired (TCP using IPv4, UDP using IPv6,
Unix domain stream protocol, etc.).

#include <sys/socket.h>

int socket (int family, int type, int protocol);

Returns: non-negative descriptor if OK, -1 on error

family specifies the protocol family and is one of the constants shown in Figure 4.2. This
argument is often referred to as domain instead of family. The socket type is one of the
constants shown in Figure 4.3. The protocol argument to the socket function should be set
to the specific protocol type found in Figure 4.4, or 0 to select the system's default for the
given combination of family and type.

Figure 4.2. Protocol family constants for socket function.

Figure 4.3. type of socket for socket function.

Figure 4.4. protocol of sockets for AF_INET or AF_INET6.

Not all combinations of socket family and type are valid. Figure 4.5 shows the valid
combinations, along with the actual protocols that are valid for each pair. The boxes
marked "Yes" are valid but do not have handy acronyms. The blank boxes are not
supported.

Figure 4.5. Combinations of family and type for the socket function.

You may also encounter the corresponding PF_xxx constant as the first argument to socket
. We will say more about this at the end of this section.

Page 131

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


We note that you may encounter AF_UNIX (the historical Unix name) instead of AF_LOCAL
(the POSIX name), and we will say more about this in Chapter 15.

There are other values for the family and type arguments. For example, 4.4BSD supports
both AF_NS (the Xerox NS protocols, often called XNS) and AF_ISO (the OSI protocols).
Similarly, the type of SOCK_SEQPACKET, a sequenced-packet socket, is implemented by both
the Xerox NS protocols and the OSI protocols, and we will describe its use with SCTP in 
Section 9.2. But, TCP is a byte stream protocol, and supports only SOCK_STREAM sockets.

Linux supports a new socket type, SOCK_PACKET, that provides access to the datalink,
similar to BPF and DLPI in Figure 2.1. We will say more about this in Chapter 29.

The key socket, AF_KEY, is newer than the others. It provides support for cryptographic
security. Similar to the way that a routing socket (AF_ROUTE) is an interface to the kernel's
routing table, the key socket is an interface into the kernel's key table. See Chapter 19 for
details.

On success, the socket function returns a small non-negative integer value, similar to a file
descriptor. We call this a socket descriptor, or a sockfd. To obtain this socket descriptor, all
we have specified is a protocol family (IPv4, IPv6, or Unix) and the socket type (stream,
datagram, or raw). We have not yet specified either the local protocol address or the
foreign protocol address.

AF_xxx Versus PF_xxx
The "AF_" prefix stands for "address family" and the "PF_" prefix stands for "protocol
family." Historically, the intent was that a single protocol family might support multiple
address families and that the PF_ value was used to create the socket and the AF_ value
was used in socket address structures. But in actuality, a protocol family supporting
multiple address families has never been supported and the <sys/socket.h> header
defines the PF_ value for a given protocol to be equal to the AF_ value for that protocol.
While there is no guarantee that this equality between the two will always be true, should
anyone change this for existing protocols, lots of existing code would break. To conform to
existing coding practice, we use only the AF_ constants in this text, although you may
encounter the PF_ value, mainly in calls to socket.

Looking at 137 programs that call socket in the BSD/OS 2.1 release shows 143 calls that
specify the AF_ value and only 8 that specify the PF_ value.

Historically, the reason for the similar sets of constants with the AF_ and PF_ prefixes goes
back to 4.1cBSD [Lanciani 1996] and a version of the socket function that predates the
one we are describing (which appeared with 4.2BSD). The 4.1cBSD version of socket took
four arguments, one of which was a pointer to a sockproto structure. The first member of
this structure was named sp_family and its value was one of the PF_ values. The second
member, sp_protocol, was a protocol number, similar to the third argument to socket
today. Specifying this structure was the only way to specify the protocol family. Therefore,
in this early system, the PF_ values were used as structure tags to specify the protocol
family in the sockproto structure, and the AF_ values were used as structure tags to
specify the address family in the socket address structures. The sockproto structure is still
in 4.4BSD (pp. 626 627 of TCPv2), but is only used internally by the kernel. The original
definition had the comment "protocol family" for the sp_family member, but this has been
changed to "address family" in the 4.4BSD source code.

To confuse this difference between the AF_ and PF_ constants even more, the Berkeley
kernel data structure that contains the value that is compared to the first argument to 
socket (the dom_family member of the domain structure, p. 187 of TCPv2) has the
comment that it contains an AF_ value. But, some of the domain structures within the
kernel are initialized to the corresponding AF_ value (p. 192 of TCPv2) while others are

Page 132

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


initialized to the PF_ value (p. 646 of TCPv2 and p. 229 of TCPv3).

As another historical note, the 4.2BSD man page for socket, dated July 1983, calls its first
argument af and lists the possible values as the AF_ constants.

Finally, we note that the POSIX standard specifies that the first argument to socket be a
PF_ value, and the AF_ value be used for a socket address structure. But, it then defines
only one family value in the addrinfo structure (Section 11.6), intended for use in either a
call to socket or in a socket address structure!

[ Team LiB ]

Page 133

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

4.3 connect Function
The connect function is used by a TCP client to establish a connection with a TCP server.

#include <sys/socket.h>

int connect(int sockfd, const struct sockaddr *servaddr, socklen_t addrlen);

Returns: 0 if OK, -1 on error

sockfd is a socket descriptor returned by the socket function. The second and third
arguments are a pointer to a socket address structure and its size, as described in Section
3.3. The socket address structure must contain the IP address and port number of the
server. We saw an example of this function in Figure 1.5.

The client does not have to call bind (which we will describe in the next section) before
calling connect: the kernel will choose both an ephemeral port and the source IP address if
necessary.

In the case of a TCP socket, the connect function initiates TCP's three-way handshake (
Section 2.6). The function returns only when the connection is established or an error
occurs. There are several different error returns possible.

1. If the client TCP receives no response to its SYN segment, ETIMEDOUT is returned.
4.4BSD, for example, sends one SYN when connect is called, another 6 seconds
later, and another 24 seconds later (p. 828 of TCPv2). If no response is received
after a total of 75 seconds, the error is returned.

Some systems provide administrative control over this timeout; see Appendix E of
TCPv1.

2. If the server's response to the client's SYN is a reset (RST), this indicates that no
process is waiting for connections on the server host at the port specified (i.e., the
server process is probably not running). This is a hard error and the error
ECONNREFUSED is returned to the client as soon as the RST is received.

An RST is a type of TCP segment that is sent by TCP when something is wrong.
Three conditions that generate an RST are: when a SYN arrives for a port that has
no listening server (what we just described), when TCP wants to abort an existing
connection, and when TCP receives a segment for a connection that does not exist.
(TCPv1 [pp. 246 250] contains additional information.)

3. If the client's SYN elicits an ICMP "destination unreachable" from some intermediate
router, this is considered a soft error. The client kernel saves the message but keeps
sending SYNs with the same time between each SYN as in the first scenario. If no
response is received after some fixed amount of time (75 seconds for 4.4BSD), the
saved ICMP error is returned to the process as either EHOSTUNREACH or ENETUNREACH.
It is also possible that the remote system is not reachable by any route in the local
system's forwarding table, or that the connect call returns without waiting at all.

Many earlier systems, such as 4.2BSD, incorrectly aborted the connection
establishment attempt when the ICMP "destination unreachable" was received. This
is wrong because this ICMP error can indicate a transient condition. For example, it
could be that the condition is caused by a routing problem that will be corrected.

Notice that ENETUNREACH is not listed in Figure A.15, even when the error indicates

Page 134

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


that the destination network is unreachable. Network unreachables are considered
obsolete, and applications should just treat ENETUNREACH and EHOSTUNREACH as the
same error.

We can see these different error conditions with our simple client from Figure 1.5. We first
specify the local host (127.0.0.1), which is running the daytime server, and see the output.

        solaris % daytimetcpcli 127.0.0.1

        Sun Jul 27 22:01:51 2003

To see a different format for the returned reply, we specify a different machine's IP address
(in this example, the IP address of the HP-UX machine).

        solaris % daytimetcpcli 192.6.38.100

        Sun Jul 27 22:04:59 PDT 2003

Next, we specify an IP address that is on the local subnet (192.168.1/24) but the host ID
(100) is nonexistent. That is, there is no host on the subnet with a host ID of 100, so when
the client host sends out ARP requests (asking for that host to respond with its hardware
address), it will never receive an ARP reply.

        solaris % daytimetcpcli 192.168.1.100

        connect error: Connection timed out

We only get the error after the connect times out (around four minutes with Solaris 9).
Notice that our err_sys function prints the human-readable string associated with the
ETIMEDOUT error.

Our next example is to specify a host (a local router) that is not running a daytime server.

        solaris % daytimetcpcli 192.168.1.5

        connect error: Connection refused

The server responds immediately with an RST.

Our final example specifies an IP address that is not reachable on the Internet. If we watch
the packets with tcpdump, we see that a router six hops away returns an ICMP host
unreachable error.

        solaris % daytimetcpcli 192.3.4.5

        connect error: No route to host

As with the ETIMEDOUT error, in this example, connect returns the EHOSTUNREACH error only
after waiting its specified amount of time.

In terms of the TCP state transition diagram (Figure 2.4), connect moves from the CLOSED

Page 135

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


state (the state in which a socket begins when it is created by the socket function) to the
SYN_SENT state, and then, on success, to the ESTABLISHED state. If connect fails, the
socket is no longer usable and must be closed. We cannot call connect again on the socket.
In Figure 11.10, we will see that when we call connect in a loop, trying each IP address for
a given host until one works, each time connect fails, we must close the socket descriptor
and call socket again.

[ Team LiB ]

Page 136

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

4.4 bind Function
The bind function assigns a local protocol address to a socket. With the Internet protocols,
the protocol address is the combination of either a 32-bit IPv4 address or a 128-bit IPv6
address, along with a 16-bit TCP or UDP port number.

#include <sys/socket.h>

int bind (int sockfd, const struct sockaddr *myaddr, socklen_t addrlen);

Returns: 0 if OK,-1 on error

Historically, the man page description of bind has said "bind assigns a name to an
unnamed socket." The use of the term "name" is confusing and gives the connotation of
domain names (Chapter 11) such as foo.bar.com. The bind function has nothing to do
with names. bind assigns a protocol address to a socket, and what that protocol address
means depends on the protocol.

The second argument is a pointer to a protocol-specific address, and the third argument is
the size of this address structure. With TCP, calling bind lets us specify a port number, an
IP address, both, or neither.

 Servers bind their well-known port when they start. We saw this in Figure 1.9. If a
TCP client or server does not do this, the kernel chooses an ephemeral port for the
socket when either connect or listen is called. It is normal for a TCP client to let
the kernel choose an ephemeral port, unless the application requires a reserved port
(Figure 2.10), but it is rare for a TCP server to let the kernel choose an ephemeral
port, since servers are known by their well-known port.

Exceptions to this rule are Remote Procedure Call (RPC) servers. They normally let
the kernel choose an ephemeral port for their listening socket since this port is then
registered with the RPC port mapper. Clients have to contact the port mapper to
obtain the ephemeral port before they can connect to the server. This also applies
to RPC servers using UDP.

 A process can bind a specific IP address to its socket. The IP address must belong
to an interface on the host. For a TCP client, this assigns the source IP address that
will be used for IP datagrams sent on the socket. For a TCP server, this restricts the
socket to receive incoming client connections destined only to that IP address.

Normally, a TCP client does not bind an IP address to its socket. The kernel chooses
the source IP address when the socket is connected, based on the outgoing
interface that is used, which in turn is based on the route required to reach the
server (p. 737 of TCPv2).

If a TCP server does not bind an IP address to its socket, the kernel uses the
destination IP address of the client's SYN as the server's source IP address (p. 943
of TCPv2).

As we said, calling bind lets us specify the IP address, the port, both, or neither. Figure 4.6
summarizes the values to which we set sin_addr and sin_port, or sin6_addr and
sin6_port, depending on the desired result.

Figure 4.6. Result when specifying IP address and/or port number to 
bind.

Page 137

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


If we specify a port number of 0, the kernel chooses an ephemeral port when bind is
called. But if we specify a wildcard IP address, the kernel does not choose the local IP
address until either the socket is connected (TCP) or a datagram is sent on the socket
(UDP).

With IPv4, the wildcard address is specified by the constant INADDR_ANY, whose value is
normally 0. This tells the kernel to choose the IP address. We saw the use of this in Figure
1.9 with the assignment

        struct sockaddr_in   servaddr;

        servaddr.sin_addr.s_addr = htonl (INADDR_ANY);     /* wildcard */

While this works with IPv4, where an IP address is a 32-bit value that can be represented
as a simple numeric constant (0 in this case), we cannot use this technique with IPv6,
since the 128-bit IPv6 address is stored in a structure. (In C we cannot represent a
constant structure on the right-hand side of an assignment.) To solve this problem, we
write

        struct sockaddr_in6    serv;

        serv.sin6_addr = in6addr_any;     /* wildcard */

The system allocates and initializes the in6addr_any variable to the constant
IN6ADDR_ANY_INIT. The <netinet/in.h> header contains the extern declaration for
in6addr_any.

The value of INADDR_ANY (0) is the same in either network or host byte order, so the use of
htonl is not really required. But, since all the INADDR_constants defined by the
<netinet/in.h> header are defined in host byte order, we should use htonl with any of
these constants.

If we tell the kernel to choose an ephemeral port number for our socket, notice that bind
does not return the chosen value. Indeed, it cannot return this value since the second
argument to bind has the const qualifier. To obtain the value of the ephemeral port
assigned by the kernel, we must call getsockname to return the protocol address.

A common example of a process binding a non-wildcard IP address to a socket is a host
that provides Web servers to multiple organizations (Section 14.2 of TCPv3). First, each
organization has its own domain name, such as www.organization.com. Next, each
organization's domain name maps into a different IP address, but typically on the same
subnet. For example, if the subnet is 198.69.10, the first organization's IP address could
be 198.69.10.128, the next 198.69.10.129, and so on. All these IP addresses are then 
aliased onto a single network interface (using the alias option of the ifconfig command
on 4.4BSD, for example) so that the IP layer will accept incoming datagrams destined for
any of the aliased addresses. Finally, one copy of the HTTP server is started for each
organization and each copy binds only the IP address for that organization.

Page 138

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


An alternative technique is to run a single server that binds the wildcard address. When a
connection arrives, the server calls getsockname to obtain the destination IP address from
the client, which in our discussion above could be 198.69.10.128, 198.69.10.129, and so
on. The server then handles the client request based on the IP address to which the
connection was issued.

One advantage in binding a non-wildcard IP address is that the demultiplexing of a given
destination IP address to a given server process is then done by the kernel.

We must be careful to distinguish between the interface on which a packet arrives versus
the destination IP address of that packet. In Section 8.8, we will talk about the weak end
system model and the strong end system model. Most implementations employ the former,
meaning it is okay for a packet to arrive with a destination IP address that identifies an
interface other than the interface on which the packet arrives. (This assumes a multihomed
host.) Binding a non-wildcard IP address restricts the datagrams that will be delivered to
the socket based only on the destination IP address. It says nothing about the arriving
interface, unless the host employs the strong end system model.

A common error from bind is EADDRINUSE ("Address already in use"). We will say more
about this in Section 7.5 when we talk about the SO_REUSEADDR and SO_REUSEPORT socket
options.

[ Team LiB ]

Page 139

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

4.5 listen Function
The listen function is called only by a TCP server and it performs two actions:

1. When a socket is created by the socket function, it is assumed to be an active
socket, that is, a client socket that will issue a connect. The listen function
converts an unconnected socket into a passive socket, indicating that the kernel
should accept incoming connection requests directed to this socket. In terms of the
TCP state transition diagram (Figure 2.4), the call to listen moves the socket from
the CLOSED state to the LISTEN state.

2. The second argument to this function specifies the maximum number of connections
the kernel should queue for this socket.

#include <sys/socket.h>

#int listen (int sockfd, int backlog);

Returns: 0 if OK, -1 on error

This function is normally called after both the socket and bind functions and must be
called before calling the accept function.

To understand the backlog argument, we must realize that for a given listening socket, the
kernel maintains two queues:

1. An incomplete connection queue, which contains an entry for each SYN that has
arrived from a client for which the server is awaiting completion of the TCP
three-way handshake. These sockets are in the SYN_RCVD state (Figure 2.4).

2. A completed connection queue, which contains an entry for each client with whom
the TCP three-way handshake has completed. These sockets are in the
ESTABLISHED state (Figure 2.4).

Figure 4.7 depicts these two queues for a given listening socket.

Figure 4.7. The two queues maintained by TCP for a listening socket.

When an entry is created on the incomplete queue, the parameters from the listen socket
are copied over to the newly created connection. The connection creation mechanism is
completely automatic; the server process is not involved. Figure 4.8 depicts the packets
exchanged during the connection establishment with these two queues.

Page 140

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


Figure 4.8. TCP three-way handshake and the two queues for a
listening socket.

When a SYN arrives from a client, TCP creates a new entry on the incomplete queue and
then responds with the second segment of the three-way handshake: the server's SYN with
an ACK of the client's SYN (Section 2.6). This entry will remain on the incomplete queue
until the third segment of the three-way handshake arrives (the client's ACK of the server's
SYN), or until the entry times out. (Berkeley-derived implementations have a timeout of 75
seconds for these incomplete entries.) If the three-way handshake completes normally, the
entry moves from the incomplete queue to the end of the completed queue. When the
process calls accept, which we will describe in the next section, the first entry on the
completed queue is returned to the process, or if the queue is empty, the process is put to
sleep until an entry is placed onto the completed queue.

There are several points to consider regarding the handling of these two queues.

 The backlog argument to the listen function has historically specified the
maximum value for the sum of both queues.

There has never been a formal definition of what the backlog means. The 4.2BSD
man page says that it "defines the maximum length the queue of pending
connections may grow to." Many man pages and even the POSIX specification copy
this definition verbatim, but this definition does not say whether a pending
connection is one in the SYN_RCVD state, one in the ESTABLISHED state that has
not yet been accepted, or either. The historical definition in this bullet is the
Berkeley implementation, dating back to 4.2BSD, and copied by many others.

 Berkeley-derived implementations add a fudge factor to the backlog: It is multiplied
by 1.5 (p. 257 of TCPv1 and p. 462 of TCPV2). For example, the commonly
specified backlog of 5 really allows up to 8 queued entries on these systems, as we
show in Figure 4.10.

The reason for adding this fudge factor appears lost to history [Joy 1994]. But if we
consider the backlog as specifying the maximum number of completed connections
that the kernel will queue for a socket ([Borman 1997b], as discussed shortly), then
the reason for the fudge factor is to take into account incomplete connections on the
queue.

 Do not specify a backlog of 0, as different implementations interpret this differently
(Figure 4.10). If you do not want any clients connecting to your listening socket,
close the listening socket.

 Assuming the three-way handshake completes normally (i.e., no lost segments and
no retransmissions), an entry remains on the incomplete connection queue for one
RTT, whatever that value happens to be between a particular client and server.
Section 14.4 of TCPv3 shows that for one Web server, the median RTT between
many clients and the server was 187 ms. (The median is often used for this
statistic, since a few large values can noticeably skew the mean.)

 Historically, sample code always shows a backlog of 5, as that was the maximum

Page 141

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


value supported by 4.2BSD. This was adequate in the 1980s when busy servers
would handle only a few hundred connections per day. But with the growth of the
World Wide Web (WWW), where busy servers handle millions of connections per
day, this small number is completely inadequate (pp. 187 192 of TCPv3). Busy
HTTP servers must specify a much larger backlog, and newer kernels must support
larger values.

Many current systems allow the administrator to modify the maximum value for the 
backlog.

 A problem is: What value should the application specify for the backlog, since 5 is
often inadequate? There is no easy answer to this. HTTP servers now specify a larger
value, but if the value specified is a constant in the source code, to increase the
constant requires recompiling the server. Another method is to assume some
default but allow a command-line option or an environment variable to override the
default. It is always acceptable to specify a value that is larger than supported by
the kernel, as the kernel should silently truncate the value to the maximum value
that it supports, without returning an error (p. 456 of TCPv2).

We can provide a simple solution to this problem by modifying our wrapper function
for the listen function. Figure 4.9 shows the actual code. We allow the environment
variable LISTENQ to override the value specified by the caller.

Figure 4.9 Wrapper function for listen that allows an
environment variable to specify backlog.

lib/wrapsock.c

137 void

138 Listen (int fd, int backlog)

139 {

140     char    *ptr;

141         /* can override 2nd argument with environment variable */

142     if ( (ptr = getenv("LISTENQ")) != NULL)

143         backlog = atoi (ptr);

144     if (listen (fd, backlog) < 0)

145         err_sys ("listen error");

146 }

 Manuals and books have historically said that the reason for queuing a fixed number
of connections is to handle the case of the server process being busy between
successive calls to accept. This implies that of the two queues, the completed
queue should normally have more entries than the incomplete queue. Again, busy
Web servers have shown that this is false. The reason for specifying a large backlog
is because the incomplete connection queue can grow as client SYNs arrive, waiting
for completion of the three-way handshake.

 If the queues are full when a client SYN arrives, TCP ignores the arriving SYN (pp.
930 931 of TCPv2); it does not send an RST. This is because the condition is
considered temporary, and the client TCP will retransmit its SYN, hopefully finding
room on the queue in the near future. If the server TCP immediately responded with
an RST, the client's connect would return an error, forcing the application to handle
this condition instead of letting TCP's normal retransmission take over. Also, the
client could not differentiate between an RST in response to a SYN meaning "there
is no server at this port" versus "there is a server at this port but its queues are
full."

Some implementations do send an RST when the queue is full. This behavior is

Page 142

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


incorrect for the reasons stated above, and unless your client specifically needs to
interact with such a server, it's best to ignore this possibility. Coding to handle this
case reduces the robustness of the client and puts more load on the network in the
normal RST case, where the port really has no server listening on it.

 Data that arrives after the three-way handshake completes, but before the server
calls accept, should be queued by the server TCP, up to the size of the connected
socket's receive buffer.

Figure 4.10 shows the actual number of queued connections provided for different values
of the backlog argument for the various operating systems in Figure 1.16. For seven
different operating systems there are five distinct columns, showing the variety of
interpretations about what backlog means!

Figure 4.10. Actual number of queued connections for values of 
backlog.

AIX and MacOS have the traditional Berkeley algorithm, and Solaris seems very close to
that algorithm as well. FreeBSD just adds one to backlog.

The program to measure these values is shown in the solution for Exercise 15.4.

As we said, historically the backlog has specified the maximum value for the sum of both
queues. During 1996, a new type of attack was launched on the Internet called SYN
flooding [CERT 1996b]. The hacker writes a program to send SYNs at a high rate to the
victim, filling the incomplete connection queue for one or more TCP ports. (We use the
term hacker to mean the attacker, as described in [Cheswick, Bellovin, and Rubin 2003].)
Additionally, the source IP address of each SYN is set to a random number (this is called IP
spoofing) so that the server's SYN/ACK goes nowhere. This also prevents the server from
knowing the real IP address of the hacker. By filling the incomplete queue with bogus
SYNs, legitimate SYNs are not queued, providing a denial of service to legitimate clients.
There are two commonly used methods of handling these attacks, summarized in [Borman
1997b]. But what is most interesting in this note is revisiting what the listen backlog
really means. It should specify the maximum number of completed connections for a given
socket that the kernel will queue. The purpose of having a limit on these completed
connections is to stop the kernel from accepting new connection requests for a given
socket when the application is not accepting them (for whatever reason). If a system
implements this interpretation, as does BSD/OS 3.0, then the application need not specify
huge backlog values just because the server handles lots of client requests (e.g., a busy
Web server) or to provide protection against SYN flooding. The kernel handles lots of
incomplete connections, regardless of whether they are legitimate or from a hacker. But
even with this interpretation, scenarios do occur where the traditional value of 5 is
inadequate.

[ Team LiB ]

Page 143

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


Page 144

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

4.6 accept Function
accept is called by a TCP server to return the next completed connection from the front of
the completed connection queue (Figure 4.7). If the completed connection queue is empty,
the process is put to sleep (assuming the default of a blocking socket).

#include <sys/socket.h>

int accept (int sockfd, struct sockaddr *cliaddr, socklen_t *addrlen);

Returns: non-negative descriptor if OK, -1 on error

The cliaddr and addrlen arguments are used to return the protocol address of the
connected peer process (the client). addrlen is a value-result argument (Section 3.3):
Before the call, we set the integer value referenced by *addrlen to the size of the socket
address structure pointed to by cliaddr; on return, this integer value contains the actual
number of bytes stored by the kernel in the socket address structure.

If accept is successful, its return value is a brand-new descriptor automatically created by
the kernel. This new descriptor refers to the TCP connection with the client. When
discussing accept, we call the first argument to accept the listening socket (the descriptor
created by socket and then used as the first argument to both bind and listen), and we
call the return value from accept the connected socket. It is important to differentiate
between these two sockets. A given server normally creates only one listening socket,
which then exists for the lifetime of the server. The kernel creates one connected socket for
each client connection that is accepted (i.e., for which the TCP three-way handshake
completes). When the server is finished serving a given client, the connected socket is
closed.

This function returns up to three values: an integer return code that is either a new socket
descriptor or an error indication, the protocol address of the client process (through the 
cliaddr pointer), and the size of this address (through the addrlen pointer). If we are not
interested in having the protocol address of the client returned, we set both cliaddr and
addrlen to null pointers.

Figure 1.9 shows these points. The connected socket is closed each time through the loop,
but the listening socket remains open for the life of the server. We also see that the second
and third arguments to accept are null pointers, since we were not interested in the
identity of the client.

Example: Value-Result Arguments
We will now show how to handle the value-result argument to accept by modifying the
code from Figure 1.9 to print the IP address and port of the client. We show this in Figure
4.11.

Figure 4.11 Daytime server that prints client IP address and port

intro/daytimetcpsrv1.c

 1 #include    "unp.h" 2

 2 #include    <time.h>

 3 int

 4 main(int argc, char **argv)

Page 145

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


 5 {

 6     int     listenfd, connfd;

 7     socklen_t len;

 8     struct sockaddr_in servaddr, cliaddr;

 9     char    buff[MAXLINE];

10     time_t  ticks;

11     listenfd = Socket(AF_INET, SOCK_STREAM, 0);

12     bzero(&servaddr, sizeof(servaddr));

13     servaddr.sin_family = AF_INET;

14     servaddr.sin_addr.s_addr = htonl(INADDR_ANY);

15     servaddr.sin_port = htons(13);  /* daytime server */

16     Bind(listenfd, (SA *) &servaddr, sizeof(servaddr));

17     Listen(listenfd, LISTENQ);

18     for ( ; ; ) {

19         len = sizeof(cliaddr);

20         connfd = Accept(listenfd, (SA *) &cliaddr, &len);

21         printf("connection from %s, port %d\n",

22                Inet_ntop(AF_INET, &cliaddr.sin_addr, buff, sizeof(buff)),

23                ntohs(cliaddr.sin_port));

24         ticks = time(NULL);

25         snprintf(buff, sizeof(buff), "%.24s\r\n", ctime(&ticks));

26         Write(connfd, buff, strlen(buff));

27         Close(connfd);

28     }

29 }

New declarations

7 8 We define two new variables: len, which will be a value-result variable, and cliaddr,
which will contain the client's protocol address.

Accept connection and print client's address

19 23 We initialize len to the size of the socket address structure and pass a pointer to
the cliaddr structure and a pointer to len as the second and third arguments to accept.
We call inet_ntop (Section 3.7) to convert the 32-bit IP address in the socket address
structure to a dotted-decimal ASCII string and call ntohs (Section 3.4) to convert the
16-bit port number from network byte order to host byte order.

Calling sock_ntop instead of inet_ntop would make our server more protocol-independent,
but this server is already dependent on IPv4. We will show a protocol-independent version
of this server in Figure 11.13.

If we run our new server and then run our client on the same host, connecting to our
server twice in a row, we have the following output from the client:

        solaris % daytimetcpcli 127.0.0.1

        Thu Sep 11 12:44:00 2003

        solaris % daytimetcpcli 192.168.1.20

        Thu Sep 11 12:44:09 2003

Page 146

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


We first specify the server's IP address as the loopback address (127.0.0.1) and then as its
own IP address (192.168.1.20). Here is the corresponding server output:

        solaris # daytimetcpsrv1

        connection from 127.0.0.1, port 43388

        connection from 192.168.1.20, port 43389

Notice what happens with the client's IP address. Since our daytime client (Figure 1.5)
does not call bind, we said in Section 4.4 that the kernel chooses the source IP address
based on the outgoing interface that is used. In the first case, the kernel sets the source IP
address to the loopback address; in the second case, it sets the address to the IP address
of the Ethernet interface. We can also see in this example that the ephemeral port chosen
by the Solaris kernel is 43388, and then 43389 (recall Figure 2.10).

As a final point, our shell prompt for the server script changes to the pound sign (#), the
commonly used prompt for the superuser. Our server must run with superuser privileges
to bind the reserved port of 13. If we do not have superuser privileges, the call to bind will
fail:

        solaris % daytimetcpsrv1

        bind error: Permission denied

[ Team LiB ]

Page 147

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

4.7 fork and exec Functions
Before describing how to write a concurrent server in the next section, we must describe
the Unix fork function. This function (including the variants of it provided by some
systems) is the only way in Unix to create a new process.

#include <unistd.h>

pid_t fork(void);

Returns: 0 in child, process ID of child in parent, -1 on error

If you have never seen this function before, the hard part in understanding fork is that it
is called once but it returns twice. It returns once in the calling process (called the parent)
with a return value that is the process ID of the newly created process (the child). It also
returns once in the child, with a return value of 0. Hence, the return value tells the process
whether it is the parent or the child.

The reason fork returns 0 in the child, instead of the parent's process ID, is because a
child has only one parent and it can always obtain the parent's process ID by calling 
getppid. A parent, on the other hand, can have any number of children, and there is no
way to obtain the process IDs of its children. If a parent wants to keep track of the process
IDs of all its children, it must record the return values from fork.

All descriptors open in the parent before the call to fork are shared with the child after
fork returns. We will see this feature used by network servers: The parent calls accept and
then calls fork. The connected socket is then shared between the parent and child.
Normally, the child then reads and writes the connected socket and the parent closes the
connected socket.

There are two typical uses of fork:

1. A process makes a copy of itself so that one copy can handle one operation while
the other copy does another task. This is typical for network servers. We will see
many examples of this later in the text.

2. A process wants to execute another program. Since the only way to create a new
process is by calling fork, the process first calls fork to make a copy of itself, and
then one of the copies (typically the child process) calls exec (described next) to
replace itself with the new program. This is typical for programs such as shells.

The only way in which an executable program file on disk can be executed by Unix is for an
existing process to call one of the six exec functions. (We will often refer generically to
"the exec function" when it does not matter which of the six is called.) exec replaces the
current process image with the new program file, and this new program normally starts at
the main function. The process ID does not change. We refer to the process that calls exec
as the calling process and the newly executed program as the new program.

Older manuals and books incorrectly refer to the new program as the new process, which is
wrong, because a new process is not created.

The differences in the six exec functions are: (a) whether the program file to execute is
specified by a filename or a pathname; (b) whether the arguments to the new program are
listed one by one or referenced through an array of pointers; and (c) whether the
environment of the calling process is passed to the new program or whether a new
environment is specified.

Page 148

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


#include <unistd.h>

int execl (const char *pathname, const char *arg0, ... /* (char *) 0 */ );

int execv (const char *pathname, char *const argv[]);

int execle (const char *pathname, const char *arg0, ...

/* (char *) 0, char *const envp[] */ );

int execve (const char *pathname, char *const argv[], char *const envp[]);

int execlp (const char *filename, const char *arg0, ... /* (char *) 0 */ );

int execvp (const char *filename, char *const argv[]);

All six return: -1 on error, no return on success

These functions return to the caller only if an error occurs. Otherwise, control passes to the
start of the new program, normally the main function.

The relationship among these six functions is shown in Figure 4.12. Normally, only execve
is a system call within the kernel and the other five are library functions that call execve.

Figure 4.12. Relationship among the six exec functions.

Note the following differences among these six functions:

1. The three functions in the top row specify each argument string as a separate
argument to the exec function, with a null pointer terminating the variable number
of arguments. The three functions in the second row have an argv array, containing
pointers to the argument strings. This argv array must contain a null pointer to
specify its end, since a count is not specified.

2. The two functions in the left column specify a filename argument. This is converted
into a pathname using the current PATH environment variable. If the filename
argument to execlp or execvp contains a slash (/) anywhere in the string, the PATH
variable is not used. The four functions in the right two columns specify a fully
qualified pathname argument.

3. The four functions in the left two columns do not specify an explicit environment
pointer. Instead, the current value of the external variable environ is used for
building an environment list that is passed to the new program. The two functions
in the right column specify an explicit environment list. The envp array of pointers
must be terminated by a null pointer.

Descriptors open in the process before calling exec normally remain open across the exec.
We use the qualifier "normally" because this can be disabled using fcntl to set the
FD_CLOEXEC descriptor flag. The inetd server uses this feature, as we will describe in

Page 149

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


Section 13.5.

[ Team LiB ]

Page 150

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

4.8 Concurrent Servers
The server in Figure 4.11 is an iterative server. For something as simple as a daytime
server, this is fine. But when a client request can take longer to service, we do not want to
tie up a single server with one client; we want to handle multiple clients at the same time.
The simplest way to write a concurrent server under Unix is to fork a child process to
handle each client. Figure 4.13 shows the outline for a typical concurrent server.

Figure 4.13 Outline for typical concurrent server.

pid_t pid;

int   listenfd,  connfd;

listenfd = Socket( ... );

    /* fill in sockaddr_in{} with server's well-known port */

Bind(listenfd, ... );

Listen(listenfd, LISTENQ);

for ( ; ; ) {

    connfd = Accept (listenfd, ... );    /* probably blocks */

    if( (pid = Fork()) == 0) {

       Close(listenfd);    /* child closes listening socket */

       doit(connfd);       /* process the request */

       Close(connfd);      /* done with this client */

       exit(0);            /* child terminates */

    }

    Close(connfd);         /* parent closes connected socket */

}

When a connection is established, accept returns, the server calls fork, and the child
process services the client (on connfd, the connected socket) and the parent process waits
for another connection (on listenfd, the listening socket). The parent closes the
connected socket since the child handles the new client.

In Figure 4.13, we assume that the function doit does whatever is required to service the
client. When this function returns, we explicitly close the connected socket in the child.
This is not required since the next statement calls exit, and part of process termination is
to close all open descriptors by the kernel. Whether to include this explicit call to close or
not is a matter of personal programming taste.

We said in Section 2.6 that calling close on a TCP socket causes a FIN to be sent, followed
by the normal TCP connection termination sequence. Why doesn't the close of connfd in
Figure 4.13 by the parent terminate its connection with the client? To understand what's
happening, we must understand that every file or socket has a reference count. The
reference count is maintained in the file table entry (pp. 57 60 of APUE). This is a count of
the number of descriptors that are currently open that refer to this file or socket. In Figure
4.13, after socket returns, the file table entry associated with listenfd has a reference
count of 1. After accept returns, the file table entry associated with connfd has a reference
count of 1. But, after fork returns, both descriptors are shared (i.e., duplicated) between
the parent and child, so the file table entries associated with both sockets now have a
reference count of 2. Therefore, when the parent closes connfd, it just decrements the
reference count from 2 to 1 and that is all. The actual cleanup and de-allocation of the
socket does not happen until the reference count reaches 0. This will occur at some time

Page 151

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


later when the child closes connfd.

We can also visualize the sockets and connection that occur in Figure 4.13 as follows.
First, Figure 4.14 shows the status of the client and server while the server is blocked in
the call to accept and the connection request arrives from the client.

Figure 4.14. Status of client/server before call to accept returns.

Immediately after accept returns, we have the scenario shown in Figure 4.15. The
connection is accepted by the kernel and a new socket, connfd, is created. This is a
connected socket and data can now be read and written across the connection.

Figure 4.15. Status of client/server after return from accept.

The next step in the concurrent server is to call fork. Figure 4.16 shows the status after
fork returns.

Figure 4.16. Status of client/server after fork returns.

Notice that both descriptors, listenfd and connfd, are shared (duplicated) between the
parent and child.

The next step is for the parent to close the connected socket and the child to close the
listening socket. This is shown in Figure 4.17.

Figure 4.17. Status of client/server after parent and child close
appropriate sockets.

Page 152

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


This is the desired final state of the sockets. The child is handling the connection with the
client and the parent can call accept again on the listening socket, to handle the next
client connection.

[ Team LiB ]

Page 153

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

4.9 close Function
The normal Unix close function is also used to close a socket and terminate a TCP
connection.

#include <unistd.h>

int close (int sockfd);

Returns: 0 if OK, -1 on error

The default action of close with a TCP socket is to mark the socket as closed and return to
the process immediately. The socket descriptor is no longer usable by the process: It
cannot be used as an argument to read or write. But, TCP will try to send any data that is
already queued to be sent to the other end, and after this occurs, the normal TCP
connection termination sequence takes place (Section 2.6).

In Section 7.5, we will describe the SO_LINGER socket option, which lets us change this
default action with a TCP socket. In that section, we will also describe what a TCP
application must do to be guaranteed that the peer application has received any
outstanding data.

Descriptor Reference Counts
At the end of Section 4.8, we mentioned that when the parent process in our concurrent
server closes the connected socket, this just decrements the reference count for the
descriptor. Since the reference count was still greater than 0, this call to close did not
initiate TCP's four-packet connection termination sequence. This is the behavior we want
with our concurrent server with the connected socket that is shared between the parent
and child.

If we really want to send a FIN on a TCP connection, the shutdown function can be used (
Section 6.6) instead of close. We will describe the motivation for this in Section 6.5.

We must also be aware of what happens in our concurrent server if the parent does not
call close for each connected socket returned by accept. First, the parent will eventually
run out of descriptors, as there is usually a limit to the number of descriptors that any
process can have open at any time. But more importantly, none of the client connections
will be terminated. When the child closes the connected socket, its reference count will go
from 2 to 1 and it will remain at 1 since the parent never closes the connected socket.
This will prevent TCP's connection termination sequence from occurring, and the
connection will remain open.

[ Team LiB ]

Page 154

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

4.10 getsockname and getpeername Functions
These two functions return either the local protocol address associated with a socket (
getsockname) or the foreign protocol address associated with a socket (getpeername).

#include <sys/socket.h>

int getsockname(int sockfd, struct sockaddr *localaddr, socklen_t *addrlen);

int getpeername(int sockfd, struct sockaddr *peeraddr, socklen_t *addrlen);

Both return: 0 if OK, -1 on error

Notice that the final argument for both functions is a value-result argument. That is, both
functions fill in the socket address structure pointed to by localaddr or peeraddr.

We mentioned in our discussion of bind that the term "name" is misleading. These two
functions return the protocol address associated with one of the two ends of a network
connection, which for IPV4 and IPV6 is the combination of an IP address and port number.
These functions have nothing to do with domain names (Chapter 11).

These two functions are required for the following reasons:

 After connect successfully returns in a TCP client that does not call bind,
getsockname returns the local IP address and local port number assigned to the
connection by the kernel.

 After calling bind with a port number of 0 (telling the kernel to choose the local port
number), getsockname returns the local port number that was assigned.

 getsockname can be called to obtain the address family of a socket, as we show in
Figure 4.19.

 In a TCP server that binds the wildcard IP address (Figure 1.9), once a connection
is established with a client (accept returns successfully), the server can call
getsockname to obtain the local IP address assigned to the connection. The socket
descriptor argument in this call must be that of the connected socket, and not the
listening socket.

 When a server is execed by the process that calls accept, the only way the server
can obtain the identity of the client is to call getpeername. This is what happens
whenever inetd (Section 13.5) forks and execs a TCP server. Figure 4.18 shows
this scenario. inetd calls accept (top left box) and two values are returned: the
connected socket descriptor, connfd, is the return value of the function, and the
small box we label "peer's address" (an Internet socket address structure) contains
the IP address and port number of the client. fork is called and a child of inetd is
created. Since the child starts with a copy of the parent's memory image, the socket
address structure is available to the child, as is the connected socket descriptor
(since the descriptors are shared between the parent and child). But when the child 
execs the real server (say the Telnet server that we show), the memory image of
the child is replaced with the new program file for the Telnet server (i.e., the socket
address structure containing the peer's address is lost), and the connected socket
descriptor remains open across the exec. One of the first function calls performed by
the Telnet server is getpeername to obtain the IP address and port number of the
client.

Page 155

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


Figure 4.18. Example of inetd spawning a server.

Obviously the Telnet server in this final example must know the value of connfd when it
starts. There are two common ways to do this. First, the process calling exec can format
the descriptor number as a character string and pass it as a command-line argument to
the newly execed program. Alternately, a convention can be established that a certain
descriptor is always set to the connected socket before calling exec. The latter is what
inetd does, always setting descriptors 0, 1, and 2 to be the connected socket.

Example: Obtaining the Address Family of a Socket
The sockfd_to_family function shown in Figure 4.19 returns the address family of a
socket.

Figure 4.19 Return the address family of a socket.

lib/sockfd_to_family.c

 1 #include    "unp.h"

 2 int

 3 sockfd_to_family(int sockfd)

 4 {

 5     struct sockaddr_storage ss;

 6     socklen_t len;

 7     len = sizeof(ss);

 8     if (getsockname(sockfd, (SA *) &ss, &len) < 0)

 9         return (-1);

10     return (ss.ss_family);

11 }

Allocate room for largest socket address structure

5 Since we do not know what type of socket address structure to allocate, we use a
sockaddr_storage value, since it can hold any socket address structure supported by the
system.

Call getsockname

7 10 We call getsockname and return the address family.

Since the POSIX specification allows a call to getsockname on an unbound socket, this
function should work for any open socket descriptor.

Page 156

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Page 157

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

4.11 Summary
All clients and servers begin with a call to socket, returning a socket descriptor. Clients
then call connect, while servers call bind, listen, and accept. Sockets are normally closed
with the standard close function, although we will see another way to do this with the
shutdown function (Section 6.6), and we will also examine the effect of the SO_LINGER
socket option (Section 7.5).

Most TCP servers are concurrent, with the server calling fork for every client connection
that it handles. We will see that most UDP servers are iterative. While these two models
have been used successfully for many years, in Chapter 30 we will look at other server
design options that use threads and processes.

[ Team LiB ]

Page 158

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Exercises
4.1 In Section 4.4, we stated that the INADDR_ constants defined by the

<netinet/in.h> header are in host byte order. How can we tell this?

4.2 Modify Figure 1.5 to call getsockname after connect returns successfully.
Print the local IP address and local port assigned to the TCP socket using 
sock_ntop. In what range (Figure 2.10) are your system's ephemeral
ports?

4.3 In a concurrent server, assume the child runs first after the call to fork.
The child then completes the service of the client before the call to fork
returns to the parent. What happens in the two calls to close in Figure
4.13?

4.4 In Figure 4.11, first change the server's port from 13 to 9999 (so that we
do not need super-user privileges to start the program). Remove the call
to listen. What happens?

4.5 Continue the previous exercise. Remove the call to bind, but allow the
call to listen. What happens?

[ Team LiB ]

Page 159

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Chapter 5. TCP Client/Server Example
Section 5.1.?Introduction

Section 5.2.?TCP Echo Server: main Function

Section 5.3.?TCP Echo Server: str_echo Function

Section 5.4.?TCP Echo Client: main Function

Section 5.5.?TCP Echo Client: str_cli Function

Section 5.6.?Normal Startup

Section 5.7.?Normal Termination

Section 5.8.?POSIX Signal Handling

Section 5.9.?Handling SIGCHLD Signals

Section 5.10.?wait and waitpid Functions

Section 5.11.?Connection Abort before accept Returns

Section 5.12.?Termination of Server Process

Section 5.13.?SIGPIPE Signal

Section 5.14.?Crashing of Server Host

Section 5.15.?Crashing and Rebooting of Server Host

Section 5.16.?Shutdown of Server Host

Section 5.17.?Summary of TCP Example

Section 5.18.?Data Format

Section 5.19.?Summary

Exercises

[ Team LiB ]

Page 160

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

5.1 Introduction
We will now use the elementary functions from the previous chapter to write a complete
TCP client/server example. Our simple example is an echo server that performs the
following steps:

1. The client reads a line of text from its standard input and writes the line to the
server.

2. The server reads the line from its network input and echoes the line back to the
client.

3. The client reads the echoed line and prints it on its standard output.

Figure 5.1 depicts this simple client/server along with the functions used for input and
output.

Figure 5.1. Simple echo client and server.

We show two arrows between the client and server, but this is really one full-duplex TCP
connection. The fgets and fputs functions are from the standard I/O library and the
writen and readline functions were shown in Section 3.9.

While we will develop our own implementation of an echo server, most TCP/IP
implementations provide such a server, using both TCP and UDP (Section 2.12). We will
also use this server with our own client.

A client/server that echoes input lines is a valid, yet simple, example of a network
application. All the basic steps required to implement any client/server are illustrated by
this example. To expand this example into your own application, all you need to do is
change what the server does with the input it receives from its clients.

Besides running our client and server in their normal mode (type in a line and watch it
echo), we examine lots of boundary conditions for this example: what happens when the
client and server are started; what happens when the client terminates normally; what
happens to the client if the server process terminates before the client is done; what
happens to the client if the server host crashes; and so on. By looking at all these
scenarios and understanding what happens at the network level, and how this appears to
the sockets API, we will understand more about what goes on at these levels and how to
code our applications to handle these scenarios.

In all these examples, we have "hard-coded" protocol-specific constants such as addresses
and ports. There are two reasons for this. First, we must understand exactly what needs to
be stored in the protocol-specific address structures. Second, we have not yet covered the
library functions that can make this more portable. These functions will be covered in 
Chapter 11.

We note now that we will make many changes to both the client and server in successive
chapters as we learn more about network programming (Figures 1.12 and 1.13).

[ Team LiB ]

Page 161

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

5.2 TCP Echo Server: main Function
Our TCP client and server follow the flow of functions that we diagrammed in Figure 4.1.
We show the concurrent server program in Figure 5.2.

Create socket, bind server's well-known port
9 15 A TCP socket is created. An Internet socket address structure is filled in with the
wildcard address (INADDR_ANY) and the server's well-known port (SERV_PORT, which is
defined as 9877 in our unp.h header). Binding the wildcard address tells the system that
we will accept a connection destined for any local interface, in case the system is
multihomed. Our choice of the TCP port number is based on Figure 2.10. It should be
greater than 1023 (we do not need a reserved port), greater than 5000 (to avoid conflict
with the ephemeral ports allocated by many Berkeley-derived implementations), less than
49152 (to avoid conflict with the "correct" range of ephemeral ports), and it should not
conflict with any registered port. The socket is converted into a listening socket by listen.

Wait for client connection to complete
17 18 The server blocks in the call to accept, waiting for a client connection to complete.

Concurrent server
19 24 For each client, fork spawns a child, and the child handles the new client. As we
discussed in Section 4.8, the child closes the listening socket and the parent closes the
connected socket. The child then calls str_echo (Figure 5.3) to handle the client.

Figure 5.2 TCP echo server (improved in Figure 5.12).

tcpdiserv/tcpserv01.c

 1 #include      "unp.h"

 2 int

 3 main(int argc, char **argv)

 4 {

 5     int     listenfd, connfd;

 6     pid_t   childpid;

 7     socklen_t clilen;

 8     struct sockaddr_in cliaddr, servaddr;

 9     listenfd = Socket (AF_INET, SOCK_STREAM, 0);

10     bzero(&servaddr, sizeof(servaddr));

11     servaddr.sin_family = AF_INET;

12     servaddr.sin_addr.s_addr = htonl (INADDR_ANY);

13     servaddr.sin_port = htons (SERV_PORT);

14     Bind(listenfd, (SA *) &servaddr, sizeof(servaddr));

15     Listen(listenfd, LISTENQ);

16     for ( ; ; )  {

17         clilen = sizeof(cliaddr);

18         connfd = Accept(listenfd, (SA *) &cliaddr, &clilen);

Page 162

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


19         if ( (childpid = Fork()) == 0) { /* child process */

20             Close(listenfd);    /* close listening socket */

21             str_echo(connfd);   /* process the request */

22             exit (0);

23         }

24         Close(connfd);          /* parent closes connected socket */

25     }

26 }

[ Team LiB ]

Page 163

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

5.3 TCP Echo Server: str_echo Function
The function str_echo, shown in Figure 5.3, performs the server processing for each client:
It reads data from the client and echoes it back to the client.

Read a buffer and echo the buffer
8 9 read reads data from the socket and the line is echoed back to the client by writen. If
the client closes the connection (the normal scenario), the receipt of the client's FIN causes
the child's read to return 0. This causes the str_echo function to return, which terminates
the child in Figure 5.2

[ Team LiB ]

Page 164

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

5.4 TCP Echo Client: main Function
Figure 5.4 shows the TCP client main function.

Figure 5.3 str_echo function: echoes data on a socket.

lib/str_echo.c

 1 #include    "unp.h"

 2 void

 3 str_echo(int sockfd)

 4 {

 5     ssize_t n;

 6     char    buf[MAXLINE];

 7   again:

 8     while ( (n = read(sockfd, buf, MAXLINE)) > 0)

 9         Writen(sockfd, buf, n);

10     if (n < 0 && errno == EINTR)

11         goto again;

12     else if (n < 0)

13         err_sys("str_echo: read error");

14 }

Figure 5.4 TCP echo client.

tcpcliserv/tcpli01.c

 1 #include    "unp.h"

 2 int

 3 main(int argc, char **argv)

 4 {

 5     int     sockfd;

 6     struct sockaddr_in servaddr;

 7     if (argc != 2)

 8         err_quit("usage: tcpcli <IPaddress>");

 9     sockfd = Socket(AF_INET, SOCK_STREAM, 0);

10     bzero(&servaddr, sizeof(servaddr));

11     servaddr.sin_family = AF_INET;

12     servaddr.sin_port = htons(SERV_PORT);

13     Inet_pton(AF_INET, argv[1], &servaddr.sin_addr);

14     Connect(sockfd, (SA *) &servaddr, sizeof(servaddr));

15     str_cli(stdin, sockfd);     /* do it all */

16     exit(0);

17 }

Create socket, fill in Internet socket address structure

Page 165

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


9 13 A TCP socket is created and an Internet socket address structure is filled in with the
server's IP address and port number. We take the server's IP address from the
command-line argument and the server's well-known port (SERV_PORT) is from our unp.h
header.

Connect to server
14 15 connect establishes the connection with the server. The function str_cli (Figure 5.5
) handles the rest of the client processing.

[ Team LiB ]

Page 166

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

5.5 TCP Echo Client: str_cli Function
This function, shown in Figure 5.5, handles the client processing loop: It reads a line of
text from standard input, writes it to the server, reads back the server's echo of the line,
and outputs the echoed line to standard output.

Figure 5.5 str_cli function: client processing loop.

lib/str_cli.c

 1 #include    "unp.h"

 2 void

 3 str_cli(FILE *fp, int sockfd)

 4 {

 5     char    sendline[MAXLINE], recvline[MAXLINE];

 6     while (Fgets(sendline, MAXLINE, fp) != NULL) {

 7         Writen(sockfd, sendline, strlen (sendline));

 8         if (Readline(sockfd, recvline, MAXLINE) == 0)

 9             err_quit("str_cli: server terminated prematurely");

10         Fputs(recvline, stdout);

11     }

12 }

Read a line, write to server
6 7 fgets reads a line of text and writen sends the line to the server.

Read echoed line from server, write to standard output
8 10 readline reads the line echoed back from the server and fputs writes it to standard
output.

Return to main
11 12 The loop terminates when fgets returns a null pointer, which occurs when it
encounters either an end-of-file (EOF) or an error. Our Fgets wrapper function checks for
an error and aborts if one occurs, so Fgets returns a null pointer only when an end-of-file is
encountered.

[ Team LiB ]

Page 167

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

5.6 Normal Startup
Although our TCP example is small (about 150 lines of code for the two main functions,
str_echo, str_cli, readline, and writen), it is essential that we understand how the
client and server start, how they end, and most importantly, what happens when
something goes wrong: the client host crashes, the client process crashes, network
connectivity is lost, and so on. Only by understanding these boundary conditions, and their
interaction with the TCP/IP protocols, can we write robust clients and servers that can
handle these conditions.

We first start the server in the background on the host linux.

linux % tcpserv01 &

[1] 17870

When the server starts, it calls socket, bind, listen, and accept, blocking in the call to
accept. (We have not started the client yet.) Before starting the client, we run the netstat
program to verify the state of the server's listening socket.

linux % netstat -a

Active Internet connections (servers and established)

Proto Recv-Q Send-Q Local Address       Foreign Address      State

tcp        0      0 *:9877              *:*                  LISTEN

Here we show only the first line of output (the heading), plus the line that we are
interested in. This command shows the status of all sockets on the system, which can be
lots of output. We must specify the -a flag to see listening sockets.

The output is what we expect. A socket is in the LISTEN state with a wildcard for the local
IP address and a local port of 9877. netstat prints an asterisk for an IP address of 0 (
INADDR_ANY, the wildcard) or for a port of 0.

We then start the client on the same host, specifying the server's IP address of 127.0.0.1
(the loopback address). We could have also specified the server's normal (nonloopback) IP
address.

linux % tcpcli01 127.0.0.1

The client calls socket and connect, the latter causing TCP's three-way handshake to take
place. When the three-way handshake completes, connect returns in the client and accept
returns in the server. The connection is established. The following steps then take place:

1. The client calls str_cli, which will block in the call to fgets, because we have not
typed a line of input yet.

2. When accept returns in the server, it calls fork and the child calls str_echo. This
function calls readline, which calls read, which blocks while waiting for a line to be
sent from the client.

Page 168

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


3. The server parent, on the other hand, calls accept again, and blocks while waiting
for the next client connection.

We have three processes, and all three are asleep (blocked): client, server parent, and
server child.

When the three-way handshake completes, we purposely list the client step first, and then
the server steps. The reason can be seen in Figure 2.5: connect returns when the second
segment of the handshake is received by the client, but accept does not return until the
third segment of the handshake is received by the server, one-half of the RTT after connect
returns.

We purposely run the client and server on the same host because this is the easiest way to
experiment with client/server applications. Since we are running the client and server on
the same host, netstat now shows two additional lines of output, corresponding to the TCP
connection:

linux % netstat -a

Active Internet connections (servers and established)

Proto Recv-Q Send-Q Local Address           Foreign Address          State

tcp        0      0 local host:9877         localhost:42758         

ESTABLISHED

tcp        0      0 local host:42758        localhost:9877          

ESTABLISHED

tcp        0      0 *:9877                  *:*                      LISTEN

The first of the ESTABLISHED lines corresponds to the server child's socket, since the local
port is 9877. The second of the ESTABLISHED lines is the client's socket, since the local
port is 42758. If we were running the client and server on different hosts, the client host
would display only the client's socket, and the server host would display only the two
server sockets.

We can also use the ps command to check the status and relationship of these processes.

linux % ps -t pts/6 -o pid,ppid,tty,stat,args,wchan

  PID  PPID TT       STAT COMMAND          WCHAN

22038 22036 pts/6    S    -bash            wait4

17870 22038 pts/6    S    ./tcpserv01      wait_for_connect

19315 17870 pts/6    S    ./tcpserv01      tcp_data_wait

19314 22038 pts/6    S    ./tcpcli01 127.0 read_chan

(We have used very specific arguments to ps to only show us the information that pertains
to this discussion.) In this output, we ran the client and server from the same window (
pts/6, which stands for pseudo-terminal number 6). The PID and PPID columns show the
parent and child relationships. We can tell that the first tcpserv01 line is the parent and
the second tcpserv01 line is the child since the PPID of the child is the parent's PID. Also,
the PPID of the parent is the shell (bash).

The STAT column for all three of our network processes is "S," meaning the process is
sleeping (waiting for something). When a process is asleep, the WCHAN column specifies
the condition. Linux prints wait_for_connect when a process is blocked in either accept
or connect, tcp_data_wait when a process is blocked on socket input or output, or
read_chan when a process is blocked on terminal I/O. The WCHAN values for our three
network processes therefore make sense.

Page 169

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Page 170

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

5.7 Normal Termination
At this point, the connection is established and whatever we type to the client is echoed
back.

linux % tcpcli01 127.0.0.1 we showed this line earlier

hello, world we now type this

hello, world and the line is echoed

good bye  

good bye  

^D Control-D is our terminal EOF character

We type in two lines, each one is echoed, and then we type our terminal EOF character
(Control-D), which terminates the client. If we immediately execute netstat, we have

linux % netstat -a | grep 9877

tcp        0      0 *:9877               *:*               LISTEN

tcp        0      0 localhost:42758      localhost:9877    TIME_WAIT

The client's side of the connection (since the local port is 42758) enters the TIME_WAIT
state (Section 2.7), and the listening server is still waiting for another client connection.
(This time we pipe the output of netstat into grep, printing only the lines with our server's
well-known port. Doing this also removes the heading line.)

We can follow through the steps involved in the normal termination of our client and
server:

1. When we type our EOF character, fgets returns a null pointer and the function
str_cli (Figure 5.5) returns.

2. When str_cli returns to the client main function (Figure 5.4), the latter terminates
by calling exit.

3. Part of process termination is the closing of all open descriptors, so the client socket
is closed by the kernel. This sends a FIN to the server, to which the server TCP
responds with an ACK. This is the first half of the TCP connection termination
sequence. At this point, the server socket is in the CLOSE_WAIT state and the client
socket is in the FIN_WAIT_2 state (Figures 2.4 and 2.5).

4. When the server TCP receives the FIN, the server child is blocked in a call to 
readline (Figure 5.3), and readline then returns 0. This causes the str_echo
function to return to the server child main.

5. The server child terminates by calling exit (Figure 5.2).

6. All open descriptors in the server child are closed. The closing of the connected
socket by the child causes the final two segments of the TCP connection termination
to take place: a FIN from the server to the client, and an ACK from the client (

Page 171

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


Figure 2.5). At this point, the connection is completely terminated. The client socket
enters the TIME_WAIT state.

7. Finally, the SIGCHLD signal is sent to the parent when the server child terminates.
This occurs in this example, but we do not catch the signal in our code, and the
default action of the signal is to be ignored. Thus, the child enters the zombie state.
We can verify this with the ps command.

linux % ps -t pts/6 -o pid,ppid,tty,stat,args,wchan

  PID  PPID TT       STAT COMMAND          WCHAN

22038 22036 pts/6    S    -bash            read_chan

17870 22038 pts/6    S    ./tcpserv01      wait_for_connect

19315 17870 pts/6    Z    [tcpserv01 <defu do_exit

The STAT of the child is now Z (for zombie).

We need to clean up our zombie processes and doing this requires dealing with Unix
signals. In the next section, we will give an overview of signal handling.

[ Team LiB ]

Page 172

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

5.8 POSIX Signal Handling
A signal is a notification to a process that an event has occurred. Signals are sometimes
called software interrupts. Signals usually occur asynchronously. By this we mean that a
process doesn't know ahead of time exactly when a signal will occur.

Signals can be sent

 By one process to another process (or to itself)

 By the kernel to a process

The SIGCHLD signal that we described at the end of the previous section is one that is sent
by the kernel whenever a process terminates, to the parent of the terminating process.

Every signal has a disposition, which is also called the action associated with the signal.
We set the disposition of a signal by calling the sigaction function (described shortly) and
we have three choices for the disposition:

1. We can provide a function that is called whenever a specific signal occurs. This
function is called a signal handler and this action is called catching a signal. The two
signals SIGKILL and SIGSTOP cannot be caught. Our function is called with a single
integer argument that is the signal number and the function returns nothing. Its
function prototype is therefore

2.
3.
4.
5. void handler (int signo);

6.

For most signals, calling sigaction and specifying a function to be called when the
signal occurs is all that is required to catch a signal. But we will see later that a few
signals, SIGIO, SIGPOLL, and SIGURG, all require additional actions on the part of the
process to catch the signal.

7. We can ignore a signal by setting its disposition to SIG_IGN. The two signals
SIGKILL and SIGSTOP cannot be ignored.

8. We can set the default disposition for a signal by setting its disposition to SIG_DFL.
The default is normally to terminate a process on receipt of a signal, with certain
signals also generating a core image of the process in its current working directory.
There are a few signals whose default disposition is to be ignored: SIGCHLD and
SIGURG (sent on the arrival of out-of-band data, Chapter 24) are two that we will
encounter in this text.

signal Function
The POSIX way to establish the disposition of a signal is to call the sigaction function.
This gets complicated, however, as one argument to the function is a structure that we
must allocate and fill in. An easier way to set the disposition of a signal is to call the 
signal function. The first argument is the signal name and the second argument is either a
pointer to a function or one of the constants SIG_IGN or SIG_DFL. But, signal is an
historical function that predates POSIX. Different implementations provide different signal
semantics when it is called, providing backward compatibility, whereas POSIX explicitly
spells out the semantics when sigaction is called. The solution is to define our own
function named signal that just calls the POSIX sigaction function. This provides a
simple interface with the desired POSIX semantics. We include this function in our own

Page 173

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


library, along with our err_XXX functions and our wrapper functions, for example, that we
specify when building any of our programs in this text. This function is shown in Figure 5.6
(the corresponding wrapper function, Signal, is not shown here as it would be the same
whether it called our function or a vendor-supplied signal function).

Figure 5.6 signal function that calls the POSIX sigaction function.

lib/signal.c

 1 #include    "unp.h"

 2 Sigfunc *

 3 signal (int signo, Sigfunc *func)

 4 {

 5     struct sigaction act, oact;

 6     act.sa_handler = func;

 7     sigemptyset (&act.sa_mask);

 8     act.sa_flags = 0;

 9     if (signo == SIGALRM) {

10 #ifdef  SA_INTERRUPT

11         act.sa_flags |= SA_INTERRUPT;     /* SunOS 4.x */

12 #endif

13     } else {

14 #ifdef  SA_RESTART

15         act.sa_flags |= SA_RESTART; /* SVR4, 4.4BSD */

16 #endif

17     }

18     if (sigaction (signo, &act, &oact) < 0)

19         return (SIG_ERR);

20     return (oact.sa_handler);

21 }

Simplify function prototype using typedef

2 3 The normal function prototype for signal is complicated by the level of nested
parentheses.

void (*signal (int signo, void (*func) (int))) (int);

To simplify this, we define the Sigfunc type in our unp.h header as

typedef    void    Sigfunc(int);

stating that signal handlers are functions with an integer argument and the function
returns nothing (void). The function prototype then becomes

Sigfunc *signal (int signo, Sigfunc *func);

A pointer to a signal handling function is the second argument to the function, as well as
the return value from the function.

Page 174

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


Set handler

6 The sa_handler member of the sigaction structure is set to the func argument.

Set signal mask for handler

7 POSIX allows us to specify a set of signals that will be blocked when our signal handler is
called. Any signal that is blocked cannot be delivered to a process. We set the sa_mask
member to the empty set, which means that no additional signals will be blocked while our
signal handler is running. POSIX guarantees that the signal being caught is always blocked
while its handler is executing.

Set SA_RESTART flag

8 17 SA_RESTART is an optional flag. When the flag is set, a system call interrupted by this
signal will be automatically restarted by the kernel. (We will talk more about interrupted
system calls in the next section when we continue our example.) If the signal being caught
is not SIGALRM, we specify the SA_RESTART flag, if defined. (The reason for making a special
case for SIGALRM is that the purpose of generating this signal is normally to place a timeout
on an I/O operation, as we will show in Section 14.2, in which case, we want the blocked
system call to be interrupted by the signal.) Some older systems, notably SunOS 4.x,
automatically restart an interrupted system call by default and then define the complement
of this flag as SA_INTERRUPT. If this flag is defined, we set it if the signal being caught is
SIGALRM.

Call sigaction

18 20 We call sigaction and then return the old action for the signal as the return value of
the signal function.

Throughout this text, we will use the signal function from Figure 5.6.

POSIX Signal Semantics
We summarize the following points about signal handling on a POSIX-compliant system:

 Once a signal handler is installed, it remains installed. (Older systems removed the
signal handler each time it was executed.)

 While a signal handler is executing, the signal being delivered is blocked.
Furthermore, any additional signals that were specified in the sa_mask signal set
passed to sigaction when the handler was installed are also blocked. In Figure 5.6,
we set sa_mask to the empty set, meaning no additional signals are blocked other
than the signal being caught.

 If a signal is generated one or more times while it is blocked, it is normally
delivered only one time after the signal is unblocked. That is, by default, Unix
signals are not queued. We will see an example of this in the next section. The
POSIX real-time standard, 1003.1b, defines some reliable signals that are queued,
but we do not use them in this text.

 It is possible to selectively block and unblock a set of signals using the sigprocmask
function. This lets us protect a critical region of code by preventing certain signals
from being caught while that region of code is executing.

[ Team LiB ]

Page 175

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

5.9 Handling SIGCHLD Signals
The purpose of the zombie state is to maintain information about the child for the parent to
fetch at some later time. This information includes the process ID of the child, its
termination status, and information on the resource utilization of the child (CPU time,
memory, etc.). If a process terminates, and that process has children in the zombie state,
the parent process ID of all the zombie children is set to 1 (the init process), which will
inherit the children and clean them up (i.e., init will wait for them, which removes the
zombie). Some Unix systems show the COMMAND column for a zombie process as 
<defunct>.

Handling Zombies
Obviously we do not want to leave zombies around. They take up space in the kernel and
eventually we can run out of processes. Whenever we fork children, we must wait for
them to prevent them from becoming zombies. To do this, we establish a signal handler to
catch SIGCHLD, and within the handler, we call wait. (We will describe the wait and
waitpid functions in Section 5.10.) We establish the signal handler by adding the function
call

Signal (SIGCHLD, sig_chld);

in Figure 5.2, after the call to listen. (It must be done sometime before we fork the first
child and needs to be done only once.) We then define the signal handler, the function 
sig_chld, which we show in Figure 5.7.

Figure 5.7 Version of SIGCHLD signal handler that calls wait (improved in
Figure 5.11).

tcpcliserv/sigchldwait.c

 1 #include     "unp.h"

 

 2 void

 3 sig_chld(int signo)

 4 {

 5     pid_t   pid;

 6     int     stat;

 7     pid = wait(&stat);

 8     printf("child %d terminated\", pid);

 9     return;

10 }

Warning: Calling standard I/O functions such as printf in a signal handler is not
recommended, for reasons that we will discuss in Section 11.18. We call printf here as a
diagnostic tool to see when the child terminates.

Under System V and Unix 98, the child of a process does not become a zombie if the
process sets the disposition of SIGCHLD to SIG_IGN. Unfortunately, this works only under
System V and Unix 98. POSIX explicitly states that this behavior is unspecified. The
portable way to handle zombies is to catch SIGCHLD and call wait or waitpid.

Page 176

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


If we compile this program Figure 5.2, with the call to Signal, with our sig_chld handler
 under Solaris 9 and use the signal function from the system library (not our version
from Figure 5.6), we have the following:

solaris % tcpserv02 & start server in background

[2] 16939  

solaris % tcpcli01 127.0.0.1 then start client in foreground

hi there we type this

hi there and this is echoed

^D we type our EOF character

child 16942 terminated output by printf in signal handler

accept error: Interrupted system call main function aborts

The sequence of steps is as follows:

1. We terminate the client by typing our EOF character. The client TCP sends a FIN to
the server and the server responds with an ACK.

2. The receipt of the FIN delivers an EOF to the child's pending readline. The child
terminates.

3. The parent is blocked in its call to accept when the SIGCHLD signal is delivered. The
sig_chld function executes (our signal handler), wait fetches the child's PID and
termination status, and printf is called from the signal handler. The signal handler
returns.

4. Since the signal was caught by the parent while the parent was blocked in a slow
system call (accept), the kernel causes the accept to return an error of EINTR
(interrupted system call). The parent does not handle this error (Figure 5.2), so it
aborts.

The purpose of this example is to show that when writing network programs that catch
signals, we must be cognizant of interrupted system calls, and we must handle them. In
this specific example, running under Solaris 9, the signal function provided in the
standard C library does not cause an interrupted system call to be automatically restarted
by the kernel. That is, the SA_RESTART flag that we set in Figure 5.6 is not set by the
signal function in the system library. Some other systems automatically restart the
interrupted system call. If we run the same example under 4.4BSD, using its library
version of the signal function, the kernel restarts the interrupted system call and accept
does not return an error. To handle this potential problem between different operating
systems is one reason we define our own version of the signal function that we use
throughout the text (Figure 5.6).

As part of the coding conventions used in this text, we always code an explicit return in
our signal handlers (Figure 5.7), even though falling off the end of the function does the
same thing for a function returning void. When reading the code, the unnecessary return
statement acts as a reminder that the return may interrupt a system call.

Handling Interrupted System Calls

Page 177

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


We used the term "slow system call" to describe accept, and we use this term for any
system call that can block forever. That is, the system call need never return. Most
networking functions fall into this category. For example, there is no guarantee that a
server's call to accept will ever return, if there are no clients that will connect to the
server. Similarly, our server's call to read in Figure 5.3 will never return if the client never
sends a line for the server to echo. Other examples of slow system calls are reads and
writes of pipes and terminal devices. A notable exception is disk I/O, which usually returns
to the caller (assuming no catastrophic hardware failure).

The basic rule that applies here is that when a process is blocked in a slow system call and
the process catches a signal and the signal handler returns, the system call can return an
error of EINTR. Some kernels automatically restart some interrupted system calls. For
portability, when we write a program that catches signals (most concurrent servers catch 
SIGCHLD), we must be prepared for slow system calls to return EINTR. Portability problems
are caused by the qualifiers "can" and "some," which were used earlier, and the fact that
support for the POSIX SA_RESTART flag is optional. Even if an implementation supports the
SA_RESTART flag, not all interrupted system calls may automatically be restarted. Most
Berkeley-derived implementations, for example, never automatically restart select, and
some of these implementations never restart accept or recvfrom.

To handle an interrupted accept, we change the call to accept in Figure 5.2, the beginning
of the for loop, to the following:

     for ( ; ; ) {

         clilen = sizeof (cliaddr);

         if ( (connfd = accept (listenfd, (SA *) &cliaddr, &clilen)) < 0) {

             if (errno == EINTR)

                 continue;         /* back to for () */

             else

                 err_sys ("accept error");

        }

Notice that we call accept and not our wrapper function Accept, since we must handle the
failure of the function ourselves.

What we are doing in this piece of code is restarting the interrupted system call. This is
fine for accept, along with functions such as read, write, select, and open. But there is
one function that we cannot restart: connect. If this function returns EINTR, we cannot call
it again, as doing so will return an immediate error. When connect is interrupted by a
caught signal and is not automatically restarted, we must call select to wait for the
connection to complete, as we will describe in Section 16.3.

[ Team LiB ]

Page 178

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

5.10 wait and waitpid Functions
In Figure 5.7, we called the wait function to handle the terminated child.

#include <sys/wait.h>

pid_t wait (int *statloc);

pid_t waitpid (pid_t pid, int *statloc, int options);

Both return: process ID if OK, 0 or 1 on error

wait and waitpid both return two values: the return value of the function is the process ID
of the terminated child, and the termination status of the child (an integer) is returned
through the statloc pointer. There are three macros that we can call that examine the
termination status and tell us if the child terminated normally, was killed by a signal, or
was just stopped by job control. Additional macros let us then fetch the exit status of the
child, or the value of the signal that killed the child, or the value of the job-control signal
that stopped the child. We will use the WIFEXITED and WEXITSTATUS macros in Figure 15.10
for this purpose.

If there are no terminated children for the process calling wait, but the process has one or
more children that are still executing, then wait blocks until the first of the existing
children terminates.

waitpid gives us more control over which process to wait for and whether or not to block.
First, the pid argument lets us specify the process ID that we want to wait for. A value of
-1 says to wait for the first of our children to terminate. (There are other options, dealing
with process group IDs, but we do not need them in this text.) The options argument lets
us specify additional options. The most common option is WNOHANG. This option tells the
kernel not to block if there are no terminated children.

Difference between wait and waitpid

We now illustrate the difference between the wait and waitpid functions when used to
clean up terminated children. To do this, we modify our TCP client as shown in Figure 5.9.
The client establishes five connections with the server and then uses only the first one (
sockfd[0]) in the call to str_cli. The purpose of establishing multiple connections is to
spawn multiple children from the concurrent server, as shown in Figure 5.8.

Figure 5.8. Client with five established connections to same
concurrent server.

Figure 5.9 TCP client that establishes five connections with server.

tcpcliserv/tcpcli04.c

Page 179

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


 1 #include     "unp.h"

 2 int

 3 main (int argc, char **argv)

 4 {

 5      int     i, sockfd[5];

 6      struct sockaddr_in servaddr;

 7      if (argc != 2)

 8          err_quit ("usage: tcpcli <IPaddress>";

 9      for (i = 0; i < 5; i++) {

10          sockfd[i] = Socket (AF_INET, SOCK_STREAM, 0);

11          bzero (&servaddr, sizeof (servaddr));

12          servaddr.sin_family = AF_INET;

13          servaddr.sin_port = htons (SERV_PORT);

14          Inet_pton (AF_INET, argv[1], &servaddr.sin_addr);

15          Connect (sockfd[i], (SA *) &servaddr, sizeof (servaddr));

16     }

17     str_cli (stdin, sockfd[0]);  /* do it all */

18     exit(0);

19 }

When the client terminates, all open descriptors are closed automatically by the kernel (we
do not call close, only exit), and all five connections are terminated at about the same
time. This causes five FINs to be sent, one on each connection, which in turn causes all five
server children to terminate at about the same time. This causes five SIGCHLD signals to be
delivered to the parent at about the same time, which we show in Figure 5.10.

Figure 5.10. Client terminates, closing all five connections,
terminating all five children.

It is this delivery of multiple occurrences of the same signal that causes the problem we
are about to see.

We first run the server in the background and then our new client. Our server is Figure 5.2,
modified to call signal to establish Figure 5.7 as a signal handler for SIGCHLD.

linux % tcpserv03 &  

[1] 20419  

linux % tcpcli04 127.0.0.1  

Page 180

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


linux % tcpserv03 &  

hello we type this

hello and it is echoed

^D we then type our EOF character

child 20426 terminated output by server

The first thing we notice is that only one printf is output, when we expect all five children
to have terminated. If we execute ps, we see that the other four children still exist as
zombies.

        PID TTY          TIME CMD

        20419 pts/6     00:00:00 tcpserv03

        20421 pts/6     00:00:00 tcpserv03 <defunct>

        20422 pts/6     00:00:00 tcpserv03 <defunct>

        20423 pts/6     00:00:00 tcpserv03 <defunct>

Establishing a signal handler and calling wait from that handler are insufficient for
preventing zombies. The problem is that all five signals are generated before the signal
handler is executed, and the signal handler is executed only one time because Unix signals
are normally not queued. Furthermore, this problem is nondeterministic. In the example
we just ran, with the client and server on the same host, the signal handler is executed
once, leaving four zombies. But if we run the client and server on different hosts, the signal
handler is normally executed two times: once as a result of the first signal being
generated, and since the other four signals occur while the signal handler is executing, the
handler is called only one more time. This leaves three zombies. But sometimes, probably
dependent on the timing of the FINs arriving at the server host, the signal handler is
executed three or even four times.

The correct solution is to call waitpid instead of wait. Figure 5.11 shows the version of
our sig_chld function that handles SIGCHLD correctly. This version works because we call
waitpid within a loop, fetching the status of any of our children that have terminated. We
must specify the WNOHANG option: This tells waitpid not to block if there are running
children that have not yet terminated. In Figure 5.7, we cannot call wait in a loop, because
there is no way to prevent wait from blocking if there are running children that have not
yet terminated.

Figure 5.12 shows the final version of our server. It correctly handles a return of EINTR
from accept and it establishes a signal handler (Figure 5.11) that calls waitpid for all
terminated children.

Figure 5.11 Final (correct) version of sig_chld function that calls waitpid
.

tcpcliserv/sigchldwaitpid.c

 1 #include    "unp.h"

 2 void

 3 sig_chld(int signo)

 4 {

 5     pid_t    pid;

Page 181

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


 6     int      stat;

 7     while ( (pid = waitpid(-1, &stat, WNOHANG)) > 0)

 8         printf("child %d terminated\n", pid);

 9     return;

10 }

Figure 5.12 Final (correct) version of TCP server that handles an error
of EINTR from accept.

tcpcliserv/tcpserv04.c

 1 #include     "unp.h"

 2 int

 3 main(int argc, char **argv)

 4 {

 5     int     listenfd, connfd;

 6     pid_t   childpid;

 7     socklen_t clilen;

 8     struct sockaddr_in cliaddr, servaddr;

 9     void    sig_chld(int);

10     listenfd = Socket (AF_INET, SOCK_STREAM, 0);

11     bzero (&servaddr, sizeof(servaddr));

12     servaddr.sin_family = AF_INET;

13     servaddr.sin_addr.s_addr = htonl(INADDR_ANY);

14     servaddr.sin_port = htons(SERV_PORT);

15     Bind(listenfd, (SA *) &servaddr, sizeof(servaddr));

16     Listen(listenfd, LISTENQ);

17     Signal (SIGCHLD, sig_chld); /* must call waitpid() */

18     for ( ; ; ) {

19         clilen = sizeof(cliaddr);

20         if ( (connfd = accept (listenfd, (SA *) &cliaddr, &clilen)) < 0) {

21             if (errno == EINTR)

22                 continue;          /* back to for() */

23             else

24                 err_sys("accept error");

25         }

26         if ( (childpid = Fork()) == 0) { /* child process */

27             Close(listenfd);    /* close listening socket */

28             str_echo(connfd);   /* process the request */

29             exit(0);

30         }

31         Close (connfd);         /* parent closes connected socket */

32     }

33 }

The purpose of this section has been to demonstrate three scenarios that we can encounter
with network programming:

1. We must catch the SIGCHLD signal when forking child processes.

2. We must handle interrupted system calls when we catch signals.

3. A SIGCHLD handler must be coded correctly using waitpid to prevent any zombies

Page 182

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


from being left around.

The final version of our TCP server (Figure 5.12), along with the SIGCHLD handler in Figure
5.11, handles all three scenarios.

[ Team LiB ]

Page 183

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

5.11 Connection Abort before accept Returns
There is another condition similar to the interrupted system call example in the previous
section that can cause accept to return a nonfatal error, in which case we should just call
accept again. The sequence of packets shown in Figure 5.13 has been seen on busy
servers (typically busy Web servers).

Figure 5.13. Receiving an RST for an ESTABLISHED connection before 
accept is called.

Here, the three-way handshake completes, the connection is established, and then the
client TCP sends an RST (reset). On the server side, the connection is queued by its TCP,
waiting for the server process to call accept when the RST arrives. Sometime later, the
server process calls accept.

An easy way to simulate this scenario is to start the server, have it call socket, bind, and
listen, and then go to sleep for a short period of time before calling accept. While the
server process is asleep, start the client and have it call socket and connect. As soon as
connect returns, set the SO_LINGER socket option to generate the RST (which we will
describe in Section 7.5 and show an example of in Figure 16.21) and terminate.

Unfortunately, what happens to the aborted connection is implementation-dependent.
Berkeley-derived implementations handle the aborted connection completely within the
kernel, and the server process never sees it. Most SVR4 implementations, however, return
an error to the process as the return from accept, and the error depends on the
implementation. These SVR4 implementations return an errno of EPROTO ("protocol error"),
but POSIX specifies that the return must be ECONNABORTED ("software caused connection
abort") instead. The reason for the POSIX change is that EPROTO is also returned when
some fatal protocol-related events occur on the streams subsystem. Returning the same
error for the nonfatal abort of an established connection by the client makes it impossible
for the server to know whether to call accept again or not. In the case of the ECONNABORTED
error, the server can ignore the error and just call accept again.

The steps involved in Berkeley-derived kernels that never pass this error to the process can
be followed in TCPv2. The RST is processed on p. 964, causing tcp_close to be called. This
function calls in_pcbdetach on p. 897, which in turn calls sofree on p. 719. sofree (p.
473) finds that the socket being aborted is still on the listening socket's completed
connection queue and removes the socket from the queue and frees the socket. When the
server gets around to calling accept, it will never know that a connection that was
completed has since been removed from the queue.

We will return to these aborted connections in Section 16.6 and see how they can present

Page 184

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


a problem when combined with select and a listening socket in the normal blocking mode.

[ Team LiB ]

Page 185

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

5.12 Termination of Server Process
We will now start our client/server and then kill the server child process. This simulates the
crashing of the server process, so we can see what happens to the client. (We must be
careful to distinguish between the crashing of the server process, which we are about to
describe, and the crashing of the server host, which we will describe in Section 5.14.) The
following steps take place:

1. We start the server and client and type one line to the client to verify that all is
okay. That line is echoed normally by the server child.

2. We find the process ID of the server child and kill it. As part of process
termination, all open descriptors in the child are closed. This causes a FIN to be sent
to the client, and the client TCP responds with an ACK. This is the first half of the
TCP connection termination.

3. The SIGCHLD signal is sent to the server parent and handled correctly (Figure 5.12).

4. Nothing happens at the client. The client TCP receives the FIN from the server TCP
and responds with an ACK, but the problem is that the client process is blocked in
the call to fgets waiting for a line from the terminal.

5. Running netstat at this point shows the state of the sockets.

6.
7.
8.
9. linux % netstat -a | grep 9877

10. tcp        0      0 *:9877               *:*                 LISTEN
11. tcp        0      0 localhost:9877       localhost:43604     FIN_WAIT2
12. tcp        1      0 localhost:43604      localhost:9877      CLOSE_WAIT
13.

From Figure 2.4, we see that half of the TCP connection termination sequence has
taken place.

14. We can still type a line of input to the client. Here is what happens at the client
starting from Step 1:

linux % tcpcli01 127.0.0.1 start client

hello the first line that we type

hello is echoed correctly here we kill the server
child on the server host

another line we then type a second line to the client

str_cli : server terminated
prematurely

15. When we type "another line," str_cli calls writen and the client TCP sends the
data to the server. This is allowed by TCP because the receipt of the FIN by the
client TCP only indicates that the server process has closed its end of the connection
and will not be sending any more data. The receipt of the FIN does not tell the client
TCP that the server process has terminated (which in this case, it has). We will
cover this again in Section 6.6 when we talk about TCP's half-close.

Page 186

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


16. When the server TCP receives the data from the client, it responds with an RST
since the process that had that socket open has terminated. We can verify that the
RST was sent by watching the packets with tcpdump.

17. The client process will not see the RST because it calls readline immediately after
the call to writen and readline returns 0 (EOF) immediately because of the FIN
that was received in Step 2. Our client is not expecting to receive an EOF at this
point (Figure 5.5) so it quits with the error message "server terminated
prematurely."

18. When the client terminates (by calling err_quit in Figure 5.5), all its open
descriptors are closed.

What we have described also depends on the timing of the example. The client's call to 
readline may happen before the server's RST is received by the client, or it may happen
after. If the readline happens before the RST is received, as we've shown in our example,
the result is an unexpected EOF in the client. But if the RST arrives first, the result is an 
ECONNRESET ("Connection reset by peer") error return from readline.

The problem in this example is that the client is blocked in the call to fgets when the FIN
arrives on the socket. The client is really working with two descriptors the socket and the
user input and instead of blocking on input from only one of the two sources (as str_cli
is currently coded), it should block on input from either source. Indeed, this is one purpose
of the select and poll functions, which we will describe in Chapter 6. When we recode
the str_cli function in Section 6.4, as soon as we kill the server child, the client is
notified of the received FIN.

[ Team LiB ]

Page 187

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

5.13 SIGPIPE Signal
What happens if the client ignores the error return from readline and writes more data to
the server? This can happen, for example, if the client needs to perform two writes to the
server before reading anything back, with the first write eliciting the RST.

The rule that applies is: When a process writes to a socket that has received an RST, the 
SIGPIPE signal is sent to the process. The default action of this signal is to terminate the
process, so the process must catch the signal to avoid being involuntarily terminated.

If the process either catches the signal and returns from the signal handler, or ignores the
signal, the write operation returns EPIPE.

A frequently asked question (FAQ) on Usenet is how to obtain this signal on the first write,
and not the second. This is not possible. Following our discussion above, the first write
elicits the RST and the second write elicits the signal. It is okay to write to a socket that
has received a FIN, but it is an error to write to a socket that has received an RST.

To see what happens with SIGPIPE, we modify our client as shown in Figure 5.14.

Figure 5.14 str_cli that calls writen twice.

tcpcliserv/str_cli11.c

 1 #include     "unp.h"

 2 void

 3 str_cli(FILE *fp, int sockfd)

 4 {

 5     char    sendline [MAXLINE], recvline [MAXLINE];

 6     while (Fgets(sendline, MAXLINE, fp) != NULL) {

 7         Writen(sockfd, sendline, 1);

 8         sleep(1);

 9         Writen(sockfd, sendline + 1, strlen(sendline) - 1);

10         if (Readline(sockfd, recvline, MAXLINE) == 0)

11             err_quit("str_cli: server terminated prematurely");

12         Fputs(recvline, stdout);

13     }

14 }

7 9 All we have changed is to call writen two times: the first time the first byte of data is
written to the socket, followed by a pause of one second, followed by the remainder of the
line. The intent is for the first writen to elicit the RST and then for the second writen to
generate SIGPIPE.

If we run the client on our Linux host, we get:

linux % tcpclill 127.0.0.1

hi there we type this line

hi there this is echoed by the server

Page 188

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


linux % tcpclill 127.0.0.1

 here we kill the server child

bye then we type this line

Broken pipe this is printed by the shell

We start the client, type in one line, see that line echoed correctly, and then terminate the
server child on the server host. We then type another line ("bye") and the shell tells us the
process died with a SIGPIPE signal (some shells do not print anything when a process dies
without dumping core, but the shell we're using for this example, bash, tells us what we
want to know).

The recommended way to handle SIGPIPE depends on what the application wants to do
when this occurs. If there is nothing special to do, then setting the signal disposition to 
SIG_IGN is easy, assuming that subsequent output operations will catch the error of EPIPE
and terminate. If special actions are needed when the signal occurs (writing to a log file
perhaps), then the signal should be caught and any desired actions can be performed in
the signal handler. Be aware, however, that if multiple sockets are in use, the delivery of
the signal will not tell us which socket encountered the error. If we need to know which 
write caused the error, then we must either ignore the signal or return from the signal
handler and handle EPIPE from the write.

[ Team LiB ]

Page 189

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

5.14 Crashing of Server Host
This scenario will test to see what happens when the server host crashes. To simulate this,
we must run the client and server on different hosts. We then start the server, start the
client, type in a line to the client to verify that the connection is up, disconnect the server
host from the network, and type in another line at the client. This also covers the scenario
of the server host being unreachable when the client sends data (i.e., some intermediate
router goes down after the connection has been established).

The following steps take place:

1. When the server host crashes, nothing is sent out on the existing network
connections. That is, we are assuming the host crashes and is not shut down by an
operator (which we will cover in Section 5.16).

2. We type a line of input to the client, it is written by writen (Figure 5.5), and is sent
by the client TCP as a data segment. The client then blocks in the call to readline,
waiting for the echoed reply.

3. If we watch the network with tcpdump, we will see the client TCP continually
retransmitting the data segment, trying to receive an ACK from the server. Section
25.11 of TCPv2 shows a typical pattern for TCP retransmissions: Berkeley-derived
implementations retransmit the data segment 12 times, waiting for around 9
minutes before giving up. When the client TCP finally gives up (assuming the server
host has not been rebooted during this time, or if the server host has not crashed
but was unreachable on the network, assuming the host was still unreachable), an
error is returned to the client process. Since the client is blocked in the call to 
readline, it returns an error. Assuming the server host crashed and there were no
responses at all to the client's data segments, the error is ETIMEDOUT. But if some
intermediate router determined that the server host was unreachable and responded
with an ICMP "destination unreachable' message, the error is either EHOSTUNREACH
or ENETUNREACH.

Although our client discovers (eventually) that the peer is down or unreachable, there are
times when we want to detect this quicker than having to wait nine minutes. The solution
is to place a timeout on the call to readline, which we will discuss in Section 14.2.

The scenario that we just discussed detects that the server host has crashed only when we
send data to that host. If we want to detect the crashing of the server host even if we are
not actively sending it data, another technique is required. We will discuss the 
SO_KEEPALIVE socket option in Section 7.5.

[ Team LiB ]

Page 190

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

5.15 Crashing and Rebooting of Server Host
In this scenario, we will establish a connection between the client and server and then
assume the server host crashes and reboots. In the previous section, the server host was
still down when we sent it data. Here, we will let the server host reboot before sending it
data. The easiest way to simulate this is to establish the connection, disconnect the server
from the network, shut down the server host and then reboot it, and then reconnect the
server host to the network. We do not want the client to see the server host shut down
(which we will cover in Section 5.16).

As stated in the previous section, if the client is not actively sending data to the server
when the server host crashes, the client is not aware that the server host has crashed.
(This assumes we are not using the SO_KEEPALIVE socket option.) The following steps take
place:

1. We start the server and then the client. We type a line to verify that the connection
is established.

2. The server host crashes and reboots.

3. We type a line of input to the client, which is sent as a TCP data segment to the
server host.

4. When the server host reboots after crashing, its TCP loses all information about
connections that existed before the crash. Therefore, the server TCP responds to the
received data segment from the client with an RST.

5. Our client is blocked in the call to readline when the RST is received, causing
readline to return the error ECONNRESET.

If it is important for our client to detect the crashing of the server host, even if the client is
not actively sending data, then some other technique (such as the SO_KEEPALIVE socket
option or some client/server heartbeat function) is required.

[ Team LiB ]

Page 191

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

5.16 Shutdown of Server Host
The previous two sections discussed the crashing of the server host, or the server host
being unreachable across the network. We now consider what happens if the server host is
shut down by an operator while our server process is running on that host.

When a Unix system is shut down, the init process normally sends the SIGTERM signal to
all processes (we can catch this signal), waits some fixed amount of time (often between 5
and 20 seconds), and then sends the SIGKILL signal (which we cannot catch) to any
processes still running. This gives all running processes a short amount of time to clean up
and terminate. If we do not catch SIGTERM and terminate, our server will be terminated by
the SIGKILL signal. When the process terminates, all open descriptors are closed, and we
then follow the same sequence of steps discussed in Section 5.12. As stated there, we
must use the select or poll function in our client to have the client detect the termination
of the server process as soon as it occurs.

[ Team LiB ]

Page 192

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

5.17 Summary of TCP Example
Before any TCP client and server can communicate with each other, each end must specify
the socket pair for the connection: the local IP address, local port, foreign IP address, and
foreign port. In Figure 5.15, we show these four values as bullets. This figure is from the
client's perspective. The foreign IP address and foreign port must be specified by the client
in the call to connect. The two local values are normally chosen by the kernel as part of
the connect function. The client has the option of specifying either or both of the local
values, by calling bind before connect, but this is not common.

Figure 5.15. Summary of TCP client/server from client's perspective.

As we mentioned in Section 4.10, the client can obtain the two local values chosen by the
kernel by calling getsockname after the connection is established.

Figure 5.16 shows the same four values, but from the server's perspective.

Figure 5.16. Summary of TCP client/server from server's perspective.

The local port (the server's well-known port) is specified by bind. Normally, the server also
specifies the wildcard IP address in this call. If the server binds the wildcard IP address on
a multihomed host, it can determine the local IP address by calling getsockname after the
connection is established (Section 4.10). The two foreign values are returned to the server

Page 193

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


by accept. As we mentioned in Section 4.10, if another program is execed by the server
that calls accept, that program can call getpeername to determine the client's IP address
and port, if necessary.

[ Team LiB ]

Page 194

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

5.18 Data Format
In our example, the server never examines the request that it receives from the client. The
server just reads all the data up through and including the newline and sends it back to
the client, looking for only the newline. This is an exception, not the rule, and normally we
must worry about the format of the data exchanged between the client and server.

Example: Passing Text Strings between Client and Server
Let's modify our server so that it still reads a line of text from the client, but the server
now expects that line to contain two integers separated by white space, and the server
returns the sum of those two integers. Our client and server main functions remain the
same, as does our str_cli function. All that changes is our str_echo function, which we
show in Figure 5.17.

Figure 5.17 str_echo function that adds two numbers.

tcpcliserv/str_ech08.c

 1 #include     "unp.h"

 2 void

 3 str_echo(int sockfd)

 4 {

 5     long     arg1,     arg2;

 6     ssize_t n;

 7     char    line[MAXLINE];

 8     for ( ; ; ) {

 9         if ( (n = Readline(sockfd, line, MAXLINE)) == 0)

10             return;             /* connection closed by other end */

11         if (sscanf(line, "%ld%ld", &arg1, &arg2) == 2)

12             snprintf(line, sizeof(line), "%ld\n", arg1 + arg2);

13         else

14             snprintf(line, sizeof(line), "input error\n");

15         n = strlen(line);

16         Writen(sockfd, line, n);

17     }

18 }

11 14 We call sscanf to convert the two arguments from text strings to long integers, and
then snprintf is called to convert the result into a text string.

This new client and server work fine, regardless of the byte ordering of the client and
server hosts.

Example: Passing Binary Structures between Client and Server
We now modify our client and server to pass binary values across the socket, instead of
text strings. We will see that this does not work when the client and server are run on
hosts with different byte orders, or on hosts that do not agree on the size of a long integer
(Figure 1.17).

Our client and server main functions do not change. We define one structure for the two
arguments, another structure for the result, and place both definitions in our sum.h header,

Page 195

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


shown in Figure 5.18. Figure 5.19 shows the str_cli function.

Figure 5.18 sum.h header.

tcpcliserv/sum.h

1 struct args {

2     long    arg1;

3     long    arg2;

4 };

5 struct result {

6     long    sum;

7 };

Figure 5.19 str_cli function which sends two binary integers to server.

tcpcliserv/str_cli09.c

 1 #include     "unp.h"

 2 #include     "sum.h"

 3 void

 4 str_cli(FILE *fp, int sockfd)

 5 {

 6     char     sendline[MAXLINE];

 7     struct args args;

 8     struct result result;

 9     while  (Fgets(sendline, MAXLINE, fp) != NULL) {

10         if  (sscanf(sendline, "%ld%ld", &args.arg1, &args.arg2) != 2) {

11             printf("invalid input: %s", sendline);

12             continue;

13        }

14        Writen(sockfd, &args, sizeof(args));

15        if (Readn(sockfd, &result, sizeof(result)) == 0)

16            err_quit("str_cli: server terminated prematurely");

17        printf("%ld\n", result.sum);

18     }

19 }

10 14 sscanf converts the two arguments from text strings to binary, and we call writen
to send the structure to the server.

15 17 We call readn to read the reply, and print the result using printf.

Figure 5.20 shows our str_echo function.

Figure 5.20 str_echo function that adds two binary integers.

tcpcliserv/str_ech09.c

 1 #include     "unp.h"

 2 #include     "sum.h"

 3 void

 4 str_echo(int sockfd)

Page 196

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


 5 {

 6     ssize_t n;

 7     struct args args;

 8     struct result result;

 9     for ( ; ; ) {

10         if ( (n = Readn(sockfd, &args, sizeof(args))) == 0)

11             return;             /* connection closed by other end */

12         result.sum = args.arg1 + args.arg2;

13         Writen(sockfd, &result, sizeof (result));

14     }

15 }

9 14 We read the arguments by calling readn, calculate and store the sum, and call writen
to send back the result structure.

If we run the client and server on two machines of the same architecture, say two SPARC
machines, everything works fine. Here is the client interaction:

solaris % :tcpcli09 12.106.32.254  

11 22 we type this

33 this is the server's reply

-11 -44  

-55

But when the client and server are on two machines of different architectures (say the
server is on the big-endian SPARC system freebsd and the client is on the little endian
Intel system linux), it does not work.

linux % tcpcli09 206.168.112.96

1 2 we type this

3 and it works

-22 -77 then we type this

-16777314 and it does not work

The problem is that the two binary integers are sent across the socket in little-endian
format by the client, but interpreted as big-endian integers by the server. We see that it
appears to work for positive integers but fails for negative integers (see Exercise 5.8).
There are really three potential problems with this example:

1. Different implementations store binary numbers in different formats. The most
common formats are big-endian and little-endian, as we described in Section 3.4.

2. Different implementations can store the same C datatype differently. For example,
most 32-bit Unix systems use 32 bits for a long but 64-bit systems typically use 64
bits for the same datatype (Figure 1.17). There is no guarantee that a short, int,
or long is of any certain size.

3. Different implementations pack structures differently, depending on the number of

Page 197

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


bits used for the various datatypes and the alignment restrictions of the machine.
Therefore, it is never wise to send binary structures across a socket.

There are two common solutions to this data format problem:

1. Pass all numeric data as text strings. This is what we did in Figure 5.17. This
assumes that both hosts have the same character set.

2. Explicitly define the binary formats of the supported datatypes (number of bits, big-
or little-endian) and pass all data between the client and server in this format. RPC
packages normally use this technique. RFC 1832 [Srinivasan 1995] describes the 
External Data Representation (XDR) standard that is used with the Sun RPC
package.

[ Team LiB ]

Page 198

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

5.19 Summary
The first version of our echo client/server totaled about 150 lines (including the readline
and writen functions), yet provided lots of details to examine. The first problem we
encountered was zombie children and we caught the SIGCHLD signal to handle this. Our
signal handler then called waitpid and we demonstrated that we must call this function
instead of the older wait function, since Unix signals are not queued. This led us into some
of the details of POSIX signal handling (additional information on this topic is provided in
Chapter 10 of APUE).

The next problem we encountered was the client not being notified when the server
process terminated. We saw that our client's TCP was notified, but we did not receive that
notification since we were blocked, waiting for user input. We will use the select or poll
function in Chapter 6 to handle this scenario, by waiting for any one of multiple descriptors
to be ready, instead of blocking on a single descriptor.

We also discovered that if the server host crashes, we do not detect this until the client
sends data to the server. Some applications must be made aware of this fact sooner; in 
Section 7.5, we will look at the SO_KEEPALIVE socket option.

Our simple example exchanged lines of text, which was okay since the server never looked
at the lines it echoed. Sending numeric data between the client and server can lead to a
new set of problems, as shown.

[ Team LiB ]

Page 199

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Exercises
5.1 Build the TCP server from Figures 5.2 and 5.3 and the TCP client from

Figures 5.4 and 5.5. Start the server and then start the client. Type in a
few lines to verify that the client and server work. Terminate the client
by typing your EOF character and note the time. Use netstat on the
client host to verify that the client's end of the connection goes through
the TIME_WAIT state. Execute netstat every five seconds or so to see
when the TIME_WAIT state ends. What is the MSL for this
implementation?

5.2 What happens with our echo client/server if we run the client and
redirect standard input to a binary file?

5.3 What is the difference between our echo client/server and using the
Telnet client to communicate with our echo server?

5.4 In our example in Section 5.12, we verified that the first two segments
of the connection termination are sent (the FIN from the server that is
then ACKed by the client) by looking at the socket states using netstat
. Are the final two segments exchanged (a FIN from the client that is
ACKed by the server)? If so, when, and if not, why?

5.5 What happens in the example outlined in Section 5.14 if between Steps
2 and 3 we restart our server application on the server host?

5.6 To verify what we claimed happens with SIGPIPE in Section 5.13,
modify Figure 5.4 as follows: Write a signal handler for SIGPIPE that
just prints a message and returns. Establish this signal handler before
calling connect. Change the server's port number to 13, the daytime
server. When the connection is established, sleep for two seconds,
write a few bytes to the socket, sleep for another two seconds, and
write a few more bytes to the socket. Run the program. What happens?

5.7 What happens in Figure 5.15 if the IP address of the server host that is
specified by the client in its call to connect is the IP address associated
with the rightmost datalink on the server, instead of the IP address
associated with the leftmost datalink on the server?

5.8 In our example output from Figure 5.20, when the client and server
were on different endian systems, the example worked for small
positive numbers, but not for small negative numbers. Why? (Hint:
Draw a picture of the values exchanged across the socket, similar to 
Figure 3.9.)

5.9 In our example in Figures 5.19 and 5.20, can we solve the byte
ordering problem by having the client convert the two arguments into
network byte order using htonl, having the server then call ntohl on
each argument before doing the addition, and then doing a similar
conversion on the result?

Page 200

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


5.10 What happens in Figures 5.19 and 5.20 if the client is on a SPARC that
stores a long in 32 bits, but the server is on a Digital Alpha that stores
a long in 64 bits? Does this change if the client and server are swapped
between these two hosts?

5.11 In Figure 5.15, we say that the client IP address is chosen by IP based
on routing. What does this mean?

[ Team LiB ]

Page 201

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Chapter 6. I/O Multiplexing: The select and poll
Functions

Section 6.1.?Introduction

Section 6.2.?I/O Models

Section 6.3.?select Function

Section 6.4.?str_cli Function (Revisited)

Section 6.5.?Batch Input and Buffering

Section 6.6.?shutdown Function

Section 6.7.?str_cli Function (Revisited Again)

Section 6.8.?TCP Echo Server (Revisited)

Section 6.9.?pselect Function

Section 6.10.?poll Function

Section 6.11.?TCP Echo Server (Revisited Again)

Section 6.12.?Summary

Exercises

[ Team LiB ]

Page 202

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

6.1 Introduction
In Section 5.12, we saw our TCP client handling two inputs at the same time: standard
input and a TCP socket. We encountered a problem when the client was blocked in a call
to fgets (on standard input) and the server process was killed. The server TCP correctly
sent a FIN to the client TCP, but since the client process was blocked reading from
standard input, it never saw the EOF until it read from the socket (possibly much later).
What we need is the capability to tell the kernel that we want to be notified if one or more
I/O conditions are ready (i.e., input is ready to be read, or the descriptor is capable of
taking more output). This capability is called I/O multiplexing and is provided by the
select and poll functions. We will also cover a newer POSIX variation of the former,
called pselect.

Some systems provide more advanced ways for processes to wait for a list of events. A poll
device is one mechanism provided in different forms by different vendors. This mechanism
will be described in Chapter 14.

I/O multiplexing is typically used in networking applications in the following scenarios:

 When a client is handling multiple descriptors (normally interactive input and a
network socket), I/O multiplexing should be used. This is the scenario we described
previously.

 It is possible, but rare, for a client to handle multiple sockets at the same time. We
will show an example of this using select in Section 16.5 in the context of a Web
client.

 If a TCP server handles both a listening socket and its connected sockets, I/O
multiplexing is normally used, as we will show in Section 6.8.

 If a server handles both TCP and UDP, I/O multiplexing is normally used. We will
show an example of this in Section 8.15.

 If a server handles multiple services and perhaps multiple protocols (e.g., the inetd
daemon that we will describe in Section 13.5), I/O multiplexing is normally used.

I/O multiplexing is not limited to network programming. Many nontrivial applications find a
need for these techniques.

[ Team LiB ]

Page 203

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

6.2 I/O Models
Before describing select and poll, we need to step back and look at the bigger picture,
examining the basic differences in the five I/O models that are available to us under Unix:

 blocking I/O

 nonblocking I/O

 I/O multiplexing (select and poll)

 signal driven I/O (SIGIO)

 asynchronous I/O (the POSIX aio_functions)

You may want to skim this section on your first reading and then refer back to it as you
encounter the different I/O models described in more detail in later chapters.

As we show in all the examples in this section, there are normally two distinct phases for
an input operation:

1. Waiting for the data to be ready

2. Copying the data from the kernel to the process

For an input operation on a socket, the first step normally involves waiting for data to
arrive on the network. When the packet arrives, it is copied into a buffer within the kernel.
The second step is copying this data from the kernel's buffer into our application buffer.

Blocking I/O Model
The most prevalent model for I/O is the blocking I/O model, which we have used for all our
examples so far in the text. By default, all sockets are blocking. Using a datagram socket
for our examples, we have the scenario shown in Figure 6.1.

Figure 6.1. Blocking I/O model.

We use UDP for this example instead of TCP because with UDP, the concept of data being
"ready" to read is simple: either an entire datagram has been received or it has not. With
TCP it gets more complicated, as additional variables such as the socket's low-water mark
come into play.

In the examples in this section, we also refer to recvfrom as a system call because we are
differentiating between our application and the kernel. Regardless of how recvfrom is

Page 204

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


implemented (as a system call on a Berkeley-derived kernel or as a function that invokes
the getmsg system call on a System V kernel), there is normally a switch from running in
the application to running in the kernel, followed at some time later by a return to the
application.

In Figure 6.1, the process calls recvfrom and the system call does not return until the
datagram arrives and is copied into our application buffer, or an error occurs. The most
common error is the system call being interrupted by a signal, as we described in Section
5.9. We say that our process is blocked the entire time from when it calls recvfrom until it
returns. When recvfrom returns successfully, our application processes the datagram.

Nonblocking I/O Model
When we set a socket to be nonblocking, we are telling the kernel "when an I/O operation
that I request cannot be completed without putting the process to sleep, do not put the
process to sleep, but return an error instead." We will describe nonblocking I/O in Chapter
16, but Figure 6.2 shows a summary of the example we are considering.

Figure 6.2. Nonblocking I/O model.

The first three times that we call recvfrom, there is no data to return, so the kernel
immediately returns an error of EWOULDBLOCK instead. The fourth time we call recvfrom, a
datagram is ready, it is copied into our application buffer, and recvfrom returns
successfully. We then process the data.

When an application sits in a loop calling recvfrom on a nonblocking descriptor like this, it
is called polling. The application is continually polling the kernel to see if some operation is
ready. This is often a waste of CPU time, but this model is occasionally encountered,
normally on systems dedicated to one function.

I/O Multiplexing Model
With I/O multiplexing, we call select or poll and block in one of these two system calls,
instead of blocking in the actual I/O system call. Figure 6.3 is a summary of the I/O
multiplexing model.

Figure 6.3. I/O multiplexing model.

Page 205

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


We block in a call to select, waiting for the datagram socket to be readable. When select
returns that the socket is readable, we then call recvfrom to copy the datagram into our
application buffer.

Comparing Figure 6.3 to Figure 6.1, there does not appear to be any advantage, and in
fact, there is a slight disadvantage because using select requires two system calls instead
of one. But the advantage in using select, which we will see later in this chapter, is that
we can wait for more than one descriptor to be ready.

Another closely related I/O model is to use multithreading with blocking I/O. That model
very closely resembles the model described above, except that instead of using select to
block on multiple file descriptors, the program uses multiple threads (one per file
descriptor), and each thread is then free to call blocking system calls like recvfrom.

Signal-Driven I/O Model
We can also use signals, telling the kernel to notify us with the SIGIO signal when the
descriptor is ready. We call this signal-driven I/O and show a summary of it in Figure 6.4.

Figure 6.4. Signal-Driven I/O model.

We first enable the socket for signal-driven I/O (as we will describe in Section 25.2) and
install a signal handler using the sigaction system call. The return from this system call is
immediate and our process continues; it is not blocked. When the datagram is ready to be
read, the SIGIO signal is generated for our process. We can either read the datagram from
the signal handler by calling recvfrom and then notify the main loop that the data is ready
to be processed (this is what we will do in Section 25.3), or we can notify the main loop
and let it read the datagram.

Regardless of how we handle the signal, the advantage to this model is that we are not

Page 206

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


blocked while waiting for the datagram to arrive. The main loop can continue executing and
just wait to be notified by the signal handler that either the data is ready to process or the
datagram is ready to be read.

Asynchronous I/O Model
Asynchronous I/O is defined by the POSIX specification, and various differences in the
real-time functions that appeared in the various standards which came together to form
the current POSIX specification have been reconciled. In general, these functions work by
telling the kernel to start the operation and to notify us when the entire operation
(including the copy of the data from the kernel to our buffer) is complete. The main
difference between this model and the signal-driven I/O model in the previous section is
that with signal-driven I/O, the kernel tells us when an I/O operation can be initiated, but
with asynchronous I/O, the kernel tells us when an I/O operation is complete. We show an
example in Figure 6.5.

Figure 6.5. Asynchronous I/O model.

We call aio_read (the POSIX asynchronous I/O functions begin with aio_ or lio_) and
pass the kernel the descriptor, buffer pointer, buffer size (the same three arguments for 
read), file offset (similar to lseek), and how to notify us when the entire operation is
complete. This system call returns immediately and our process is not blocked while
waiting for the I/O to complete. We assume in this example that we ask the kernel to
generate some signal when the operation is complete. This signal is not generated until the
data has been copied into our application buffer, which is different from the signal-driven
I/O model.

As of this writing, few systems support POSIX asynchronous I/O. We are not certain, for
example, if systems will support it for sockets. Our use of it here is as an example to
compare against the signal-driven I/O model.

Comparison of the I/O Models
Figure 6.6 is a comparison of the five different I/O models. It shows that the main
difference between the first four models is the first phase, as the second phase in the first
four models is the same: the process is blocked in a call to recvfrom while the data is
copied from the kernel to the caller's buffer. Asynchronous I/O, however, handles both
phases and is different from the first four.

Figure 6.6. Comparison of the five I/O models.

Page 207

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


Synchronous I/O versus Asynchronous I/O
POSIX defines these two terms as follows:

 A synchronous I/O operation causes the requesting process to be blocked until that
I/O operation completes.

 An asynchronous I/O operation does not cause the requesting process to be blocked.

Using these definitions, the first four I/O models blocking, nonblocking, I/O multiplexing,
and signal-driven I/O are all synchronous because the actual I/O operation (recvfrom)
blocks the process. Only the asynchronous I/O model matches the asynchronous I/O
definition.

[ Team LiB ]

Page 208

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

6.3 select Function
This function allows the process to instruct the kernel to wait for any one of multiple events
to occur and to wake up the process only when one or more of these events occurs or when
a specified amount of time has passed.

As an example, we can call select and tell the kernel to return only when:

 Any of the descriptors in the set {1, 4, 5} are ready for reading

 Any of the descriptors in the set {2, 7} are ready for writing

 Any of the descriptors in the set {1, 4} have an exception condition pending

 10.2 seconds have elapsed

That is, we tell the kernel what descriptors we are interested in (for reading, writing, or an
exception condition) and how long to wait. The descriptors in which we are interested are
not restricted to sockets; any descriptor can be tested using select.

Berkeley-derived implementations have always allowed I/O multiplexing with any
descriptor. SVR3 originally limited I/O multiplexing to descriptors that were STREAMS
devices (Chapter 31), but this limitation was removed with SVR4.

#include <sys/select.h>

#include <sys/time.h>

int select(int maxfdp1, fd_set *readset, fd_set *writeset, fd_set *exceptset, const
struct timeval *timeout);

Returns: positive count of ready descriptors, 0 on timeout,  1 on error

We start our description of this function with its final argument, which tells the kernel how
long to wait for one of the specified descriptors to become ready. A timeval structure
specifies the number of seconds and microseconds.

struct timeval  {

  long   tv_sec;          /* seconds */

  long   tv_usec;         /* microseconds */

};

There are three possibilities:

1. Wait forever  Return only when one of the specified descriptors is ready for I/O. For
this, we specify the timeout argument as a null pointer.

2. Wait up to a fixed amount of time  Return when one of the specified descriptors is
ready for I/O, but do not wait beyond the number of seconds and microseconds
specified in the timeval structure pointed to by the timeout argument.

3. Do not wait at all  Return immediately after checking the descriptors. This is called
polling. To specify this, the timeout argument must point to a timeval structure and
the timer value (the number of seconds and microseconds specified by the

Page 209

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


structure) must be 0.

The wait in the first two scenarios is normally interrupted if the process catches a signal
and returns from the signal handler.

Berkeley-derived kernels never automatically restart select (p. 527 of TCPv2), while SVR4
will if the SA_RESTART flag is specified when the signal handler is installed. This means that
for portability, we must be prepared for select to return an error of EINTR if we are
catching signals.

Although the timeval structure lets us specify a resolution in microseconds, the actual
resolution supported by the kernel is often more coarse. For example, many Unix kernels
round the timeout value up to a multiple of 10 ms. There is also a scheduling latency
involved, meaning it takes some time after the timer expires before the kernel schedules
this process to run.

On some systems, select will fail with EINVAL if the tv_sec field in the timeout is over 100
million seconds. Of course, that's a very large timeout (over three years) and likely not
very useful, but the point is that the timeval structure can represent values that are not
supported by select.

The const qualifier on the timeout argument means it is not modified by select on return.
For example, if we specify a time limit of 10 seconds, and select returns before the timer
expires with one or more of the descriptors ready or with an error of EINTR, the timeval
structure is not updated with the number of seconds remaining when the function returns.
If we wish to know this value, we must obtain the system time before calling select, and
then again when it returns, and subtract the two (any robust program will take into
account that the system time may be adjusted by either the administrator or by a daemon
like ntpd occasionally).

Some Linux versions modify the timeval structure. Therefore, for portability, assume the
timeval structure is undefined upon return, and initialize it before each call to select.
POSIX specifies the const qualifier.

The three middle arguments, readset, writeset, and exceptset, specify the descriptors that
we want the kernel to test for reading, writing, and exception conditions. There are only
two exception conditions currently supported:

1. The arrival of out-of-band data for a socket. We will describe this in more detail in 
Chapter 24.

2. The presence of control status information to be read from the master side of a
pseudo-terminal that has been put into packet mode. We do not talk about
pseudo-terminals in this book.

A design problem is how to specify one or more descriptor values for each of these three
arguments. select uses descriptor sets, typically an array of integers, with each bit in each
integer corresponding to a descriptor. For example, using 32-bit integers, the first element
of the array corresponds to descriptors 0 through 31, the second element of the array
corresponds to descriptors 32 through 63, and so on. All the implementation details are
irrelevant to the application and are hidden in the fd_set datatype and the following four
macros:

void FD_ZERO(fd_set *fdset); /* clear all bits in fdset */

void FD_SET(int fd, fd_set *fdset); /* turn on the bit for fd in fdset */

void FD_CLR(int fd, fd_set *fdset); /* turn off the bit for fd in fdset */

Page 210

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


void FD_ZERO(fd_set *fdset); /* clear all bits in fdset */

int FD_ISSET(int fd, fd_set *fdset); /* is the bit for fd on in fdset ? */

We allocate a descriptor set of the fd_set datatype, we set and test the bits in the set
using these macros, and we can also assign it to another descriptor set across an equals
sign (=) in C.

What we are describing, an array of integers using one bit per descriptor, is just one
possible way to implement select. Nevertheless, it is common to refer to the individual
descriptors within a descriptor set as bits, as in "turn on the bit for the listening descriptor
in the read set."

We will see in Section 6.10 that the poll function uses a completely different
representation: a variable-length array of structures with one structure per descriptor.

For example, to define a variable of type fd_set and then turn on the bits for descriptors 1,
4, and 5, we write

fd_set rset;

FD_ZERO(&rset);          /* initialize the set: all bits off */

FD_SET(1, &rset);        /* turn on bit for fd 1 */

FD_SET(4, &rset);        /* turn on bit for fd 4 */

FD_SET(5, &rset);        /* turn on bit for fd 5 */

It is important to initialize the set, since unpredictable results can occur if the set is
allocated as an automatic variable and not initialized.

Any of the middle three arguments to select, readset, writeset, or exceptset, can be
specified as a null pointer if we are not interested in that condition. Indeed, if all three
pointers are null, then we have a higher precision timer than the normal Unix sleep
function (which sleeps for multiples of a second). The poll function provides similar
functionality. Figures C.9 and C.10 of APUE show a sleep_us function implemented using
both select and poll that sleeps for multiples of a microsecond.

The maxfdp1 argument specifies the number of descriptors to be tested. Its value is the
maximum descriptor to be tested plus one (hence our name of maxfdp1). The descriptors
0, 1, 2, up through and including maxfdp1 1 are tested.

The constant FD_SETSIZE, defined by including <sys/select.h>, is the number of
descriptors in the fd_set datatype. Its value is often 1024, but few programs use that
many descriptors. The maxfdp1 argument forces us to calculate the largest descriptor that
we are interested in and then tell the kernel this value. For example, given the previous
code that turns on the indicators for descriptors 1, 4, and 5, the maxfdp1 value is 6. The
reason it is 6 and not 5 is that we are specifying the number of descriptors, not the largest
value, and descriptors start at 0.

The reason this argument exists, along with the burden of calculating its value, is purely
for efficiency. Although each fd_set has room for many descriptors, typically 1,024, this is
much more than the number used by a typical process. The kernel gains efficiency by not
copying unneeded portions of the descriptor set between the process and the kernel, and
by not testing bits that are always 0 (Section 16.13 of TCPv2).

select modifies the descriptor sets pointed to by the readset, writeset, and exceptset
pointers. These three arguments are value-result arguments. When we call the function,

Page 211

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


we specify the values of the descriptors that we are interested in, and on return, the result
indicates which descriptors are ready. We use the FD_ISSET macro on return to test a
specific descriptor in an fd_set structure. Any descriptor that is not ready on return will
have its corresponding bit cleared in the descriptor set. To handle this, we turn on all the
bits in which we are interested in all the descriptor sets each time we call select.

The two most common programming errors when using select are to forget to add one to
the largest descriptor number and to forget that the descriptor sets are value-result
arguments. The second error results in select being called with a bit set to 0 in the
descriptor set, when we think that bit is 1.

The return value from this function indicates the total number of bits that are ready across
all the descriptor sets. If the timer value expires before any of the descriptors are ready, a
value of 0 is returned. A return value of  1 indicates an error (which can happen, for
example, if the function is interrupted by a caught signal).

Early releases of SVR4 had a bug in their implementation of select: If the same bit was
on in multiple sets, say a descriptor was ready for both reading and writing, it was counted
only once. Current releases fix this bug.

Under What Conditions Is a Descriptor Ready?
We have been talking about waiting for a descriptor to become ready for I/O (reading or
writing) or to have an exception condition pending on it (out-of-band data). While
readability and writability are obvious for descriptors such as regular files, we must be
more specific about the conditions that cause select to return "ready" for sockets (Figure
16.52 of TCPv2).

1. A socket is ready for reading if any of the following four conditions is true:

a. The number of bytes of data in the socket receive buffer is greater than or
equal to the current size of the low-water mark for the socket receive buffer.
A read operation on the socket will not block and will return a value greater
than 0 (i.e., the data that is ready to be read). We can set this low-water
mark using the SO_RCVLOWAT socket option. It defaults to 1 for TCP and UDP
sockets.

b. The read half of the connection is closed (i.e., a TCP connection that has
received a FIN). A read operation on the socket will not block and will return
0 (i.e., EOF).

c. The socket is a listening socket and the number of completed connections is
nonzero. An accept on the listening socket will normally not block, although
we will describe a timing condition in Section 16.6 under which the accept
can block.

d. A socket error is pending. A read operation on the socket will not block and
will return an error ( 1) with errno set to the specific error condition. These
pending errors can also be fetched and cleared by calling getsockopt and
specifying the SO_ERROR socket option.

2. A socket is ready for writing if any of the following four conditions is true:

a. The number of bytes of available space in the socket send buffer is greater
than or equal to the current size of the low-water mark for the socket send
buffer and either: (i) the socket is connected, or (ii) the socket does not
require a connection (e.g., UDP). This means that if we set the socket to
nonblocking (Chapter 16), a write operation will not block and will return a
positive value (e.g., the number of bytes accepted by the transport layer).
We can set this low-water mark using the SO_SNDLOWAT socket option. This

Page 212

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


low-water mark normally defaults to 2048 for TCP and UDP sockets.

b. The write half of the connection is closed. A write operation on the socket will
generate SIGPIPE (Section 5.12).

c. A socket using a non-blocking connect has completed the connection, or the
connect has failed.

d. A socket error is pending. A write operation on the socket will not block and
will return an error ( 1) with errno set to the specific error condition. These
pending errors can also be fetched and cleared by calling getsockopt with
the SO_ERROR socket option.

3. A socket has an exception condition pending if there is out-of-band data for the
socket or the socket is still at the out-of-band mark. (We will describe out-of-band
data in Chapter 24.)

Our definitions of "readable" and "writable" are taken directly from the kernel's 
soreadable and sowriteable macros on pp. 530 531 of TCPv2. Similarly, our
definition of the "exception condition" for a socket is from the soo_select function
on these same pages.

Notice that when an error occurs on a socket, it is marked as both readable and writable
by select.

The purpose of the receive and send low-water marks is to give the application control over
how much data must be available for reading or how much space must be available for
writing before select returns a readable or writable status. For example, if we know that
our application has nothing productive to do unless at least 64 bytes of data are present,
we can set the receive low-water mark to 64 to prevent select from waking us up if less
than 64 bytes are ready for reading.

As long as the send low-water mark for a UDP socket is less than the send buffer size
(which should always be the default relationship), the UDP socket is always writable, since
a connection is not required.

Figure 6.7 summarizes the conditions just described that cause a socket to be ready for
select.

Figure 6.7. Summary of conditions that cause a socket to be ready for 
select.

Maximum Number of Descriptors for select

We said earlier that most applications do not use lots of descriptors. It is rare, for example,
to find an application that uses hundreds of descriptors. But, such applications do exist,
and they often use select to multiplex the descriptors. When select was originally
designed, the OS normally had an upper limit on the maximum number of descriptors per
process (the 4.2BSD limit was 31), and select just used this same limit. But, current
versions of Unix allow for a virtually unlimited number of descriptors per process (often
limited only by the amount of memory and any administrative limits), so the question is:

Page 213

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


How does this affect select?

Many implementations have declarations similar to the following, which are taken from the
4.4BSD <sys/types.h> header:

/*

 * Select uses bitmasks of file descriptors in longs. These macros

 * manipulate such bit fields (the filesystem macros use chars).

 * FD_SETSIZE may be defined by the user, but the default here should

 * be enough for most uses.

 */

#ifndef FD_SETSIZE

#define FD_SETSIZE      256

#endif

This makes us think that we can just #define FD_SETSIZE to some larger value before
including this header to increase the size of the descriptor sets used by select.
Unfortunately, this normally does not work.

To see what is wrong, notice that Figure 16.53 of TCPv2 declares three descriptor sets
within the kernel and also uses the kernel's definition of FD_SETSIZE as the upper limit. The
only way to increase the size of the descriptor sets is to increase the value of FD_SETSIZE
and then recompile the kernel. Changing the value without recompiling the kernel is
inadequate.

Some vendors are changing their implementation of select to allow the process to define
FD_SETSIZE to a larger value than the default. BSD/OS has changed the kernel
implementation to allow larger descriptor sets, and it also provides four new FD_xxx macros
to dynamically allocate and manipulate these larger sets. From a portability standpoint,
however, beware of using large descriptor sets.

[ Team LiB ]

Page 214

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

6.4 str_cli Function (Revisited)
We can now rewrite our str_cli function from Section 5.5, this time using select, so we
are notified as soon as the server process terminates. The problem with that earlier version
was that we could be blocked in the call to fgets when something happened on the socket.
Our new version blocks in a call to select instead, waiting for either standard input or the
socket to be readable. Figure 6.8 shows the various conditions that are handled by our call
to select.

Figure 6.8. Conditions handled by select in str_cli.

Three conditions are handled with the socket:

1. If the peer TCP sends data, the socket becomes readable and read returns greater
than 0 (i.e., the number of bytes of data).

2. If the peer TCP sends a FIN (the peer process terminates), the socket becomes
readable and read returns 0 (EOF).

3. If the peer TCP sends an RST (the peer host has crashed and rebooted), the socket
becomes readable, read returns  1, and errno contains the specific error code.

Figure 6.9 shows the source code for this new version.

Figure 6.9 Implementation of str_cli function using select (improved
in Figure 6.13).

select/strcliselect01.c

 1 #include    "unp.h"

 2 void

 3 str_cli(FILE *fp, int sockfd)

 4 {

 5     int     maxfdp1;

 6     fd_set  rset;

 7     char    sendline[MAXLINE], recvline[MAXLINE];

 8     FD_ZERO(&rset);

Page 215

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


 9     for ( ; ; )  {

10         FD_SET(fileno(fp), &rset);

11         FD_SET(sockfd, &rset);

12         maxfdp1 = max(fileno(fp), sockfd)  +  1;

13         Select(maxfdp1,  &rset,  NULL,  NULL,  NULL);

14         if (FD_ISSET(sockfd,  &rset))  {  /* socket is readable */

15             if (Readline(sockfd, recvline, MAXLINE) == 0)

16                 err_quit("str_cli: server terminated prematurely");

17             Fputs(recvline, stdout);

18         }

19         if (FD_ISSET(fileno(fp), &rset))  {  /*  input is readable */

20             if (Fgets(sendline, MAXLINE, fp) == NULL)

21                 return;          /* all done */

22             Writen(sockfd, sendline, strlen(sendline));

23         }

24     }

25 }

Call select
8 13 We only need one descriptor set to check for readability. This set is initialized by
FD_ZERO and then two bits are turned on using FD_SET: the bit corresponding to the
standard I/O file pointer, fp, and the bit corresponding to the socket, sockfd. The function
fileno converts a standard I/O file pointer into its corresponding descriptor. select (and
poll) work only with descriptors.

select is called after calculating the maximum of the two descriptors. In the call, the
write-set pointer and the exception-set pointer are both null pointers. The final argument
(the time limit) is also a null pointer since we want the call to block until something is
ready.

Handle readable socket
14 18 If, on return from select, the socket is readable, the echoed line is read with
readline and output by fputs.

Handle readable input
19 23 If the standard input is readable, a line is read by fgets and written to the socket
using writen.

Notice that the same four I/O functions are used as in Figure 5.5, fgets, writen, readline,
and fputs, but the order of flow within the function has changed. Instead of the function
flow being driven by the call to fgets, it is now driven by the call to select. With only a
few additional lines of code in Figure 6.9, compared to Figure 5.5, we have added greatly
to the robustness of our client.

[ Team LiB ]

Page 216

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

6.5 Batch Input and Buffering
Unfortunately, our str_cli function is still not correct. First, let's go back to our original
version, Figure 5.5. It operates in a stop-and-wait mode, which is fine for interactive use:
It sends a line to the server and then waits for the reply. This amount of time is one RTT
plus the server's processing time (which is close to 0 for a simple echo server). We can
therefore estimate how long it will take for a given number of lines to be echoed if we know
the RTT between the client and server.

The ping program is an easy way to measure RTTs. If we run ping to the host connix.com
from our host solaris, the average RTT over 30 measurements is 175 ms. Page 89 of
TCPv1 shows that these ping measurements are for an IP datagram whose length is 84
bytes. If we take the first 2,000 lines of the Solaris termcap file, the resulting file size is
98,349 bytes, for an average of 49 bytes per line. If we add the sizes of the IP header (20
bytes) and the TCP header (20), the average TCP segment will be about 89 bytes, nearly
the same as the ping packet sizes. We can therefore estimate that the total clock time will
be around 350 seconds for 2,000 lines (2,000x0.175sec). If we run our TCP echo client
from Chapter 5, the actual time is about 354 seconds, which is very close to our estimate.

If we consider the network between the client and server as a full-duplex pipe, with
requests going from the client to the server and replies in the reverse direction, then 
Figure 6.10 shows our stop-and-wait mode.

Figure 6.10. Time line of stop-and-wait mode: interactive input.

Page 217

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


A request is sent by the client at time 0 and we assume an RTT of 8 units of time. The
reply sent at time 4 is received at time 7. We also assume that there is no server
processing time and that the size of the request is the same as the reply. We show only
the data packets between the client and server, ignoring the TCP acknowledgments that
are also going across the network.

Since there is a delay between sending a packet and that packet arriving at the other end
of the pipe, and since the pipe is full-duplex, in this example, we are only using one-eighth
of the pipe's capacity. This stop-and-wait mode is fine for interactive input, but since our
client reads from standard input and writes to standard output, and since it is trivial under
the Unix shells to redirect the input and output, we can easily run our client in a batch
mode. When we redirect the input and output, however, the resulting output file is always
smaller than the input file (and they should be identical for an echo server).

To see what's happening, realize that in a batch mode, we can keep sending requests as
fast as the network can accept them. The server processes them and sends back the
replies at the same rate. This leads to the full pipe at time 7, as shown in Figure 6.11.

Figure 6.11. Filling the pipe between the client and server: batch
mode.

Here we assume that after sending the first request, we immediately send another, and
then another. We also assume that we can keep sending requests as fast as the network
can accept them, along with processing replies as fast as the network supplies them.

There are numerous subtleties dealing with TCP's bulk data flow that we are ignoring here,
such as its slow-start algorithm, which limits the rate at which data is sent on a new or idle
connection, and the returning ACKs. These are all covered in Chapter 20 of TCPv1.

To see the problem with our revised str_cli function in Figure 6.9, assume that the input
file contains only nine lines. The last line is sent at time 8, as shown in Figure 6.11. But we
cannot close the connection after writing this request because there are still other requests
and replies in the pipe. The cause of the problem is our handling of an EOF on input: The
function returns to the main function, which then terminates. But in a batch mode, an EOF
on input does not imply that we have finished reading from the socket; there might still be
requests on the way to the server, or replies on the way back from the server.

What we need is a way to close one-half of the TCP connection. That is, we want to send a
FIN to the server, telling it we have finished sending data, but leave the socket descriptor
open for reading. This is done with the shutdown function, which is described in the next
section.

In general, buffering for performance adds complexity to a network application, and the
code in Figure 6.9 suffers from this complexity. Consider the case when several lines of
input are available from the standard input. select will cause the code at line 20 to read
the input using fgets and that, in turn, will read the available lines into a buffer used by
stdio. But, fgets only returns a single line and leaves any remaining data sitting in the
stdio buffer. The code at line 22 of Figure 6.9 writes that single line to the server and then
select is called again to wait for more work, even if there are additional lines to consume
in the stdio buffer. The reason for this is that select knows nothing of the buffers used by
stdio it will only show readability from the viewpoint of the read system call, not calls

Page 218

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


like fgets. For this reason, mixing stdio and select is considered very error-prone and
should only be done with great care.

The same problem exists with the call to readline in the example in Figure 6.9. Instead of
data being hidden from select in a stdio buffer, it is hidden in readline's buffer. Recall
that in Section 3.9 we provided a function that gives visibility into readline's buffer, so
one possible solution is to modify our code to use that function before calling select to see
if data has already been read but not consumed. But again, the complexity grows out of
hand quickly when we have to handle the case where the readline buffer contains a partial
line (meaning we still need to read more) as well as when it contains one or more complete
lines (which we can consume).

We will address these buffering concerns in the improved version of str_cli shown in
Section 6.7.

[ Team LiB ]

Page 219

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

6.6 shutdown Function
The normal way to terminate a network connection is to call the close function. But, there
are two limitations with close that can be avoided with shutdown:

1. close decrements the descriptor's reference count and closes the socket only if the
count reaches 0. We talked about this in Section 4.8. With shutdown, we can initiate
TCP's normal connection termination sequence (the four segments beginning with a
FIN in Figure 2.5), regardless of the reference count.

2. close terminates both directions of data transfer, reading and writing. Since a TCP
connection is full-duplex, there are times when we want to tell the other end that
we have finished sending, even though that end might have more data to send us.
This is the scenario we encountered in the previous section with batch input to our 
str_cli function. Figure 6.12 shows the typical function calls in this scenario.

Figure 6.12. Calling shutdown to close half of a TCP connection.

#include <sys/socket.h>

int shutdown(int sockfd, int howto);

Returns: 0 if OK,  1 on error

The action of the function depends on the value of the howto argument.

Page 220

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


SHUT_RD The read half of the connection is closed  No more data can be received on
the socket and any data currently in the socket receive buffer is discarded.
The process can no longer issue any of the read functions on the socket. Any
data received after this call for a TCP socket is acknowledged and then
silently discarded.

By default, everything written to a routing socket (Chapter 18) loops back as
possible input to all routing sockets on the host. Some programs call 
shutdown with a second argument of SHUT_RD to prevent the loopback copy.
An alternative way to prevent this loopback copy is to clear the 
SO_USELOOPBACK socket option.

SHUT_WR The write half of the connection is closed  In the case of TCP, this is called
a half-close (Section 18.5 of TCPv1). Any data currently in the socket send
buffer will be sent, followed by TCP's normal connection termination
sequence. As we mentioned earlier, this closing of the write half is done
regardless of whether or not the socket descriptor's reference count is
currently greater than 0. The process can no longer issue any of the write
functions on the socket.

SHUT_RDWR The read half and the write half of the connection are both closed  This is
equivalent to calling shutdown twice: first with SHUT_RD and then with
SHUT_WR. 

Figure 7.12 will summarize the different possibilities available to the process by calling
shutdown and close. The operation of close depends on the value of the SO_LINGER socket
option.

The three SHUT_xxx names are defined by the POSIX specification. Typical values for the
howto argument that you will encounter will be 0 (close the read half), 1 (close the write
half), and 2 (close the read half and the write half).

[ Team LiB ]

Page 221

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

6.7 str_cli Function (Revisited Again)
Figure 6.13 shows our revised (and correct) version of the str_cli function. This version
uses select and shutdown. The former notifies us as soon as the server closes its end of
the connection and the latter lets us handle batch input correctly. This version also does
away with line-centric code and operates instead on buffers, eliminating the complexity
concerns raised in Section 6.5.

Figure 6.13 str_cli function using select that handles EOF correctly.

select/strcliselect02.c

 1 #include    "unp.h"

 2 void

 3 str_cli(FILE *fp, int sockfd)

 4 {

 5     int     maxfdp1, stdineof;

 6     fd_set  rset;

 7     char    buf[MAXLINE];

 8     int     n;

 9     stdineof = 0;

10     FD_ZERO(&rset);

11     for ( ; ; ) {

12         if (stdineof == 0)

13             FD_SET(fileno(fp), &rset);

14         FD_SET(sockfd, &rset);

15         maxfdp1 = max(fileno(fp), sockfd) + 1;

16         Select(maxfdp1, &rset, NULL, NULL, NULL);

17         if (FD_ISSET(sockfd, &rset)) {  /* socket is readable */

18             if ( (n = Read(sockfd, buf, MAXLINE)) == 0) {

19                 if (stdineof == 1)

20                     return;       /* normal termination */

21                 else

22                     err_quit("str_cli: server terminated prematurely");

23                 }

24                 Write(fileno(stdout), buf, n);

25         }

26         if (FD_ISSET(fileno(fp), &rset)) {  /* input is readable */

27             if ( (n = Read(fileno(fp), buf, MAXLINE)) == 0) {

28                 stdineof = 1;

29                 Shutdown(sockfd, SHUT_WR);  /* send FIN */

30                 FD_CLR(fileno(fp), &rset);

31                 continue;

32             }

33             Writen(sockfd, buf, n);

34         }

35     }

36 }

5 8 stdineof is a new flag that is initialized to 0. As long as this flag is 0, each time
around the main loop, we select on standard input for readability.

17 25 When we read the EOF on the socket, if we have already encountered an EOF on
standard input, this is normal termination and the function returns. But if we have not yet

Page 222

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


encountered an EOF on standard input, the server process has prematurely terminated. We
now call read and write to operate on buffers instead of lines and allow select to work for
us as expected.

26 34 When we encounter the EOF on standard input, our new flag, stdineof, is set and
we call shutdown with a second argument of SHUT_WR to send the FIN. Here also, we've
changed to operating on buffers instead of lines, using read and writen.

We are not finished with our str_cli function. We will develop a version using nonblocking
I/O in Section 16.2 and a version using threads in Section 26.3.

[ Team LiB ]

Page 223

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

6.8 TCP Echo Server (Revisited)
We can revisit our TCP echo server from Sections 5.2 and 5.3 and rewrite the server as a
single process that uses select to handle any number of clients, instead of forking one
child per client. Before showing the code, let's look at the data structures that we will use
to keep track of the clients. Figure 6.14 shows the state of the server before the first client
has established a connection.

Figure 6.14. TCP server before first client has established a
connection.

The server has a single listening descriptor, which we show as a bullet.

The server maintains only a read descriptor set, which we show in Figure 6.15. We assume
that the server is started in the foreground, so descriptors 0, 1, and 2 are set to standard
input, output, and error. Therefore, the first available descriptor for the listening socket is
3. We also show an array of integers named client that contains the connected socket
descriptor for each client. All elements in this array are initialized to  1.

Figure 6.15. Data structures for TCP server with just a listening
socket.

The only nonzero entry in the descriptor set is the entry for the listening sockets and the
first argument to select will be 4.

When the first client establishes a connection with our server, the listening descriptor
becomes readable and our server calls accept. The new connected descriptor returned by
accept will be 4, given the assumptions of this example. Figure 6.16 shows the connection
from the client to the server.

Figure 6.16. TCP server after first client establishes connection.

Page 224

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


From this point on, our server must remember the new connected socket in its client
array, and the connected socket must be added to the descriptor set. These updated data
structures are shown in Figure 6.17.

Figure 6.17. Data structures after first client connection is
established.

Sometime later a second client establishes a connection and we have the scenario shown
in Figure 6.18.

Figure 6.18. TCP server after second client connection is established.

The new connected socket (which we assume is 5) must be remembered, giving the data
structures shown in Figure 6.19.

Figure 6.19. Data structures after second client connection is
established.

Next, we assume the first client terminates its connection. The client TCP sends a FIN,
which makes descriptor 4 in the server readable. When our server reads this connected
socket, read returns 0. We then close this socket and update our data structures
accordingly. The value of client [0] is set to  1 and descriptor 4 in the descriptor set is
set to 0. This is shown in Figure 6.20. Notice that the value of maxfd does not change.

Figure 6.20. Data structures after first client terminates its
connection.

Page 225

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


In summary, as clients arrive, we record their connected socket descriptor in the first
available entry in the client array (i.e., the first entry with a value of  1). We must also
add the connected socket to the read descriptor set. The variable maxi is the highest index
in the client array that is currently in use and the variable maxfd (plus one) is the current
value of the first argument to select. The only limit on the number of clients that this
server can handle is the minimum of the two values FD_SETSIZE and the maximum number
of descriptors allowed for this process by the kernel (which we talked about at the end of 
Section 6.3).

Figure 6.21 shows the first half of this version of the server.

Figure 6.21 TCP server using a single process and select: initialization.

tcpcliserv/tcpservselect01.c

 1 #include     "unp.h"

 2 int

 3 main(int argc, char **argv)

 4 {

 5     int     i, maxi, maxfd, listenfd, connfd, sockfd;

 6     int     nready, client[FD_SETSIZE];

 7     ssize_t n;

 8     fd_set  rset, allset;

 9     char    buf[MAXLINE];

10     socklen_t  clilen;

11     struct sockaddr_in cliaddr, servaddr;

12     listenfd = Socket(AF_INET, SOCK_STREAM, 0);

13     bzero(&servaddr, sizeof(servaddr));

14     servaddr.sin_family = AF_INET;

15     servaddr.sin_addr.s_addr = htonl(INADDR_ANY);

16     servaddr.sin_port = htons(SERV_PORT);

17     Bind(listenfd, (SA *) &servaddr, sizeof(servaddr));

18     Listen(listenfd, LISTENQ);

19     maxfd = listenfd;            /* initialize */

20     maxi = -1;                   /* index into client[] array */

21     for (i = 0; i < FD_SETSIZE;  i++)

22         client[i] = -1;          /* -1 indicates available entry */

23     FD_ZERO(&allset);

24     FD_SET(listenfd, &allset);

Create listening socket and initialize for select
12 24 The steps to create the listening socket are the same as seen earlier: socket, bind,
and listen. We initialize our data structures assuming that the only descriptor that we
will select on initially is the listening socket.

The last half of the function is shown in Figure 6.22

Figure 6.22 TCP server using a single process and select loop.

tcpcliserv/tcpservselect01.c

25       for ( ; ; ) {

Page 226

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


26           rset = allset;          /* structure assignment */

27           nready = Select(maxfd + 1, &rset, NULL, NULL, NULL);

28           if (FD_ISSET(listenfd, &rset)) {       /* new client connection */

29               clilen = sizeof(cliaddr);

30               connfd = Accept(listenfd, (SA *) &cliaddr, &clilen);

31               for (i = 0; i < FD_SETSIZE; i++)

32                   if (client[i] < 0) {

33                       client[i] = connfd; /* save descriptor */

34                       break;

35                   }

36               if (i == FD_SETSIZE)

37                   err_quit("too many clients");

38               FD_SET(connfd, &allset);       /* add new descriptor to set */

39               if (connfd > maxfd)

40                   maxfd = connfd; /* for select */

41               if (i > maxi)

42                   maxi = i;          /* max index in client[] array */

43               if (--nready <= 0)

44                   continue;          /* no more readable descriptors */

45          }

46          for (i = 0; i <= maxi; i++) {       /* check all clients for data

*/

47              if ( (sockfd = client[i]) < 0)

48                  continue;

49              if (FD_ISSET(sockfd, &rset)) {

50                  if ( (n = Read(sockfd, buf, MAXLINE)) == 0) {

51                          /* connection closed by client */

52                      Close(sockfd);

53                      FD_CLR(sockfd, &allset);

54                      client[i] = -1;

55                  } else

56                      Writen(sockfd, buf, n);

57                  if (--nready <= 0)

58                      break;         /* no more readable descriptors */

59              }

60          }

61      }

62  }

Block in select
26 27 select waits for something to happen: either the establishment of a new client
connection or the arrival of data, a FIN, or an RST on an existing connection.

accept new connections
28 45 If the listening socket is readable, a new connection has been established. We call
accept and update our data structures accordingly. We use the first unused entry in the
client array to record the connected socket. The number of ready descriptors is
decremented, and if it is 0, we can avoid the next for loop. This lets us use the return
value from select to avoid checking descriptors that are not ready.

Check existing connections
46 60 A test is made for each existing client connection as to whether or not its descriptor
is in the descriptor set returned by select. If so, a line is read from the client and echoed

Page 227

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


back to the client. If the client closes the connection, read returns 0 and we update our
data structures accordingly.

We never decrement the value of maxi, but we could check for this possibility each time a
client closes its connection.

This server is more complicated than the one shown in Figures 5.2 and 5.3, but it avoids all
the overhead of creating a new process for each client and it is a nice example of select.
Nevertheless, in Section 16.6, we will describe a problem with this server that is easily
fixed by making the listening socket nonblocking and then checking for, and ignoring, a
few errors from accept.

Denial-of-Service Attacks
Unfortunately, there is a problem with the server that we just showed. Consider what
happens if a malicious client connects to the server, sends one byte of data (other than a
newline), and then goes to sleep. The server will call read, which will read the single byte
of data from the client and then block in the next call to read, waiting for more data from
this client. The server is then blocked ("hung" may be a better term) by this one client and
will not service any other clients (either new client connections or existing clients' data)
until the malicious client either sends a newline or terminates.

The basic concept here is that when a server is handling multiple clients, the server can 
never block in a function call related to a single client. Doing so can hang the server and
deny service to all other clients. This is called a denial-of-service attack. It does something
to the server that prevents it from servicing other legitimate clients. Possible solutions are
to: (i) use nonblocking I/O (Chapter 16), (ii) have each client serviced by a separate
thread of control (e.g., either spawn a process or a thread to service each client), or (iii)
place a timeout on the I/O operations (Section 14.2).

[ Team LiB ]

Page 228

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

6.9 pselect Function
The pselect function was invented by POSIX and is now supported by many of the Unix
variants.

#include <sys/select.h>

#include <signal.h>

#include <time.h>

int pselect (int maxfdp1, fd_set *readset, fd_set *writeset, fd_set *exceptset,
const struct timespec *timeout, const sigset_t *sigmask);

Returns: count of ready descriptors, 0 on timeout,  1 on error

pselect contains two changes from the normal select function:

1. pselect uses the timespec structure, another POSIX invention, instead of the
timeval structure.

2.
3.
4.
5. struct timespec {

6.   time_t tv_sec;       /* seconds */

7.   long   tv_nsec;      /* nanoseconds */

8. };

9.

The difference in these two structures is with the second member: The tv_nsec
member of the newer structure specifies nanoseconds, whereas the tv_usec
member of the older structure specifies microseconds.

10. pselect adds a sixth argument: a pointer to a signal mask. This allows the program
to disable the delivery of certain signals, test some global variables that are set by
the handlers for these now-disabled signals, and then call pselect, telling it to reset
the signal mask.

With regard to the second point, consider the following example (discussed on pp. 308 
309 of APUE). Our program's signal handler for SIGINT just sets the global intr_flag and
returns. If our process is blocked in a call to select, the return from the signal handler
causes the function to return with errno set to EINTR. But when select is called, the code
looks like the following:

if (intr_flag)

    handle_intr();       /* handle the signal */

if ( (nready = select( ... )) < 0) {

    if (errno == EINTR) {

        if (intr_flag)

            handle_intr();

    }

    ...

}

Page 229

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


The problem is that between the test of intr_flag and the call to select, if the signal
occurs, it will be lost if select blocks forever. With pselect, we can now code this example
reliably as

sigset_t newmask, oldmask, zeromask;

sigemptyset(&zeromask);

sigemptyset(&newmask);

sigaddset(&newmask, SIGINT);

sigprocmask(SIG_BLOCK, &newmask, &oldmask); /* block SIGINT */

if (intr_flag)

    handle_intr();     /* handle the signal */

if ( (nready = pselect ( ... , &zeromask)) < 0) {

    if (errno == EINTR)  {

        if (intr_flag)

            handle_intr ();

    }

    ...

}

Before testing the intr_flag variable, we block SIGINT. When pselect is called, it replaces
the signal mask of the process with an empty set (i.e., zeromask) and then checks the
descriptors, possibly going to sleep. But when pselect returns, the signal mask of the
process is reset to its value before pselect was called (i.e., SIGINT is blocked).

We will say more about pselect and show an example of it in Section 20.5. We will use
pselect in Figure 20.7 and show a simple, albeit incorrect, implementation of pselect in
Figure 20.8.

There is one other slight difference between the two select functions. The first member of
the timeval structure is a signed long integer, while the first member of the timespec
structure is a time_t. The signed long in the former should also be a time_t, but was not
changed retroactively to avoid breaking existing code. The brand new function, however,
could make this change.

[ Team LiB ]

Page 230

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

6.10 poll Function
The poll function originated with SVR3 and was originally limited to STREAMS devices (
Chapter 31). SVR4 removed this limitation, allowing poll to work with any descriptor. poll
provides functionality that is similar to select, but poll provides additional information
when dealing with STREAMS devices.

#include <poll.h>

int poll (struct pollfd *fdarray, unsigned long nfds, int timeout);

Returns: count of ready descriptors, 0 on timeout,  1 on error

The first argument is a pointer to the first element of an array of structures. Each element
of the array is a pollfd structure that specifies the conditions to be tested for a given
descriptor, fd.

struct pollfd {

  int     fd;       /* descriptor to check */

  short   events;   /* events of interest on fd */

  short   revents;  /* events that occurred on fd */

};

The conditions to be tested are specified by the events member, and the function returns
the status for that descriptor in the corresponding revents member. (Having two variables
per descriptor, one a value and one a result, avoids value-result arguments. Recall that the
middle three arguments for select are value-result.) Each of these two members is
composed of one or more bits that specify a certain condition. Figure 6.23 shows the
constants used to specify the events flag and to test the revents flag against.

Figure 6.23. Input events and returned revents for poll.

We have divided this figure into three sections: The first four constants deal with input, the
next three deal with output, and the final three deal with errors. Notice that the final three
cannot be set in events, but are always returned in revents when the corresponding
condition exists.

There are three classes of data identified by poll: normal, priority band, and high-priority.
These terms come from the STREAMS-based implementations (Figure 31.5).

POLLIN can be defined as the logical OR of POLLRDNORM and POLLRDBAND. The POLLIN
constant exists from SVR3 implementations that predated the priority bands in SVR4, so

Page 231

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


the constant remains for backward compatibility. Similarly, POLLOUT is equivalent to
POLLWRNORM, with the former predating the latter.

With regard to TCP and UDP sockets, the following conditions cause poll to return the
specified revent. Unfortunately, POSIX leaves many holes (i.e., optional ways to return the
same condition) in its definition of poll.

 All regular TCP data and all UDP data is considered normal.

 TCP's out-of-band data (Chapter 24) is considered priority band.

 When the read half of a TCP connection is closed (e.g., a FIN is received), this is
also considered normal data and a subsequent read operation will return 0.

 The presence of an error for a TCP connection can be considered either normal data
or an error (POLLERR). In either case, a subsequent read will return  1 with errno
set to the appropriate value. This handles conditions such as the receipt of an RST
or a timeout.

 The availability of a new connection on a listening socket can be considered either
normal data or priority data. Most implementations consider this normal data.

 The completion of a nonblocking connect is considered to make a socket writable.

The number of elements in the array of structures is specified by the nfds argument.

Historically, this argument has been an unsigned long, which seems excessive. An
unsigned int would be adequate. Unix 98 defines a new datatype for this argument:
nfds_t.

The timeout argument specifies how long the function is to wait before returning. A
positive value specifies the number of milliseconds to wait. Figure 6.24 shows the possible
values for the timeout argument.

Figure 6.24. timeout values for poll.

The constant INFTIM is defined to be a negative value. If the system does not provide a
timer with millisecond accuracy, the value is rounded up to the nearest supported value.

The POSIX specification requires that INFTIM be defined by including <poll.h>, but many
systems still define it in <sys/stropts.h>.

As with select, any timeout set for poll is limited by the implementation's clock
resolution (often 10 ms).

The return value from poll is  1 if an error occurred, 0 if no descriptors are ready before
the timer expires, otherwise it is the number of descriptors that have a nonzero revents
member.

If we are no longer interested in a particular descriptor, we just set the fd member of the
pollfd structure to a negative value. Then the events member is ignored and the revents
member is set to 0 on return.

Recall our discussion at the end of Section 6.3 about FD_SETSIZE and the maximum
number of descriptors per descriptor set versus the maximum number of descriptors per
process. We do not have that problem with poll since it is the caller's responsibility to

Page 232

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


allocate an array of pollfd structures and then tell the kernel the number of elements in
the array. There is no fixed-size datatype similar to fd_set that the kernel knows about.

The POSIX specification requires both select and poll. But, from a portability perspective
today, more systems support select than poll. Also, POSIX defines pselect, an enhanced
version of select that handles signal blocking and provides increased time resolution.
Nothing similar is defined for poll.

[ Team LiB ]

Page 233

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

6.11 TCP Echo Server (Revisited Again)
We now redo our TCP echo server from Section 6.8 using poll instead of select. In the
previous version using select, we had to allocate a client array along with a descriptor
set named rset (Figure 6.15). With poll, we must allocate an array of pollfd structures
to maintain the client information instead of allocating another array. We handle the fd
member of this array the same way we handled the client array in Figure 6.15: a value of
 1 means the entry is not in use; otherwise, it is the descriptor value. Recall from the
previous section that any entry in the array of pollfd structures passed to poll with a
negative value for the fd member is just ignored.

Figure 6.25 shows the first half of our server.

Figure 6.25 First half of TCP server using poll.

tcpcliserv/tcpservpoll01.c

 1 #include     "unp.h"

 2 #include     <limits.h>         /* for OPEN_MAX */

 3 int

 4 main(int argc, char **argv)

 5 {

 6     int     i, maxi, listenfd, connfd, sockfd;

 7     int     nready;

 8     ssize_t n;

 9     char    buf[MAXLINE];

10     socklen_t clilen;

11     struct pollfd client[OPEN_MAX];

12     struct sockaddr_in cliaddr, servaddr;

13     listenfd = Socket(AF_INET, SOCK_STREAM, 0);

14     bzero(&servaddr, sizeof(servaddr));

15     servaddr.sin_family = AF_INET;

16     servaddr.sin_addr.s_addr = htonl(INADDR_ANY);

17     servaddr.sin_port = htons(SERV_PORT);

18     Bind(listenfd, (SA *) &servaddr, sizeof(servaddr));

19     Listen(listenfd, LISTENQ);

20     client[0].fd = listenfd;

21     client[0].events = POLLRDNORM;

22     for (i = 1; i < OPEN_MAX; i++)

23         client[i].fd = -1;      /* -1 indicates available entry */

24     maxi = 0;                   /* max index into client[] array */

Allocate array of pollfd structures
11 We declare OPEN_MAX elements in our array of pollfd structures. Determining the
maximum number of descriptors that a process can have open at any one time is difficult.
We will encounter this problem again in Figure 13.4. One way is to call the POSIX sysconf
function with an argument of _SC_OPEN_MAX (as described on pp. 42 44 of APUE) and then
dynamically allocate an array of the appropriate size. But one of the possible returns from 
sysconf is "indeterminate," meaning we still have to guess a value. Here, we just use the

Page 234

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


POSIX OPEN_MAX constant.

Initialize
20 24 We use the first entry in the client array for the listening socket and set the
descriptor for the remaining entries to  1. We also set the POLLRDNORM event for this
descriptor, to be notified by poll when a new connection is ready to be accepted. The
variable maxi contains the largest index of the client array currently in use.

The second half of our function is shown in Figure 6.26.

Figure 6.26 Second half of TCP server using poll.

tcpcliserv/tcpservpoll01.c

25     for ( ; ; ) {

26         nready = Poll(client, maxi + 1, INFTIM);

27         if (client[0].revents & POLLRDNORM) {  /* new client connection */

28             clilen = sizeof(cliaddr);

29             connfd = Accept(listenfd, (SA *) &cliaddr, &clilen);

30             for (i = 1; i < OPEN_MAX; i++)

31                 if (client[i].fd < 0) {

32                     client[i].fd = connfd;  /* save descriptor */

33                     break;

34                 }

35             if (i == OPEN_MAX)

36                 err_quit("too many clients");

37             client[i].events = POLLRDNORM;

38             if (i > maxi)

39                 maxi = i;       /* max index in client[] array */

40             if (--nready <= 0)

41                 continue;       /* no more readable descriptors */

42         }

43         for (i = 1; i <= maxi; i++) {       /* check all clients for data */

44             if ( (sockfd = client[i].fd) < 0)

45                 continue;

46             if (client[i].revents & (POLLRDNORM | POLLERR)) {

47                 if ( (n = read(sockfd, buf, MAXLINE)) < 0) {

48                     if (errno == ECONNRESET) {

49                             /* connection reset by client */

50                         Close(sockfd);

51                         client[i].fd = -1;

52                     } else

53                         err_sys("read error");

54                 } else if (n == 0) {

55                         /* connection closed by client */

56                     Close(sockfd);

57                     client[i].fd = -1;

58                 } else

59                    Writen(sockfd, buf, n);

60                 if (--nready <= 0)

61                         break;               /* no more readable descriptors

*/

62             }

63         }

Page 235

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


64     }

65 }

Call poll, check for new connection
26 42 We call poll to wait for either a new connection or data on existing connection.
When a new connection is accepted, we find the first available entry in the client array by
looking for the first one with a negative descriptor. Notice that we start the search with the
index of 1, since client[0] is used for the listening socket. When an available entry is
found, we save the descriptor and set the POLLRDNORM event.

Check for data on an existing connection
43 63 The two return events that we check for are POLLRDNORM and POLLERR. The second of
these we did not set in the events member because it is always returned when the
condition is true. The reason we check for POLLERR is because some implementations return
this event when an RST is received for a connection, while others just return POLLRDNORM.
In either case, we call read and if an error has occurred, it will return an error. When an
existing connection is terminated by the client, we just set the fd member to  1.

[ Team LiB ]

Page 236

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

6.12 Summary
There are five different models for I/O provided by Unix:

 Blocking

 Nonblocking

 I/O multiplexing

 Signal-driven I/O

 Asynchronous I/O

The default is blocking I/O, which is also the most commonly used. We will cover
nonblocking I/O and signal-driven I/O in later chapters and have covered I/O multiplexing
in this chapter. True asynchronous I/O is defined by the POSIX specification, but few
implementations exist.

The most commonly used function for I/O multiplexing is select. We tell the select
function what descriptors we are interested in (for reading, writing, and exceptions), the
maximum amount of time to wait, and the maximum descriptor number (plus one). Most
calls to select specify readability, and we noted that the only exception condition when
dealing with sockets is the arrival of out-of-band data (Chapter 24). Since select provides
a time limit on how long a function blocks, we will use this feature in Figure 14.3 to place a
time limit on an input operation.

We used our echo client in a batch mode using select and discovered that even though
the end of the user input is encountered, data can still be in the pipe to or from the server.
To handle this scenario requires the shutdown function, and it lets us take advantage of
TCP's half-close feature.

The dangers of mixing stdio buffering (as well as our own readline buffering) with select
caused us to produce versions of the echo client and server that operated on buffers
instead of lines.

POSIX defines the function pselect, which increases the time precision from microseconds
to nanoseconds and takes a new argument that is a pointer to a signal set. This lets us
avoid race conditions when signals are being caught and we talk more about this in Section
20.5.

The poll function from System V provides functionality similar to select and provides
additional information on STREAMS devices. POSIX requires both select and poll, but the
former is used more often.

[ Team LiB ]

Page 237

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Exercises
6.1 We said that a descriptor set can be assigned to another descriptor set

across an equals sign in C. How is this done if a descriptor set is an array
of integers? (Hint: Look at your system's <sys/select.h> or
<sys/types.h> header.)

6.2 When describing the conditions for which select returns "writable" in
Section 6.3, why did we need the qualifier that the socket had to be
nonblocking for a write operation to return a positive value?

6.3 What happens in Figure 6.9 if we prepend the word "else" before the
word "if" on line 19?

6.4 In our example in Figure 6.21 add code to allow the server to be able to
use as many descriptors as currently allowed by the kernel. (Hint: Look
at the setrlimit function.)

6.5 Let's see what happens when the second argument to shutdown is
SHUT_RD. Start with the TCP client in Figure 5.4 and make the following
changes: Change the port number from SERV_PORT to 19, the chargen
server (Figure 2.18); then, replace the call to str_cli with a call to the
pause function. Run this program specifying the IP address of a local
host that runs the chargen server. Watch the packets with a tool such as
tcpdump (Section C.5). What happens?

6.6 Why would an application call shutdown with an argument of SHUT_RDWR
instead of just calling close?

6.7 What happens in Figure 6.22 when the client sends an RST to terminate
the connection?

6.8 Recode Figure 6.25 to call sysconf to determine the maximum number
of descriptors and allocate the client array accordingly.

[ Team LiB ]

Page 238

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Chapter 7. Socket Options
Section 7.1.?Introduction

Section 7.2.?getsockopt and setsockopt Functions

Section 7.3.?Checking if an Option Is Supported and Obtaining the Default

Section 7.4.?Socket States

Section 7.5.?Generic Socket Options

Section 7.6.?IPv4 Socket Options

Section 7.7.?ICMPv6 Socket Option

Section 7.8.?IPv6 Socket Options

Section 7.9.?TCP Socket Options

Section 7.10.?SCTP Socket Options

Section 7.11.?fcntl Function

Section 7.12.?Summary

Exercises

[ Team LiB ]

Page 239

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

7.1 Introduction
There are various ways to get and set the options that affect a socket:

 The getsockopt and setsockopt functions

 The fcntl function

 The ioctl function

This chapter starts by covering the setsockopt and getsockopt functions, followed by an
example that prints the default value of all the options, and then a detailed description of
all the socket options. We divide the detailed descriptions into the following categories:
generic, IPv4, IPv6, TCP, and SCTP. This detailed coverage can be skipped during a first
reading of this chapter, and the individual sections referred to when needed. A few options
are discussed in detail in a later chapter, such as the IPv4 and IPv6 multicasting options,
which we will describe with multicasting in Section 21.6.

We also describe the fcntl function, because it is the POSIX way to set a socket for
nonblocking I/O, signal-driven I/O, and to set the owner of a socket. We save the ioctl
function for Chapter 17.

[ Team LiB ]

Page 240

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

7.2 getsockopt and setsockopt Functions
These two functions apply only to sockets.

#include <sys/socket.h>

int getsockopt(int sockfd, int level, int optname, void *optval, socklen_t *optlen);

int setsockopt(int sockfd, int level, int optname, const void *optval socklen_t
optlen);

Both return: 0 if OK, 1 on error

sockfd must refer to an open socket descriptor. level specifies the code in the system that
interprets the option: the general socket code or some protocol-specific code (e.g., IPv4,
IPv6, TCP, or SCTP).

optval is a pointer to a variable from which the new value of the option is fetched by
setsockopt, or into which the current value of the option is stored by getsockopt. The size
of this variable is specified by the final argument, as a value for setsockopt and as a
value-result for getsockopt.

Figures 7.1 and 7.2 summarize the options that can be queried by getsockopt or set by
setsockopt. The "Datatype" column shows the datatype of what the optval pointer must
point to for each option. We use the notation of two braces to indicate a structure, as in 
linger{} to mean a struct linger.

Figure 7.1. Summary of socket and IP-layer socket options for 
getsockopt and setsockopt.

Page 241

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


Figure 7.2. Summary of transport-layer socket options.

There are two basic types of options: binary options that enable or disable a certain feature
(flags), and options that fetch and return specific values that we can either set or examine
(values). The column labeled "Flag" specifies if the option is a flag option. When calling 
getsockopt for these flag options, *optval is an integer. The value returned in *optval is
zero if the option is disabled, or nonzero if the option is enabled. Similarly, setsockopt
requires a nonzero *optval to turn the option on, and a zero value to turn the option off. If
the "Flag" column does not contain a "?" then the option is used to pass a value of the
specified datatype between the user process and the system.

Subsequent sections of this chapter will give additional details on the options that affect a
socket.

[ Team LiB ]

Page 242

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

7.3 Checking if an Option Is Supported and Obtaining
the Default
We now write a program to check whether most of the options defined in Figures 7.1 and
7.2 are supported, and if so, print their default value. Figure 7.3 contains the declarations
for our program.

Declare union of possible values
3 8 Our union contains one member for each possible return value from getsockopt.

Define function prototypes
9 12 We define function prototypes for four functions that are called to print the value for a
given socket option.

Define structure and initialize array
13 52 Our sock_opts structure contains all the information necessary to call getsockopt for
each socket option and then print its current value. The final member, opt_val_str, is a
pointer to one of our four functions that will print the option value. We allocate and
initialize an array of these structures, one element for each socket option.

Not all implementations support all socket options. The way to determine if a given option
is supported is to use an #ifdef or a #if defined, as we show for SO_REUSEPORT. For
completeness, every element of the array should be compiled similarly to what we show
for SO_REUSEPORT, but we omit these because the #ifdefs just lengthen the code that we
show and add nothing to the discussion.

Figure 7.3 Declarations for our program to check the socket options.

sockopt/checkopts.c

 1 #include    "unp.h"

 2 #include    <netinet/tcp.h>       /* for TCP_xxx defines */

 3 union val {

 4   int               i_val;

 5   long              l_val;

 6   struct linger     linger_val;

 7   struct timeval    timeval_val;

 8 } val;

 9 static char *sock_str_flag(union val *, int);

10 static char *sock_str_int(union val *, int);

11 static char *sock_str_linger(union val *, int);

12 static char *sock_str_timeval(union val *, int);

13 struct sock_opts {

14   const char       *opt_str;

15   int       opt_level;

16   int       opt_name;

17   char   *(*opt_val_str) (union val *, int);

18 } sock_opts[] = {

19     { "SO_BROADCAST",        SOL_SOCKET, SO_BROADCAST,   sock_str_flag },

20     { "SO_DEBUG",            SOL_SOCKET, SO_DEBUG,       sock_str_flag },

21     { "SO_DONTROUTE",        SOL_SOCKET, SO_DONTROUTE,   sock_str_flag },

22     { "SO_ERROR",            SOL_SOCKET, SO_ERROR,       sock_str_int },

23     { "SO_KEEPALIVE",        SOL_SOCKET, SO_KEEPALIVE,   sock_str_flag },

Page 243

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


24     { "SO_LINGER",           SOL_SOCKET, SO_LINGER,      sock_str_linger },

25     { "SO_OOBINLINE",        SOL_SOCKET, SO_OOBINLINE,   sock_str_flag },

26     { "SO_RCVBUF",           SOL_SOCKET, SO_RCVBUF,      sock_str_int },

27     { "SO_SNDBUF",           SOL_SOCKET, SO_SNDBUF,      sock_str_int },

28     { "SO_RCVLOWAT",         SOL_SOCKET, SO_RCVLOWAT,    sock_str_int },

29     { "SO_SNDLOWAT",         SOL_SOCKET, SO_SNDLOWAT,    sock_str_int },

30     { "SO_RCVTIMEO",         SOL_SOCKET, SO_RCVTIMEO,    sock_str_timeval },

31     { "SO_SNDTIMEO",         SOL_SOCKET, SO_SNDTIMEO,    sock_str_timeval },

32     { "SO_REUSEADDR",        SOL_SOCKET, SO_REUSEADDR,   sock_str_flag },

33 #ifdef SO_REUSEPORT

34     { "SO_REUSEPORT",        SOL_SOCKET, SO_REUSEPORT,   sock_str_flag },

35 #else

36     { "SO_REUSEPORT",        0,          0,              NULL },

37 #endif

38     { "SO_TYPE",             SOL_SOCKET, SO_TYPE,        sock_str_int },

39     { "SO_USELOOPBACK",      SOL_SOCKET, SO_USELOOPBACK, sock_str_flag },

40     { "IP_TOS",              IPPROTO_IP, IP_TOS,         sock_str_int },

41     { "IP_TTL",              IPPROTO_IP, IP_TTL,         sock_str_int },

42     { "IPV6_DONTFRAG",       IPPROTO_IPV6,IPV6_DONTFRAG, sock_str_flag },

43     { "IPV6_UNICAST_HOPS",   IPPROTO_IPV6,IPV6_UNICAST_HOPS,sock_str_int },

44     { "IPV6_V6ONLY",         IPPROTO_IPV6,IPV6_V6ONLY,   sock_str_flag },

45     { "TCP_MAXSEG",          IPPROTO_TCP,TCP_MAXSEG,     sock_str_int },

46     { "TCP_NODELAY",         IPPROTO_TCP,TCP_NODELAY,    sock_str_flag },

47     { "SCTP_AUTOCLOSE",      IPPROTO_SCTP,SCTP_AUTOCLOSE,sock_str_int },

48     { "SCTP_MAXBURST",       IPPROTO_SCTP,SCTP_MAXBURST, sock_str_int },

49     { "SCTP_MAXSEG",         IPPROTO_SCTP,SCTP_MAXSEG,   sock_str_int },

50     { "SCTP_NODELAY",        IPPROTO_SCTP,SCTP_NODELAY,  sock_str_flag },

51     { NULL,                  0,          0,              NULL }

52 };

Figure 7.4 shows our main function.

Figure 7.4 main function to check all socket options.

sockopt/checkopts.c

53 int

54 main(int argc, char **argv)

55 {

56     int     fd;

57     socklen_t len;

58     struct sock_opts *ptr;

59     for (ptr = sock_opts; ptr->opt_str != NULL; ptr++) {

60         printf("%s: ", ptr->opt_str);

61         if (ptr->opt_val_str == NULL)

62             printf("(undefined)\n");

63         else {

64             switch (ptr->opt_level) {

65             case SOL_SOCKET:

66             case IPPROTO_IP:

67             case IPPROTO_TCP:

68                 fd = Socket(AF_INET, SOCK_STREAM, 0);

69                 break;

70 #ifdef  IPV6

71             case IPPROTO_IPV6:

72                 fd = Socket(AF_INET6, SOCK_STREAM, 0);

73                 break;

74 #endif

75 #ifdef  IPPROTO_SCTP

76             case IPPROTO_SCTP:

Page 244

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


77                 fd = Socket(AF_INET, SOCK_SEQPACKET, IPPROTO_SCTP);

78                 break;

79 #endif

80             default:

81                 err_quit("Can't create fd for level %d\n", ptr->opt_level);

82             }

83             len = sizeof(val);

84             if (getsockopt(fd, ptr->opt_level, ptr->opt_name,

85                        &val, &len) == -1) {

86                 err_ret("getsockopt error");

87             } else {

88                 printf("default = %s\n", (*ptr->opt_val_str)  (&val, len));

89             }

90             close(fd);

91         }

92     }

93     exit(0);

94 }

Go through all options
59 63 We go through all elements in our array. If the opt_val_str pointer is null, the
option is not defined by the implementation (which we showed for SO_REUSEPORT).

Create socket
63 82 We create a socket on which to try the option. To try socket, IPv4, and TCP layer
socket options, we use an IPv4 TCP socket. To try IPv6 layer socket options, we use an
IPv6 TCP socket, and to try SCTP layer socket options, we use an IPv4 SCTP socket.

Call getsockopt
83 87 We call getsockopt but do not terminate if an error is returned. Many
implementations define some of the socket option names even though they do not support
the option. Unsupported options should elicit an error of ENOPROTOOPT.

Print option's default value
88 89 If getsockopt returns success, we call our function to convert the option value to a
string and print the string.

In Figure 7.3, we showed four function prototypes, one for each type of option value that is
returned. Figure 7.5 shows one of these four functions, sock_str_flag, which prints the
value of a flag option. The other three functions are similar.

Figure 7.5 sock_str_flag function: convert flag option to a string.

sockopt/checkopts.c

 95 static char strres[128];

 96 static char *

 97 sock_str_flag(union val *ptr, int len)

 98 {

 99     if (len != sizeof(int))

100         snprintf(strres, sizeof(strres), "size (%d) not sizeof(int)", len);

101     else

102         snprintf(strres, sizeof(strres),

103                  "%s", (ptr->i_val == 0) ? "off" : "on");

104     return(strres);

Page 245

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


105 }

99 104 Recall that the final argument to getsockopt is a value-result argument. The first
check we make is that the size of the value returned by getsockopt is the expected size.
The string returned is off or on, depending on whether the value of the flag option is zero
or nonzero, respectively.

Running this program under FreeBSD 4.8 with KAME SCTP patches gives the following
output:

freebsd % checkopts

SO_BROADCAST: default = off

SO_DEBUG: default = off

SO_DONTROUTE: default = off

SO_ERROR: default = 0

SO_KEEPALIVE: default = off

SO_LINGER: default = l_onoff = 0, l_linger = 0

SO_OOBINLINE: default = off

SO_RCVBUF: default = 57344

SO_SNDBUF: default = 32768

SO_RCVLOWAT: default = 1

SO_SNDLOWAT: default = 2048

SO_RCVTIMEO: default = 0 sec, 0 usec

SO_SNDTIMEO: default = 0 sec, 0 usec

SO_REUSEADDR: default = off

SO_REUSEPORT: default = off

SO_TYPE: default = 1

SO_USELOOPBACK: default = off

IP_TOS: default = 0

IP_TTL: default = 64

IPV6_DONTFRAG: default = off

IPV6_UNICAST_HOPS: default = -1

IPV6_V6ONLY: default = off

TCP_MAXSEG: default = 512

TCP_NODELAY: default = off

SCTP_AUTOCLOSE: default = 0

SCTP_MAXBURST: default = 4

SCTP_MAXSEG: default = 1408

SCTP_NODELAY: default = off

The value of 1 returned for the SO_TYPE option corresponds to SOCK_STREAM for this
implementation.

[ Team LiB ]

Page 246

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

7.4 Socket States
Some socket options have timing considerations about when to set or fetch the option
versus the state of the socket. We mention these with the affected options.

The following socket options are inherited by a connected TCP socket from the listening
socket (pp. 462 463 of TCPv2): SO_DEBUG, SO_DONTROUTE, SO_KEEPALIVE, SO_LINGER,
SO_OOBINLINE, SO_RCVBUF, SO_RCVLOWAT, SO_SNDBUF, SO_SNDLOWAT, TCP_MAXSEG, and
TCP_NODELAY. This is important with TCP because the connected socket is not returned to a
server by accept until the three-way handshake is completed by the TCP layer. To ensure
that one of these socket options is set for the connected socket when the three-way
handshake completes, we must set that option for the listening socket.

[ Team LiB ]

Page 247

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

7.5 Generic Socket Options
We start with a discussion of the generic socket options. These options are
protocol-independent (that is, they are handled by the protocol-independent code within
the kernel, not by one particular protocol module such as IPv4), but some of the options
apply to only certain types of sockets. For example, even though the SO_BROADCAST socket
option is called "generic," it applies only to datagram sockets.

SO_BROADCAST Socket Option
This option enables or disables the ability of the process to send broadcast messages.
Broadcasting is supported for only datagram sockets and only on networks that support the
concept of a broadcast message (e.g., Ethernet, token ring, etc.). You cannot broadcast on
a point-to-point link or any connection-based transport protocol such as SCTP or TCP. We
will talk more about broadcasting in Chapter 20.

Since an application must set this socket option before sending a broadcast datagram, it
prevents a process from sending a broadcast when the application was never designed to
broadcast. For example, a UDP application might take the destination IP address as a
command-line argument, but the application never intended for a user to type in a
broadcast address. Rather than forcing the application to try to determine if a given
address is a broadcast address or not, the test is in the kernel: If the destination address is
a broadcast address and this socket option is not set, EACCES is returned (p. 233 of TCPv2).

SO_DEBUG Socket Option
This option is supported only by TCP. When enabled for a TCP socket, the kernel keeps
track of detailed information about all the packets sent or received by TCP for the socket.
These are kept in a circular buffer within the kernel that can be examined with the trpt
program. Pages 916 920 of TCPv2 provide additional details and an example that uses
this option.

SO_DONTROUTE Socket Option
This option specifies that outgoing packets are to bypass the normal routing mechanisms
of the underlying protocol. For example, with IPv4, the packet is directed to the
appropriate local interface, as specified by the network and subnet portions of the
destination address. If the local interface cannot be determined from the destination
address (e.g., the destination is not on the other end of a point-to-point link, or is not on a
shared network), ENETUNREACH is returned.

The equivalent of this option can also be applied to individual datagrams using the 
MSG_DONTROUTE flag with the send, sendto, or sendmsg functions.

This option is often used by routing daemons (e.g., routed and gated) to bypass the
routing table and force a packet to be sent out a particular interface.

SO_ERROR Socket Option
When an error occurs on a socket, the protocol module in a Berkeley-derived kernel sets a
variable named so_error for that socket to one of the standard Unix Exxx values. This is
called the pending error for the socket. The process can be immediately notified of the
error in one of two ways:

1. If the process is blocked in a call to select on the socket (Section 6.3), for either
readability or writability, select returns with either or both conditions set.

Page 248

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


2. If the process is using signal-driven I/O (Chapter 25), the SIGIO signal is generated
for either the process or the process group.

The process can then obtain the value of so_error by fetching the SO_ERROR socket option.
The integer value returned by getsockopt is the pending error for the socket. The value of
so_error is then reset to 0 by the kernel (p. 547 of TCPv2).

If so_error is nonzero when the process calls read and there is no data to return, read
returns 1 with errno set to the value of so_error (p. 516 of TCPv2). The value of
so_error is then reset to 0. If there is data queued for the socket, that data is returned by
read instead of the error condition. If so_error is nonzero when the process calls write,  
1 is returned with errno set to the value of so_error (p. 495 of TCPv2) and so_error is
reset to 0.

There is a bug in the code shown on p. 495 of TCPv2 in that so_error is not reset to 0.
This has been fixed in most modern releases. Anytime the pending error for a socket is
returned, it must be reset to 0.

This is the first socket option that we have encountered that can be fetched but cannot be
set.

SO_KEEPALIVE Socket Option
When the keep-alive option is set for a TCP socket and no data has been exchanged across
the socket in either direction for two hours, TCP automatically sends a keep-alive probe to
the peer. This probe is a TCP segment to which the peer must respond. One of three
scenarios results:

1. The peer responds with the expected ACK. The application is not notified (since
everything is okay). TCP will send another probe following another two hours of
inactivity.

2. The peer responds with an RST, which tells the local TCP that the peer host has
crashed and rebooted. The socket's pending error is set to ECONNRESET and the
socket is closed.

3. There is no response from the peer to the keep-alive probe. Berkeley-derived TCPs
send 8 additional probes, 75 seconds apart, trying to elicit a response. TCP will give
up if there is no response within 11 minutes and 15 seconds after sending the first
probe.

HP-UX 11 treats the keep-alive probes in the same way as it would treat data,
sending the second probe after a retransmission timeout and doubling the timeout
for each packet until the configured maximum interval, with a default of 10
minutes.

If there is no response at all to TCP's keep-alive probes, the socket's pending error
is set to ETIMEDOUT and the socket is closed. But if the socket receives an ICMP error
in response to one of the keep-alive probes, the corresponding error (Figures A.15
and A.16) is returned instead (and the socket is still closed). A common ICMP error
in this scenario is "host unreachable," indicating that the peer host is unreachable,
in which case, the pending error is set to EHOSTUNREACH. This can occur either
because of a network failure or because the remote host has crashed and the
last-hop router has detected the crash.

Chapter 23 of TCPv1 and pp. 828 831 of TCPv2 contain additional details on the
keep-alive option.

Undoubtedly the most common question regarding this option is whether the timing
parameters can be modified (usually to reduce the two-hour period of inactivity to some

Page 249

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


shorter value). Appendix E of TCPv1 discusses how to change these timing parameters for
various kernels, but be aware that most kernels maintain these parameters on a per-kernel
basis, not on a per-socket basis, so changing the inactivity period from 2 hours to 15
minutes, for example, will affect all sockets on the host that enable this option. However,
such questions usually result from a misunderstanding of the purpose of this option.

The purpose of this option is to detect if the peer host crashes or becomes unreachable
(e.g., dial-up modem connection drops, power fails, etc.). If the peer process crashes, its
TCP will send a FIN across the connection, which we can easily detect with select. (This
was why we used select in Section 6.4.) Also realize that if there is no response to any of
the keep-alive probes (scenario 3), we are not guaranteed that the peer host has crashed,
and TCP may well terminate a valid connection. It could be that some intermediate router
has crashed for 15 minutes, and that period of time just happens to completely overlap our
host's 11-minute and 15-second keep-alive probe period. In fact, this function might more
properly be called "make-dead" rather than "keep-alive" since it can terminate live
connections.

This option is normally used by servers, although clients can also use the option. Servers
use the option because they spend most of their time blocked waiting for input across the
TCP connection, that is, waiting for a client request. But if the client host's connection
drops, is powered off, or crashes, the server process will never know about it, and the
server will continually wait for input that can never arrive. This is called a half-open
connection. The keep-alive option will detect these half-open connections and terminate
them.

Some servers, notably FTP servers, provide an application timeout, often on the order of
minutes. This is done by the application itself, normally around a call to read, reading the
next client command. This timeout does not involve this socket option. This is often a
better method of eliminating connections to missing clients, since the application has
complete control if it implements the timeout itself.

SCTP has a heartbeat mechanism that is similar to TCP's "keep-alive" mechanism. The
heartbeat mechanism is controlled through parameters of the SCTP_SET_PEER_ADDR_PARAMS
socket option discussed later in this chapter, rather than the SO_KEEPALIVE socket option.
The settings made by SO_KEEPALIVE on a SCTP socket are ignored and do not affect the
SCTP heartbeat mechanism.

Figure 7.6 summarizes the various methods that we have to detect when something
happens on the other end of a TCP connection. When we say "using select for readability,"
we mean calling select to test whether a socket is readable.

Figure 7.6. Ways to detect various TCP conditions.

SO_LINGER Socket Option

Page 250

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


This option specifies how the close function operates for a connection-oriented protocol
(e.g., for TCP and SCTP, but not for UDP). By default, close returns immediately, but if
there is any data still remaining in the socket send buffer, the system will try to deliver the
data to the peer.

The SO_LINGER socket option lets us change this default. This option requires the following
structure to be passed between the user process and the kernel. It is defined by including 
<sys/socket.h>.

struct linger {

  int   l_onoff;        /* 0=off, nonzero=on */

  int   l_linger;       /* linger time, POSIX specifies units as seconds */

};

Calling setsockopt leads to one of the following three scenarios, depending on the values
of the two structure members:

1. If l_onoff is 0, the option is turned off. The value of l_linger is ignored and the
previously discussed TCP default applies: close returns immediately.

2. If l_onoff is nonzero and l_linger is zero, TCP aborts the connection when it is
closed (pp. 1019 1020 of TCPv2). That is, TCP discards any data still remaining in
the socket send buffer and sends an RST to the peer, not the normal four-packet
connection termination sequence (Section 2.6). We will show an example of this in
Figure 16.21. This avoids TCP's TIME_WAIT state, but in doing so, leaves open the
possibility of another incarnation of this connection being created within 2MSL
seconds (Section 2.7) and having old duplicate segments from the just-terminated
connection being incorrectly delivered to the new incarnation.

SCTP will also do an abortive close of the socket by sending an ABORT chunk to the
peer (see Section 9.2 of [Stewart and Xie 2001]) when l_onoff is nonzero and
l_linger is zero.

Occasional USENET postings advocate the use of this feature just to avoid the
TIME_WAIT state and to be able to restart a listening server even if connections are
still in use with the server's well-known port. This should NOT be done and could
lead to data corruption, as detailed in RFC 1337 [Braden 1992]. Instead, the 
SO_REUSEADDR socket option should always be used in the server before the call to
bind, as we will describe shortly. The TIME_WAIT state is our friend and is there to
help us (i.e., to let old duplicate segments expire in the network). Instead of trying
to avoid the state, we should understand it (Section 2.7).

There are certain circumstances which warrant using this feature to send an abortive
close. One example is an RS-232 terminal server, which might hang forever in
CLOSE_WAIT trying to deliver data to a struck terminal port, but would properly
reset the stuck port if it got an RST to discard the pending data.

3. If l_onoff is nonzero and l_linger is nonzero, then the kernel will linger when the
socket is closed (p. 472 of TCPv2). That is, if there is any data still remaining in the
socket send buffer, the process is put to sleep until either: (i) all the data is sent
and acknowledged by the peer TCP, or (ii) the linger time expires. If the socket has
been set to nonblocking (Chapter 16), it will not wait for the close to complete,
even if the linger time is nonzero. When using this feature of the SO_LINGER option,
it is important for the application to check the return value from close, because if
the linger time expires before the remaining data is sent and acknowledged, close
returns EWOULDBLOCK and any remaining data in the send buffer is discarded.

Page 251

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


We now need to see exactly when a close on a socket returns given the various scenarios
we looked at. We assume that the client writes data to the socket and then calls close.
Figure 7.7 shows the default situation.

Figure 7.7. Default operation of close: it returns immediately.

We assume that when the client's data arrives, the server is temporarily busy, so the data
is added to the socket receive buffer by its TCP. Similarly, the next segment, the client's
FIN, is also added to the socket receive buffer (in whatever manner the implementation
records that a FIN has been received on the connection). But by default, the client's close
returns immediately. As we show in this scenario, the client's close can return before the
server reads the remaining data in its socket receive buffer. Therefore, it is possible for the
server host to crash before the server application reads this remaining data, and the client
application will never know.

The client can set the SO_LINGER socket option, specifying some positive linger time. When
this occurs, the client's close does not return until all the client's data and its FIN have
been acknowledged by the server TCP. We show this in Figure 7.8.

Figure 7.8. close with SO_LINGER socket option set and l_linger a positive
value.

But we still have the same problem as in Figure 7.7: The server host can crash before the
server application reads its remaining data, and the client application will never know.
Worse, Figure 7.9 shows what can happen when the SO_LINGER option is set to a value that
is too low.

Figure 7.9. close with SO_LINGER socket option set and l_linger a small
positive value.

Page 252

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


The basic principle here is that a successful return from close, with the SO_LINGER socket
option set, only tells us that the data we sent (and our FIN) have been acknowledged by
the peer TCP. This does not tell us whether the peer application has read the data. If we do
not set the SO_LINGER socket option, we do not know whether the peer TCP has
acknowledged the data.

One way for the client to know that the server has read its data is to call shutdown (with a
second argument of SHUT_WR) instead of close and wait for the peer to close its end of the
connection. We show this scenario in Figure 7.10.

Figure 7.10. Using shutdown to know that peer has received our data.

Comparing this figure to Figures 7.7 and 7.8 we see that when we close our end of the
connection, depending on the function called (close or shutdown) and whether the
SO_LINGER socket option is set, the return can occur at three different times:

1. close returns immediately, without waiting at all (the default; Figure 7.7).

2. close lingers until the ACK of our FIN is received (Figure 7.7).

3. shutdown followed by a read waits until we receive the peer's FIN (Figure 7.10).

Another way to know that the peer application has read our data is to use an 
application-level acknowledgment, or application ACK. For example, in the following, the
client sends its data to the server and then calls read for one byte of data:

char  ack;

Write(sockfd, data, nbytes);       /* data from client to server */

n = Read(sockfd, &ack, 1);         /* wait for application-level ACK */

The server reads the data from the client and then sends back the one-byte
application-level ACK:

nbytes = Read(sockfd, buff, sizeof(buff)); /* data from client */

Page 253

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


         /* server verifies it received correct

            amount of data from client */

Write(sockfd, "", 1);           /* server's ACK back to client */

We are guaranteed that when the read in the client returns, the server process has read
the data we sent. (This assumes that either the server knows how much data the client is
sending, or there is some application-defined end-of-record marker, which we do not show
here.) Here, the application-level ACK is a byte of 0, but the contents of this byte could be
used to signal other conditions from the server to the client. Figure 7.11 shows the
possible packet exchange.

Figure 7.11. Application ACK.

Figure 7.12 summarizes the two possible calls to shutdown and the three possible calls to
close, and the effect on a TCP socket.

Figure 7.12. Summary of shutdown and SO_LINGER scenarios.

SO_OOBINLINE Socket Option
When this option is set, out-of-band data will be placed in the normal input queue (i.e.,
inline). When this occurs, the MSG_OOB flag to the receive functions cannot be used to read
the out-of-band data. We will discuss out-of-band data in more detail in Chapter 24.

SO_RCVBUF and SO_SNDBUF Socket Options
Every socket has a send buffer and a receive buffer. We described the operation of the
send buffers with TCP, UDP, and SCTP in Figures 2.15, 2.16, and 2.17.

Page 254

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


The receive buffers are used by TCP, UDP, and SCTP to hold received data until it is read by
the application. With TCP, the available room in the socket receive buffer limits the window
that TCP can advertise to the other end. The TCP socket receive buffer cannot overflow
because the peer is not allowed to send data beyond the advertised window. This is TCP's
flow control, and if the peer ignores the advertised window and sends data beyond the
window, the receiving TCP discards it. With UDP, however, when a datagram arrives that
will not fit in the socket receive buffer, that datagram is discarded. Recall that UDP has no
flow control: It is easy for a fast sender to overwhelm a slower receiver, causing datagrams
to be discarded by the receiver's UDP, as we will show in Section 8.13. In fact, a fast
sender can overwhelm its own network interface, causing datagrams to be discarded by the
sender itself.

These two socket options let us change the default sizes. The default values differ widely
between implementations. Older Berkeley-derived implementations would default the TCP
send and receive buffers to 4,096 bytes, but newer systems use larger values, anywhere
from 8,192 to 61,440 bytes. The UDP send buffer size often defaults to a value around
9,000 bytes if the host supports NFS, and the UDP receive buffer size often defaults to a
value around 40,000 bytes.

When setting the size of the TCP socket receive buffer, the ordering of the function calls is
important. This is because of TCP's window scale option (Section 2.6), which is exchanged
with the peer on the SYN segments when the connection is established. For a client, this
means the SO_RCVBUF socket option must be set before calling connect. For a server, this
means the socket option must be set for the listening socket before calling listen. Setting
this option for the connected socket will have no effect whatsoever on the possible window
scale option because accept does not return with the connected socket until TCP's
three-way handshake is complete. That is why this option must be set for the listening
socket. (The sizes of the socket buffers are always inherited from the listening socket by
the newly created connected socket: pp. 462 463 of TCPv2.)

The TCP socket buffer sizes should be at least four times the MSS for the connection. If we
are dealing with unidirectional data transfer, such as a file transfer in one direction, when
we say "socket buffer sizes," we mean the socket send buffer size on the sending host and
the socket receive buffer size on the receiving host. For bidirectional data transfer, we
mean both socket buffer sizes on the sender and both socket buffer sizes on the receiver.
With typical default buffer sizes of 8,192 bytes or larger, and a typical MSS of 512 or
1,460, this requirement is normally met.

The minimum MSS multiple of four is a result of the way that TCP's fast recovery algorithm
works. The TCP sender uses three duplicate acknowledgments to detect that a packet was
lost (RFC 2581 [Allman, Paxson, and Stevens 1999]). The receiver sends a duplicate
acknowledgment for each segment it receives after a lost segment. If the window size is
smaller than four segments, there cannot be three duplicate acknowledgments, so the fast
recovery algorithm cannot be invoked.

To avoid wasting potential buffer space, the TCP socket buffer sizes should also be an even
multiple of the MSS for the connection. Some implementations handle this detail for the
application, rounding up the socket buffer size after the connection is established (p. 902
of TCPv2). This is another reason to set these two socket options before establishing a
connection. For example, using the default 4.4BSD size of 8,192 and assuming an Ethernet
with an MSS of 1,460, both socket buffers are rounded up to 8,760 (6 x 1,460) when the
connection is established. This is not a crucial requirement; the additional space in the
socket buffer above the multiple of the MSS is simply unused.

Another consideration in setting the socket buffer sizes deals with performance. Figure
7.13 shows a TCP connection between two endpoints (which we call a pipe) with a capacity
of eight segments.

Figure 7.13. TCP connection (pipe) with a capacity of eight segments.

Page 255

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


We show four data segments on the top and four ACKs on the bottom. Even though there
are only four segments of data in the pipe, the client must have a send buffer capacity of
at least eight segments, because the client TCP must keep a copy of each segment until
the ACK is received from the server.

We are ignoring some details here. First, TCP's slow-start algorithm limits the rate at which
segments are initially sent on an idle connection. Next, TCP often acknowledges every
other segment, not every segment as we show. All these details are covered in Chapters 20
and 24 of TCPv1.

What is important to understand is the concept of the full-duplex pipe, its capacity, and
how that relates to the socket buffer sizes on both ends of the connection. The capacity of
the pipe is called the bandwidth-delay product and we calculate this by multiplying the
bandwidth (in bits/sec) times the RTT (in seconds), converting the result from bits to
bytes. The RTT is easily measured with the ping program.

The bandwidth is the value corresponding to the slowest link between two endpoints and
must somehow be known. For example, a T1 line (1,536,000 bits/sec) with an RTT of 60
ms gives a bandwidth-delay product of 11,520 bytes. If the socket buffer sizes are less
than this, the pipe will not stay full, and the performance will be less than expected. Large
socket buffers are required when the bandwidth gets larger (e.g., T3 lines at 45 Mbits/sec)
or when the RTT gets large (e.g., satellite links with an RTT around 500 ms). When the
bandwidth-delay product exceeds TCP's maximum normal window size (65,535 bytes),
both endpoints also need the TCP long fat pipe options that we mentioned in Section 2.6.

Most implementations have an upper limit for the sizes of the socket send and receive
buffers, and sometimes this limit can be modified by the administrator. Older
Berkeley-derived implementations had a hard upper limit of around 52,000 bytes, but
newer implementations have a default limit of 256,000 bytes or more, and this can usually
be increased by the administrator. Unfortunately, there is no simple way for an application
to determine this limit. POSIX defines the fpathconf function, which most
implementations support, and using the _PC_SOCK_MAXBUF constant as the second
argument, we can retrieve the maximum size of the socket buffers. Alternately, an
application can try setting the socket buffers to the desired value, and if that fails, cut the
value in half and try again until it succeeds. Finally, an application should make sure that
it's not actually making the socket buffer smaller when it sets it to a preconfigured "large"
value; calling getsockopt first to retrieve the system's default and seeing if that's large
enough is often a good start.

SO_RCVLOWAT and SO_SNDLOWAT Socket Options
Every socket also has a receive low-water mark and a send low-water mark. These are used
by the select function, as we described in Section 6.3. These two socket options,
SO_RCVLOWAT and SO_SNDLOWAT, let us change these two low-water marks.

The receive low-water mark is the amount of data that must be in the socket receive buffer
for select to return "readable." It defaults to 1 for TCP, UDP, and SCTP sockets. The send
low-water mark is the amount of available space that must exist in the socket send buffer
for select to return "writable." This low-water mark normally defaults to 2,048 for TCP
sockets. With UDP, the low-water mark is used, as we described in Section 6.3, but since
the number of bytes of available space in the send buffer for a UDP socket never changes
(since UDP does not keep a copy of the datagrams sent by the application), as long as the
UDP socket send buffer size is greater than the socket's low-water mark, the UDP socket is
always writable. Recall from Figure 2.16 that UDP does not have a send buffer; it has only
a send buffer size.

Page 256

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


SO_RCVTIMEO and SO_SNDTIMEO Socket Options
These two socket options allow us to place a timeout on socket receives and sends. Notice
that the argument to the two sockopt functions is a pointer to a timeval structure, the
same one used with select (Section 6.3). This lets us specify the timeouts in seconds and
microseconds. We disable a timeout by setting its value to 0 seconds and 0 microseconds.
Both timeouts are disabled by default.

The receive timeout affects the five input functions: read, readv, recdv, recvfrom, and
recvmsg. The send timeout affects the five output functions: write, writev, send, sendto,
and sendmsg. We will talk more about socket timeouts in Section 14.2.

These two socket options and the concept of inherent timeouts on socket receives and
sends were added with 4.3BSD Reno.

In Berkeley-derived implementations, these two values really implement an inactivity
timer and not an absolute timer on the read or write system call. Pages 496 and 516 of
TCPv2 talk about this in more detail.

SO_REUSEADDR and SO_REUSEPORT Socket Options
The SO_REUSEADDR socket option serves four different purposes:

1. SO_REUSEADDR allows a listening server to start and bind its well-known port, even if
previously established connections exist that use this port as their local port. This
condition is typically encountered as follows:

a. A listening server is started.

b. A connection request arrives and a child process is spawned to handle that
client.

c. The listening server terminates, but the child continues to service the client
on the existing connection.

d. The listening server is restarted.

By default, when the listening server is restarted in (d) by calling socket,
bind, and listen, the call to bind fails because the listening server is trying
to bind a port that is part of an existing connection (the one being handled
by the previously spawned child). But if the server sets the SO_REUSEADDR
socket option between the calls to socket and bind, the latter function will
succeed. All TCP servers should specify this socket option to allow the server
to be restarted in this situation.

2. This scenario is one of the most frequently asked questions on USENET.

3. SO_REUSEADDR allows a new server to be started on the same port as an existing
server that is bound to the wildcard address, as long as each instance binds a
different local IP address. This is common for a site hosting multiple HTTP servers
using the IP alias technique (Section A.4). Assume the local host's primary IP
address is 198.69.10.2 but it has two aliases: 198.69.10.128 and 198.69.10.129.
Three HTTP servers are started. The first HTTP server would call bind with the
wildcard as the local IP address and a local port of 80 (the well-known port for
HTTP). The second server would call bind with a local IP address of 198.69.10.128
and a local port of 80. But, this second call to bind fails unless SO_REUSEADDR is set
before the call. The third server would bind 198.69.10.129 and port 80. Again,
SO_REUSEADDR is required for this final call to succeed. Assuming SO_REUSEADDR is
set and the three servers are started, incoming TCP connection requests with a
destination IP address of 198.69.10.128 and a destination port of 80 are delivered

Page 257

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


to the second server, incoming requests with a destination IP address of
198.69.10.129 and a destination port of 80 are delivered to the third server, and all
other TCP connection requests with a destination port of 80 are delivered to the first
server. This "default" server handles requests destined for 198.69.10.2 in addition
to any other IP aliases that the host may have configured. The wildcard means
"everything that doesn't have a better (more specific) match." Note that this
scenario of allowing multiple servers for a given service is handled automatically if
the server always sets the SO_REUSEADDR socket option (as we recommend).

With TCP, we are never able to start multiple servers that bind the same IP address
and the same port: a completely duplicate binding. That is, we cannot start one
server that binds 198.69.10.2 port 80 and start another that also binds 198.69.10.2
port 80, even if we set the SO_REUSEADDR socket option for the second server.

For security reasons, some operating systems prevent any "more specific" bind to a
port that is already bound to the wildcard address, that is, the series of binds
described here would not work with or without SO_REUSEADDR. On such a system, the
server that performs the wildcard bind must be started last. This is to avoid the
problem of a rogue server binding to an IP address and port that are being served
already by a system service and intercepting legitimate requests. This is a particular
problem for NFS, which generally does not use a privileged port.

4. SO_REUSEADDR allows a single process to bind the same port to multiple sockets, as
long as each bind specifies a different local IP address. This is common for UDP
servers that need to know the destination IP address of client requests on systems
that do not provide the IP_RECVDSTADDR socket option. This technique is normally
not used with TCP servers since a TCP server can always determine the destination
IP address by calling getsockname after the connection is established. However, a
TCP server wishing to serve connections to some, but not all, addresses belonging to
a multihomed host should use this technique.

5. SO_REUSEADDR allows completely duplicate bindings: a bind of an IP address and
port, when that same IP address and port are already bound to another socket, if
the transport protocol supports it. Normally this feature is supported only for UDP
sockets.

This feature is used with multicasting to allow the same application to be run
multiple times on the same host. When a UDP datagram is received for one of these
multiply bound sockets, the rule is that if the datagram is destined for either a
broadcast address or a multicast address, one copy of the datagram is delivered to
each matching socket. But if the datagram is destined for a unicast address, the
datagram is delivered to only one socket. If, in the case of a unicast datagram,
there are multiple sockets that match the datagram, the choice of which socket
receives the datagram is implementation-dependent. Pages 777 779 of TCPv2 talk
more about this feature. We will talk more about broadcasting and multicasting in 
Chapters 20 and 21.

Exercises 7.5 and 7.6 show some examples of this socket option.

4.4BSD introduced the SO_REUSEPORT socket option when support for multicasting was
added. Instead of overloading SO_REUSEADDR with the desired multicast semantics that
allow completely duplicate bindings, this new socket option was introduced with the
following semantics:

1. This option allows completely duplicate bindings, but only if each socket that wants
to bind the same IP address and port specify this socket option.

2. SO_REUSEADDR is considered equivalent to SO_REUSEPORT if the IP address being
bound is a multicast address (p. 731 of TCPv2).

Page 258

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


The problem with this socket option is that not all systems support it, and on those that do
not support the option but do support multicasting, SO_REUSEADDR is used instead of
SO_REUSEPORT to allow completely duplicate bindings when it makes sense (i.e., a UDP
server that can be run multiple times on the same host at the same time and that expects
to receive either broadcast or multicast datagrams).

We can summarize our discussion of these socket options with the following
recommendations:

1. Set the SO_REUSEADDR socket option before calling bind in all TCP servers.

2. When writing a multicast application that can be run multiple times on the same
host at the same time, set the SO_REUSEADDR socket option and bind the group's
multicast address as the local IP address.

Chapter 22 of TCPv2 talks about these two socket options in more detail.

There is a potential security problem with SO_REUSEADDR. If a socket exists that is bound
to, say, the wildcard address and port 5555, if we specify SO_REUSEADDR, we can bind that
same port to a different IP address, say the primary IP address of the host. Any future
datagrams that arrive destined to port 5555 and the IP address that we bound to our
socket are delivered to our socket, not to the other socket bound to the wildcard address.
These could be TCP SYN segments, SCTP INIT chunks, or UDP datagrams. (Exercises 11.9
shows this feature with UDP.) For most well-known services, HTTP, FTP, and Telnet, for
example, this is not a problem because these servers all bind a reserved port. Hence, any
process that comes along later and tries to bind a more specific instance of that port (i.e.,
steal the port) requires superuser privileges. NFS, however, can be a problem since its
normal port (2049) is not reserved.

One underlying problem with the sockets API is that the setting of the socket pair is done
with two function calls (bind and connect) instead of one. [Torek 1994] proposes a single
function that solves this problem.

int bind_connect_listen(int sockfd, const struct sockaddr *laddr, int
laddrlen, const struct sockaddr *faddr, int faddrlen, int listen);

laddr specifies the local IP address and local port, faddr specifies the foreign IP address
and foreign port, and listen specifies a client (zero) or a server (nonzero; same as the
backlog argument to listen). Then, bind would be a library function that calls this
function with faddr a null pointer and faddrlen 0, and connect would be a library function
that calls this function with laddr a null pointer and laddrlen 0. There are a few
applications, notably TFTP, that need to specify both the local pair and the foreign pair, and
they could call bind_connect_listen directly. With such a function, the need for
SO_REUSEADDR disappears, other than for multicast UDP servers that explicitly need to allow
completely duplicate bindings of the same IP address and port. Another benefit of this new
function is that a TCP server could restrict itself to servicing connection requests that arrive
from one specific IP address and port, something which RFC 793 [Postel 1981c] specifies
but is impossible to implement with the existing sockets API.

SO_TYPE Socket Option
This option returns the socket type. The integer value returned is a value such as 
SOCK_STREAM or SOCK_DGRAM. This option is typically used by a process that inherits a socket
when it is started.

SO_USELOOPBACK Socket Option
This option applies only to sockets in the routing domain (AF_ROUTE). This option defaults
to ON for these sockets (the only one of the SO_xxx socket options that defaults to ON

Page 259

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


instead of OFF). When this option is enabled, the socket receives a copy of everything sent
on the socket.

Another way to disable these loopback copies is to call shutdown with a second argument
of SHUT_RD.

[ Team LiB ]

Page 260

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

7.6 IPv4 Socket Options
These socket options are processed by IPv4 and have a level of IPPROTO_IP. We defer
discussion of the multicasting socket options until Section 21.6.

IP_HDRINCL Socket Option
If this option is set for a raw IP socket (Chapter 28), we must build our own IP header for
all the datagrams we send on the raw socket. Normally, the kernel builds the IP header for
datagrams sent on a raw socket, but there are some applications (notably traceroute)
that build their own IP header to override values that IP would place into certain header
fields.

When this option is set, we build a complete IP header, with the following exceptions:

 IP always calculates and stores the IP header checksum.

 If we set the IP identification field to 0, the kernel will set the field.

 If the source IP address is INADDR_ANY, IP sets it to the primary IP address of the
outgoing interface.

 Setting IP options is implementation-dependent. Some implementations take any IP
options that were set using the IP_OPTIONS socket option and append these to the
header that we build, while others require our header to also contain any desired IP
options.

 Some fields must be in host byte order, and some in network byte order. This is
implementation-dependent, which makes writing raw packets with IP_HDRINCL not
as portable as we'd like.

We show an example of this option in Section 29.7. Pages 1056 1057 of TCPv2 provide
additional details on this socket option.

IP_OPTIONS Socket Option
Setting this option allows us to set IP options in the IPv4 header. This requires intimate
knowledge of the format of the IP options in the IP header. We will discuss this option with
regard to IPv4 source routes in Section 27.3.

IP_RECVDSTADDR Socket Option
This socket option causes the destination IP address of a received UDP datagram to be
returned as ancillary data by recvmsg. We will show an example of this option in Section
22.2.

IP_RECVIF Socket Option
This socket option causes the index of the interface on which a UDP datagram is received to
be returned as ancillary data by recvmsg. We will show an example of this option in Section
22.2.

IP_TOS Socket Option
This option lets us set the type-of-service (TOS) field (which contains the DSCP and ECN
fields, Figure A.1) in the IP header for a TCP, UDP, or SCTP socket. If we call getsockopt
for this option, the current value that would be placed into the DSCP and ECN fields in the

Page 261

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


IP header (which defaults to 0) is returned. There is no way to fetch the value from a
received IP datagram.

An application can set the DSCP to a value negotiated with the network service provider to
receive prearranged services, e.g., low delay for IP telephony or higher throughput for bulk
data transfer. The diffserv architecture, defined in RFC 2474 [Nichols et al. 1998], provides
for only limited backward compatibility with the historical TOS field definition (from RFC
1349 [Almquist 1992]). Application that set IP_TOS to one of the contents from
<netinet/ip.h>, for instance, IPTOS_LOWDELAY or IPTOS_THROUGHPUT, should instead use a
user-specified DSCP value. The only TOS values that diffserv retains are precedence levels
6 ("internetwork control") and 7 ("network control"); this means that applications that set 
IP_TOS to IPTOS_PREC_NETCONTROL or IPTOS_PREC_INTERNETCONTROL will work in a diffserv
network.

RFC 3168 [Ramakrishnan, Floyd, and Black 2001] contains the definition of the ECN field.
Applications should generally leave the setting of the ECN field to the kernel, and should
specify zero values in the low two bits of the value set with IP_TOS.

IP_TTL Socket Option
With this option, we can set and fetch the default TTL (Figure A.1) that the system will use
for unicast packets sent on a given socket. (The multicast TTL is set using the 
IP_MULTICAST_TTL socket option, described in Section 21.6.) 4.4BSD, for example, uses
the default of 64 for both TCP and UDP sockets (specified in the IANA's "IP Option
Numbers" registry [IANA]) and 255 for raw sockets. As with the TOS field, calling 
getsockopt returns the default value of the field that the system will use in outgoing
datagrams there is no way to obtain the value from a received datagram. We will set this
socket option with our traceroute program in Figure 28.19.

[ Team LiB ]

Page 262

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

7.7 ICMPv6 Socket Option
This socket option is processed by ICMPv6 and has a level of IPPROTO_ICMPV6.

ICMP6_FILTER Socket Option
This option lets us fetch and set an icmp6_filter structure that specifies which of the 256
possible ICMPv6 message types will be passed to the process on a raw socket. We will
discuss this option in Section 28.4.

[ Team LiB ]

Page 263

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

7.8 IPv6 Socket Options
These socket options are processed by IPv6 and have a level of IPPROTO_IPV6. We defer
discussion of the multicasting socket options until Section 21.6. We note that many of
these options make use of ancillary data with the recvmsg function, and we will describe
this in Section 14.6. All the IPv6 socket options are defined in RFC 3493 [Gilligan et al.
2003] and RFC 3542 [Stevens et al. 2003].

IPV6_CHECKSUM Socket Option
This socket option specifies the byte offset into the user data where the checksum field is
located. If this value is non-negative, the kernel will: (i) compute and store a checksum for
all outgoing packets, and (ii) verify the received checksum on input, discarding packets
with an invalid checksum. This option affects all IPv6 raw sockets, except ICMPv6 raw
sockets. (The kernel always calculates and stores the checksum for ICMPv6 raw sockets.) If
a value of -1 is specified (the default), the kernel will not calculate and store the checksum
for outgoing packets on this raw socket and will not verify the checksum for received
packets.

All protocols that use IPv6 should have a checksum in their own protocol header. These
checksums include a pseudoheader (RFC 2460 [Deering and Hinden 1998]) that includes
the source IPv6 address as part of the checksum (which differs from all the other protocols
that are normally implemented using a raw socket with IPv4). Rather than forcing the
application using the raw socket to perform source address selection, the kernel will do this
and then calculate and store the checksum incorporating the standard IPv6 pseudoheader.

IPV6_DONTFRAG Socket Option
Setting this option disables the automatic insertion of a fragment header for UDP and raw
sockets. When this option is set, output packets larger than the MTU of the outgoing
interface will be dropped. No error needs to be returned from the system call that sends
the packet, since the packet might exceed the path MTU en-route. Instead, the application
should enable the IPV6_RECVPATHMTU option (Section 22.9) to learn about path MTU
changes.

IPV6_NEXTHOP Socket Option
This option specifies the next-hop address for a datagram as a socket address structure,
and is a privileged operation. We will say more about this feature in Section 22.8.

IPV6_PATHMTU Socket Option
This option cannot be set, only retrieved. When this option is retrieved, the current MTU as
determined by path-MTU discovery is returned (see Section 22.9).

IPV6_RECVDSTOPTS Socket Option
Setting this option specifies that any received IPv6 destination options are to be returned
as ancillary data by recvmsg. This option defaults to OFF. We will describe the functions
that are used to build and process these options in Section 27.5.

IPV6_RECVHOPLIMIT Socket Option
Setting this option specifies that the received hop limit field is to be returned as ancillary
data by recvmsg. This option defaults to OFF. We will describe this option in Section 22.8.

There is no way with IPv4 to obtain the received TTL field.

Page 264

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


IPV6_RECVHOPOPTS Socket Option
Setting this option specifies that any received IPv6 hop-by-hop options are to be returned
as ancillary data by recvmsg. This option defaults to OFF. We will describe the functions
that are used to build and process these options in Section 27.5.

IPV6_RECVPATHMTU Socket Option
Setting this option specifies that the path MTU of a path is to be returned as ancillary data
by recvmsg (without any accompanying data) when it changes. We will describe this option
in Section 22.9.

IPV6_RECVPKTINFO Socket Option
Setting this option specifies that the following two pieces of information about a received
IPv6 datagram are to be returned as ancillary data by recvmsg: the destination IPv6
address and the arriving interface index. We will describe this option in Section 22.8.

IPV6_RECVRTHDR Socket Option
Setting this option specifies that a received IPv6 routing header is to be returned as
ancillary data by recvmsg. This option defaults to OFF. We will describe the functions that
are used to build and process an IPv6 routing header in Section 27.6.

IPV6_RECVTCLASS Socket Option
Setting this option specifies that the received traffic class (containing the DSCP and ECN
fields) is to be returned as ancillary data by recvmsg. This option defaults to OFF. We will
describe this option in Section 22.8.

IPV6_UNICAST_HOPS Socket Option
This IPv6 option is similar to the IPv4 IP_TTL socket option. Setting the socket option
specifies the default hop limit for outgoing datagrams sent on the socket, while fetching
the socket option returns the value for the hop limit that the kernel will use for the socket.
The actual hop limit field from a received IPv6 datagram is obtained by using the 
IPV6_RECVHOPLIMIT socket option. We will set this socket option with our traceroute
program in Figure 28.19.

IPV6_USE_MIN_MTU Socket Option
Setting this option to 1 specifies that path MTU discovery is not to be performed and that
packets are sent using the minimum IPv6 MTU to avoid fragmentation. Setting it to 0
causes path MTU discovery to occur for all destinations. Setting it to 1 specifies that path
MTU discovery is performed for unicast destinations but the minimum MTU is used when
sending to multicast destinations. This option defaults to  1. We will describe this option
in Section 22.9.

IPV6_V6ONLY Socket Option
Setting this option on an AF_INET6 socket restricts it to IPv6 communication only. This
option defaults to OFF, although some systems have an option to turn it ON by default. We
will describe IPv4 and IPv6 communication using AF_INET6 sockets in Sections 12.2 and
12.3.

IPV6_XXX Socket Options
Most of the IPv6 options for header modification assume a UDP socket with information
being passed between the kernel and the application using ancillary data with recvmsg

Page 265

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


and sendmsg. A TCP socket fetches and stores these values using getsockopt and
setsockopt instead. The socket option is the same as the type of the ancillary data, and
the buffer contains the same information as would be present in the ancillary data. We will
describe this in Section 27.7.

[ Team LiB ]

Page 266

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

7.9 TCP Socket Options
There are two socket options for TCP. We specify the level as IPPROTO_TCP.

TCP_MAXSEG Socket Option
This socket option allows us to fetch or set the MSS for a TCP connection. The value
returned is the maximum amount of data that our TCP will send to the other end; often, it
is the MSS announced by the other end with its SYN, unless our TCP chooses to use a
smaller value than the peer's announced MSS. If this value is fetched before the socket is
connected, the value returned is the default value that will be used if an MSS option is not
received from the other end. Also be aware that a value smaller than the returned value
can actually be used for the connection if the timestamp option, for example, is in use,
because this option occupies 12 bytes of TCP options in each segment.

The maximum amount of data that our TCP will send per segment can also change during
the life of a connection if TCP supports path MTU discovery. If the route to the peer
changes, this value can go up or down.

We note in Figure 7.1 that this socket option can also be set by the application. This is not
possible on all systems; it was originally a read-only option. 4.4BSD limits the application
to decreasing the value: We cannot increase the value (p. 1023 of TCPv2). Since this
option controls the amount of data that TCP sends per segment, it makes sense to forbid
the application from increasing the value. Once the connection is established, this value is
the MSS option announced by the peer, and we cannot exceed that value. Our TCP,
however, can always send less than the peer's announced MSS.

TCP_NODELAY Socket Option
If set, this option disables TCP's Nagle algorithm (Section 19.4 of TCPv1 and pp. 858 859
of TCPv2). By default, this algorithm is enabled.

The purpose of the Nagle algorithm is to reduce the number of small packets on a WAN.
The algorithm states that if a given connection has outstanding data (i.e., data that our
TCP has sent, and for which it is currently awaiting an acknowledgment), then no small
packets will be sent on the connection in response to a user write operation until the
existing data is acknowledged. The definition of a "small" packet is any packet smaller than
the MSS. TCP will always send a full-sized packet if possible; the purpose of the Nagle
algorithm is to prevent a connection from having multiple small packets outstanding at any
time.

The two common generators of small packets are the Rlogin and Telnet clients, since they
normally send each keystroke as a separate packet. On a fast LAN, we normally do not
notice the Nagle algorithm with these clients, because the time required for a small packet
to be acknowledged is typically a few milliseconds far less than the time between two
successive characters that we type. But on a WAN, where it can take a second for a small
packet to be acknowledged, we can notice a delay in the character echoing, and this delay
is often exaggerated by the Nagle algorithm.

Consider the following example: We type the six-character string "hello!" to either an
Rlogin or Telnet client, with exactly 250 ms between each character. The RTT to the server
is 600 ms and the server immediately sends back the echo of each character. We assume
the ACK of the client's character is sent back to the client along with the character echo
and we ignore the ACKs that the client sends for the server's echo. (We will talk about
delayed ACKs shortly.) Assuming the Nagle algorithm is disabled, we have the 12 packets
shown in Figure 7.14.

Figure 7.14. Six characters echoed by server with Nagle algorithm

Page 267

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


disabled.

Each character is sent in a packet by itself: the data segments from left to right, and the
ACKs from right to left.

If the Nagle algorithm is enabled (the default), we have the eight packets shown in Figure
7.15. The first character is sent as a packet by itself, but the next two characters are not
sent, since the connection has a small packet outstanding. At time 600, when the ACK of
the first packet is received, along with the echo of the first character, these two characters
are sent. Until this packet is ACKed at time 1200, no more small packets are sent.

Figure 7.15. Six characters echoed by server with Nagle algorithm
enabled.

The Nagle algorithm often interacts with another TCP algorithm: the delayed ACK
algorithm. This algorithm causes TCP to not send an ACK immediately when it receives
data; instead, TCP will wait some small amount of time (typically 50 200 ms) and only
then send the ACK. The hope is that in this small amount of time, there will be data to
send back to the peer, and the ACK can piggyback with the data, saving one TCP segment.
This is normally the case with the Rlogin and Telnet clients, because the servers typically
echo each character sent by the client, so the ACK of the client's character piggybacks with
the server's echo of that character.

The problem is with other clients whose servers do not generate traffic in the reverse
direction on which ACKs can piggyback. These clients can detect noticeable delays because
the client TCP will not send any data to the server until the server's delayed ACK timer

Page 268

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


expires. These clients need a way to disable the Nagle algorithm, hence the TCP_NODELAY
option.

Another type of client that interacts badly with the Nagle algorithm and TCP's delayed
ACKs is a client that sends a single logical request to its server in small pieces. For
example, assume a client sends a 400-byte request to its server, but this is a 4-byte
request type followed by 396 bytes of request data. If the client performs a 4-byte write
followed by a 396-byte write, the second write will not be sent by the client TCP until the
server TCP acknowledges the 4-byte write. Also, since the server application cannot
operate on the 4 bytes of data until it receives the remaining 396 bytes of data, the server
TCP will delay the ACK of the 4 bytes of data (i.e., there will not be any data from the
server to the client on which to piggyback the ACK). There are three ways to fix this type of
client:

1. Use writev (Section 14.4) instead of two calls to write. A single call to writev ends
up with one call to TCP output instead of two calls, resulting in one TCP segment for
our example. This is the preferred solution.

2. Copy the 4 bytes of data and the 396 bytes of data into a single buffer and call 
write once for this buffer.

3. Set the TCP_NODELAY socket option and continue to call write two times. This is the
least desirable solution, and is harmful to the network, so it generally should not
even be considered.

Exercises 7.8 and 7.9 continue this example.

[ Team LiB ]

Page 269

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

7.10 SCTP Socket Options
The relatively large number of socket options for SCTP (17 at present writing) reflects the
finer grain of control SCTP provides to the application developer. We specify the level as
IPPROTO_SCTP.

Several options used to get information about SCTP require that data be passed into the
kernel (e.g., association ID and/or peer address). While some implementations of 
getsockopt support passing data both into and out of the kernel, not all do. The SCTP API
defines a sctp_opt_info function (Section 9.11) that hides this difference. On systems on
which getsockopt does support this, it is simply a wrapper around getsockopt. Otherwise,
it performs the required action, perhaps using a custom ioctl or a new system call. We
recommend always using sctp_opt_info when retrieving these options for maximum
portability. These options are marked with a dagger ( ) in Figure 7.2 and include
SCTP_ASSOCINFO, SCTP_GET_PEER_ADDR_INFO, SCTP_PEER_ADDR_PARAMS, SCTP_PRIMARY_ADDR,
SCTP_RTOINFO, and SCTP_STATUS.

SCTP_ADAPTION_LAYER Socket Option
During association initialization, either endpoint may specify an adaption layer indication.
This indication is a 32-bit unsigned integer that can be used by the two applications to
coordinate any local application adaption layer. This option allows the caller to fetch or set
the adaption layer indication that this endpoint will provide to peers.

When fetching this value, the caller will only retrieve the value the local socket will provide
to all future peers. To retrieve the peer's adaption layer indication, an application must
subscribe to adaption layer events.

SCTP_ASSOCINFO Socket Option
The SCTP_ASSOCINFO socket option can be used for three purposes: (i) to retrieve
information about an existing association, (ii) to change the parameters of an existing
association, and/or (iii) to set defaults for future associations. When retrieving information
about an existing association, the sctp_opt_info function should be used instead of
getsockopt. This option takes as input the sctp_assocparams structure.

struct sctp_assocparams {

  sctp_assoc_t sasoc_assoc_id;

  u_int16_t sasoc_asocmaxrxt;

  u_int16_t sasoc_number_peer_destinations;

  u_int32_t sasoc_peer_rwnd;

  u_int32_t sasoc_local_rwnd;

  u_int32_t sasoc_cookie_life;

};

These fields have the following meaning:

 sasoc_assoc_id holds the identification for the association of interest. If this value
is set to 0 when calling the setsockopt function, then sasoc_asocmaxrxt and
sasoc_cookie_life represent values that are to be set as defaults on the socket.
Calling getsockopt will return association-specific information if the association ID
is supplied; otherwise, if this field is 0, the default endpoint settings will be
returned.

Page 270

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


 sasoc_asocmaxrxt holds the maximum number of retransmissions an association
will make without acknowledgment before giving up, reporting the peer unusable
and closing the association.

 sasoc_number_peer_destinations holds the number of peer destination addresses.
It cannot be set, only retrieved.

 sasoc_peer_rwnd holds the peer's current calculated receive window. This value
represents the total number of data bytes that can yet be sent. This field is
dynamic; as the local endpoint sends data, this value decreases. As the remote
application reads data that has been received, this value increases. This value
cannot be changed by this socket option call.

 sasoc_local_rwnd represents the local receive window the SCTP stack is currently
reporting to the peer. This value is dynamic as well and is influenced by the 
SO_SNDBUF socket option. This value cannot be changed by this socket option call.

 sasoc_cookie_life represents the number of milliseconds for which a cookie, given
to a remote peer, is valid. Each state cookie sent to a peer has a lifetime associated
with it to prevent replay attacks. The default value of 60,000 milliseconds can be
changed by setting this option with a sasoc_assoc_id value of 0.

We will provide advice on tuning the value of sasoc_asocmaxrxt for performance in Section
23.11. The sasoc_cookie_life can be reduced for greater protection against cookie replay
attacks but less robustness to network delay during association initiation. The other values
are useful for debugging.

SCTP_AUTOCLOSE Socket Option
This option allows us to fetch or set the autoclose time for an SCTP endpoint. The autoclose
time is the number of seconds an SCTP association will remain open when idle. Idle is
defined by the SCTP stack as neither endpoint sending or receiving user data. The default
is for the autoclose function to be disabled.

The autoclose option is intended to be used in the one-to-many-style SCTP interface (
Chapter 9). When this option is set, the integer passed to the option is the number of
seconds before an idle connection should be closed; a value of 0 disables autoclose. Only
future associations created by this endpoint will be affected by this option; existing
associations retain their current setting.

Autoclose can be used by a server to force the closing of idle associations without the
server needing to maintain additional state. A server using this feature needs to carefully
assess the longest idle time expected on all its associations. Setting the autoclose value
smaller than needed results in the premature closing of associations.

SCTP_DEFAULT_SEND_PARAM Socket Option
SCTP has many optional send parameters that are often passed as ancillary data or used
with the sctp_sendmsg function call (which is often implemented as a library call that
passes ancillary data for the user). An application that wishes to send a large number of
messages, all with the same parameters, can use this option to set up the default
parameters and thus avoid using ancillary data or the sctp_sendmsg call. This option takes
as input the sctp_sndrcvinfo structure.

struct sctp_sndrcvinfo {

  u_int16_t sinfo_stream;

  u_int16_t sinfo_ssn;

  u_int16_t sinfo_flags;

Page 271

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


  u_int32_t sinfo_ppid;

  u_int32_t sinfo_context;

  u_int32_t sinfo_timetolive;

  u_int32_t sinfo_tsn;

  u_int32_t sinfo_cumtsn;

  sctp_assoc_t sinfo_assoc_id;

};

These fields are defined as follows:

 sinfo_stream specifies the new default stream to which all messages will be sent.

 sinfo_ssn is ignored when setting the default options. When receiving a message
with the recvmsg function or sctp_recvmsg function, this field will hold the value the
peer placed in the stream sequence number (SSN) field in the SCTP DATA chunk.

 sinfo_flags dictates the default flags to apply to all future message sends.
Allowable flag values can be found in Figure 7.16.

Figure 7.16. Allowable SCTP flag values for the sinfo_flags field.

 sinfo_pid provides the default value to use when setting the SCTP payload protocol
identifier in all data transmissions.

 sinfo_context specifies the default value to place in the sinfo_context field, which
is provided as a local tag when messages that could not be sent to a peer are
retrieved.

 sinfo_timetolive dictates the default lifetime that will be applied to all message
sends. The lifetime field is used by SCTP stacks to know when to discard an
outgoing message due to excessive delay (prior to its first transmission). If the two
endpoints support the partial reliability option, then the lifetime is also used to
specify how long a message is valid after its first transmission.

 sinfo_tsn is ignored when setting the default options. When receiving a message
with the recvmsg function or sctp_recvmsg function, this field will hold the value the
peer placed in the transport sequence number (TSN) field in the SCTP DATA chunk.

 sinfo_cumtsn is ignored when setting the default options. When receiving a
message with the recvmsg function or sctp_recvmsg function, this field will hold the
current cumulative TSN the local SCTP stack has associated with its remote peer.

 sinfo_assoc_id specifies the association identification that the requester wishes the
default parameters to be set against. For one-to-one sockets, this field is ignored.

Note that all default settings will only affect messages sent without their own 
sctp_sndrcvinfo structure. Any send that provides this structure (e.g., sctp_sendmsg or
sendmsg function with ancillary data) will override the default settings. Besides setting the
default values, this option may be used to retrieve the current default parameters by using
the sctp_opt_info function.

SCTP_DISABLE_FRAGMENTS Socket Option
SCTP normally fragments any user message that does not fit in a single SCTP packet into

Page 272

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


multiple DATA chunks. Setting this option disables this behavior on the sender. When
disabled by this option, SCTP will return the error EMSGSIZE and not send the message. The
default behavior is for this option to be disabled; SCTP will normally fragment user
messages.

This option may be used by applications that wish to control message sizes, ensuring that
every user application message will fit in a single IP packet. An application that enables
this option must be prepared to handle the error case (i.e., its message was too big) by
either providing application-layer fragmentation of the message or a smaller message.

SCTP_EVENTS Socket Option
This socket option allows a caller to fetch, enable, or disable various SCTP notifications. An
SCTP notification is a message that the SCTP stack will send to the application. The
message is read as normal data, with the msg_flags field of the recvmsg function being set
to MSG_NOTIFICATION. An application that is not prepared to use either recvmsg or
sctp_recvmsg should not enable events. Eight different types of events can be subscribed
to by using this option and passing an sctp_event_subscribe structure. Any value of 0
represents a non-subscription and a value of 1 represents a subscription.

The sctp_event_subscribe structure takes the following form:

struct sctp_event_subscribe {

  u_int8_t sctp_data_io_event;

  u_int8_t sctp_association_event;

  u_int8_t sctp_address_event;

  u_int8_t sctp_send_failure_event;

  u_int8_t sctp_peer_error_event;

  u_int8_t sctp_shutdown_event;

  u_int8_t sctp_partial_delivery_event;

  u_int8_t sctp_adaption_layer_event;

};

Figure 7.17 summarizes the various events. Further details on notifications can be found
in Section 9.14.

Figure 7.17. SCTP event subscriptions.

SCTP_GET_PEER_ADDR_INFO Socket Option
This option retrieves information about a peer address, including the congestion window,
smoothed RTT and MTU. This option may only be used to retrieve information about a
specific peer address. The caller provides a sctp_paddrinfo structure with the
spinfo_address field filled in with the peer address of interest, and should use
sctp_opt_info instead of getsockopt for maximum portability. The sctp_paddrinfo
structure has the following format:

Page 273

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


struct sctp_paddrinfo {

  sctp_assoc_t spinfo_assoc_id;

  struct sockaddr_storage spinfo_address;

  int32_t spinfo_state;

  u_int32_t spinfo_cwnd;

  u_int32_t spinfo_srtt;

  u_int32_t spinfo_rto;

  u_int32_t spinfo_mtu;

};

The data returned to the caller provides the following:

 spinfo_assoc_id contains association identification information, also provided in
the "communication up" notification (SCTP_COMM_UP). This unique value can be used
as a shorthand method to represent the association for almost all SCTP operations.

 spinfo_address is set by the caller to inform the SCTP socket on which address to
return information. On return, its value should be unchanged.

 spinfo_state holds one or more of the values seen in Figure 7.18.

Figure 7.18. SCTP peer address states.

An unconfirmed address is one that the peer had listed as a valid address, but the
local SCTP endpoint has not been able to confirm that the peer holds that address.
An SCTP endpoint confirms an address when a heartbeat or user data, sent to that
address, is acknowledged. Note that an unconfirmed address will also not have a
valid retransmission timeout (RTO) value. Active addresses represent addresses that
are considered available for use.

 spinfo_cwnd represents the current congestion window recorded for the peer
address. A description of how the the cwnd value is managed can be found on page
177 of [Stewart and Xie 2001].

 spinfo_srtt represents the current estimate of the smoothed RTT for this address.

 spinfo_rto represents the current retransmission timeout in use for this address.

 spinfo_mtu represents the current path MTU as discovered by path MTU discovery.

One interesting use for this option is to translate an IP address structure into an
association identification that can be used in other calls. We will illustrate the use of this
socket option in Chapter 23. Another possibility is for the application to track performance
to each address of a multihomed peer and update the primary address of the association to
the peer's best address. These values are also useful for logging and debugging.

SCTP_I_WANT_MAPPED_V4_ADDR Socket Option
This flag can be used to enable or disable IPv4-mapped addresses on an AF_INET6-type
socket. Note that when enabled (which is the default behavior), all IPv4 addresses will be
mapped to a IPv6 address before sending to the application. If this option is disabled, the
SCTP socket will not map IPv4 addresses and will instead pass them as a sockaddr_in
structure.

SCTP_INITMSG Socket Option

Page 274

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


This option can be used to get or set the default initial parameters used on an SCTP socket
when sending out the INIT message. The option uses the sctp_initmsg structure, which is
defined as:

struct sctp_initmsg {

  uint16_t sinit_num_ostreams;

  uint16_t sinit_max_instreams;

  uint16_t sinit_max_attempts;

  uint16_t sinit_max_init_timeo;

};

These fields are defined as follows:

 sinit_num_ostreams represents the number of outbound SCTP streams an
application would like to request. This value is not confirmed until after the
association finishes the initial handshake, and may be negotiated downward via
peer endpoint limitations.

 sinit_max_instreams represents the maximum number of inbound streams the
application is prepared to allow. This value will be overridden by the SCTP stack if it
is greater than the maximum allowable streams the SCTP stack supports.

 sinit_max_attempts expresses how many times the SCTP stack should send the
initial INIT message before considering the peer endpoint unreachable.

 sinit_max_init_timeo represents the maximum RTO value for the INIT timer.
During exponential backoff of the initial timer, this value replaces RTO.max as the
ceiling for retransmissions. This value is expressed in milliseconds.

Note that when setting these fields, any value set to 0 will be ignored by the SCTP socket.
A user of the one-to-many-style socket (described in Section 9.2) may also pass an
sctp_initmsg structure in ancillary data during implicit association setup.

SCTP_MAXBURST Socket Option
This socket option allows the application to fetch or set the maximum burst size used when
sending packets. When an SCTP implementation sends data to a peer, no more than 
SCTP_MAXBURST packets are sent at once to avoid flooding the network with packets. An
implementation may apply this limit by either: (i) reducing its congestion window to the
current flight size plus the maximum burst size times the path MTU, or (ii) using this value
as a separate micro-control, sending at most maximum burst packets at any single send
opportunity.

SCTP_MAXSEG Socket Option
This socket option allows the application to fetch or set the maximum fragment size used
during SCTP fragmentation. This option is similar to the TCP option TCP_MAXSEG described
in Section 7.9.

When an SCTP sender receives a message from an application that is larger than this
value, the SCTP sender will break the message into multiple pieces for transport to the
peer endpoint. The size that the SCTP sender normally uses is the smallest MTU of all
addresses associated with the peer. This option overrides this value downward to the value
specified. Note that the SCTP stack may fragment a message at a smaller boundary than
requested by this option. This smaller fragmentation will occur when one of the paths to
the peer endpoint has a smaller MTU than the value requested in the SCTP_MAXSEG option.

Page 275

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


This value is an endpoint-wide setting and may affect more than one association in the
one-to-many interface style.

SCTP_NODELAY Socket Option
If set, this option disables SCTP's Nagle algorithm. This option is OFF by default (i.e., the
Nagle algorithm is ON by default). SCTP's Nagle algorithm works identically to TCP's except
that it is trying to coalesce multiple DATA chunks as opposed to simply coalescing bytes on
a stream. For a further discussion of the Nagle algorithm, see TCP_MAXSEG.

SCTP_PEER_ADDR_PARAMS Socket Option
This socket option allows an application to fetch or set various parameters on an
association. The caller provides the sctp_paddrparams structure, filling in the association
identification. The sctp_paddrparams structure has the following format:

struct sctp_paddrparams {

  sctp_assoc_t spp_assoc_id;

  struct sockaddr_storage spp_address;

  u_int32_t spp_hbinterval;

  u_int16_t spp_pathmaxrxt;

};

These fields are defined as follows:

 spp_assoc_id holds the association identification for the information being
requested or set. If this value is set to 0, the endpoint default values are set or
retrieved instead of the association-specific values.

 spp_address specifies the IP address for which these parameters are being
requested or set. If the spp_assoc_id field is set to 0, then this field is ignored.

 spp_hbinterval is the interval between heartbeats. A value of SCTP_NO_HB disables
heartbeats. A value of SCTP_ISSUE_HB requests an on-demand heartbeat. Any other
value changes the heartbeat interval to this value in milliseconds. When setting the
default parameters, the value of SCTP_ISSUE_HB is not allowed.

 spp_hbpathmaxrxt holds the number of retransmissions that will be attempted on
this destination before it is declared INACTIVE. When an address is declared
INACTIVE, if it is the primary address, an alternate address will be chosen as the
primary.

SCTP_PRIMARY_ADDR Socket Option
This socket option fetches or sets the address that the local endpoint is using as primary.
The primary address is used, by default, as the destination address for all messages sent
to a peer. To set this value, the caller fills in the association identification and the peer's
address that should be used as the primary address. The caller passes this information in
a sctp_setprim structure, which is defined as:

struct sctp_setprim {

  sctp_assoc_t            ssp_assoc_id;

  struct sockaddr_storage ssp_addr;

};

Page 276

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


These fields are defined as follows:

 spp_assoc_id specifies the association identification on which the requester wishes
to set or retrieve the current primary address. For the one-to-one style, this field is
ignored.

 sspp_addr specifies the primary address, which must be an address belonging to
the peer. If the operation is a setsockopt function call, then the value in this field
represents the new peer address the requester would like to be made into the
primary destination address.

Note that retrieving the value of this option on a one-to-one socket that has only one local
address associated with it is the same as calling getsockname.

SCTP_RTOINFO Socket Option
This socket option can be used to fetch or set various RTO information on a specific
association or the default values used by this endpoint. When fetching, the caller should
use sctp_opt_info instead of getsockopt for maximum portability. The caller provides a
sctp_rtoinfo structure of the following form:

struct sctp_rtoinfo {

  sctp_assoc          srto_assoc_id;

  uint32_t            srto_initial;

  uint32_t            srto_max;

  uint32_t            srto_min;

};

These fields are defined as follows:

 srto_assoc_id holds either the specific association of interest or 0. If this field
contains the value 0, then the system's default parameters are affected by the call.

 srto_initial contains the initial RTO value used for a peer address. The initial RTO
is used when sending an INIT chunk to the peer. This value is in milliseconds and
has a default value of 3,000.

 srto_max contains the maximum RTO value that will be used when an update is
made to the retransmission timer. If the updated value is larger than the RTO
maximum, then the RTO maximum is used as the RTO instead of the calculated
value. The default value for this field is 60,000 milliseconds.

 srto_min contains the minimum RTO value that will be used when starting a
retransmission timer. Anytime an update is made to the RTO timer, the RTO
minimum value is checked against the new value. If the new value is smaller than
the minimum, the minimum replaces the new value. The default value for this field
is 1,000 milliseconds.

A value of 0 for srto_initial, srto_max, or srto_min indicates that the default value
currently set should not be changed. All time values are expressed in milliseconds. We
provide guidance on setting these timers for performance in Section 23.11.

SCTP_SET_PEER_PRIMARY_ADDR Socket Option
Setting this option causes a message to be sent that requests that the peer set the
specified local address as its primary address. The caller provides an sctp_setpeerprim
structure and must fill in both the association identification and a local address to request

Page 277

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


the peer mark as its primary. The address provided must be one of the local endpoint's
bound addresses. The sctp_setpeerprim structure is defined as follows:

struct sctp_setpeerprim {

  sctp_assoc_t            sspp_assoc_id;

  struct sockaddr_storage sspp_addr;

};

These fields are defined as follows:

 sspp_assoc_id specifies the association identification on which the requester wishes
to set the primary address. For the one-to-one style, this field is ignored.

 sspp_addr holds the local address that the requester wishes to ask the peer system
to set as the primary address.

This feature is optional, and must be supported by both endpoints to operate. If the local
endpoint does not support the feature, an error of EOPNOTSUPP will be returned to the caller.
If the remote endpoint does not support the feature, an error of EINVAL will be returned to
the caller. Note that this value may only be set and cannot be retrieved.

SCTP_STATUS Socket Option
This socket option will retrieve the current state of an SCTP association. The caller should
use sctp_opt_info instead of getaddrinfo for maximum portability. The caller provides
an sctp_status structure, filling in the association identification field, sstat_assoc_id. The
structure will be returned filled in with the information pertaining to the requested
association. The sctp_status structure has the following format:

struct sctp_status {

  sctp_assoc_t sstat_assoc_id;

  int32_t sstat_state;

  u_int32_t sstat_rwnd;

  u_int16_t sstat_unackdata;

  u_int16_t sstat_penddata;

  u_int16_t sstat_instrms;

  u_int16_t sstat_outstrms;

  u_int32_t sstat_fragmentation_point;

  struct sctp_paddrinfo sstat_primary;

};

These fields are defined as follows:

 sstat_assoc_id holds the association identification.

 sstat_state holds one of the values found in Figure 7.19 and indicates the overall
state of the association. A detailed depiction of the states an SCTP endpoint goes
through during association setup or shutdown can be found in Figure 2.8.

Figure 7.19. SCTP states.

Page 278

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


 sstat_rwnd holds our endpoint's current estimate of the peer's receive window.

 sstat_unackdata holds the number of unacknowledged DATA chunks pending for
the peer.

 sstat_penddata holds the number of unread DATA chunks that the local endpoint is
holding for the application to read.

 sstat_instrms holds the number of streams the peer is using to send data to this
endpoint.

 sstat_outstrms holds the number of allowable streams that this endpoint can use
to send data to the peer.

 sstat_fragmentation_point contains the current value the local SCTP endpoint is
using as the fragmentation point for user messages. This value is normally the
smallest MTU of all destinations, or possibly a smaller value set by the local
application with SCTP_MAXSEG.

 sstat_primary holds the current primary address. The primary address is the
default address used when sending data to the peer endpoint.

These values are useful for diagnostics and for determining the characteristics of the
session; for example, the sctp_get_no_strms function in Section 10.2 will use the
sstat_outstrms member to determine how many streams are available for outbound use.
A low sstat_rwnd and/or a high sstat_unackdata value can be used to determine that the
peer's receive socket buffer is becoming full, which can be used as a cue to the application
to slow down transmission if possible. The sstat_fragmentation_point can be used by
some applications to reduce the number of fragments that SCTP has to create, by sending
smaller application messages.

[ Team LiB ]

Page 279

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

7.11 fcntl Function
fcntl stands for "file control" and this function performs various descriptor control
operations. Before describing the function and how it affects a socket, we need to look at
the bigger picture. Figure 7.20 summarizes the different operations performed by fcntl,
ioctl, and routing sockets.

Figure 7.20. Summary of fcntl, ioctl, and routing socket operations.

The first six operations can be applied to sockets by any process; the second two (interface
operations) are less common, but are still general-purpose; and the last two (ARP and
routing table) are issued by administrative programs such as ifconfig and route. We will
talk more about the various ioctl operations in Chapter 17 and routing sockets in Chapter
18.

There are multiple ways to perform the first four operations, but we note in the final
column that POSIX specifies that fcntl is the preferred way. We also note that POSIX
provides the sockatmark function (Section 24.3) as the preferred way to test for the
out-of-band mark. The remaining operations, with a blank final column, have not been
standardized by POSIX.

We also note that the first two operations, setting a socket for nonblocking I/O and for
signal-driven I/O, have been set historically using the FNDELAY and FASYNC commands
with fcntl. POSIX defines the O_XXX constants.

The fcntl function provides the following features related to network programming:

 Nonblocking I/O  We can set the O_NONBLOCK file status flag using the F_SETFL
command to set a socket as nonblocking. We will describe nonblocking I/O in 
Chapter 16.

 Signal-driven I/O  We can set the O_ASYNC file status flag using the F_SETFL
command, which causes the SIGIO signal to be generated when the status of a
socket changes. We will discuss this in Chapter 25.

 The F_SETOWN command lets us set the socket owner (the process ID or process
group ID) to receive the SIGIO and SIGURG signals. The former signal is generated
when signal-driven I/O is enabled for a socket (Chapter 25) and the latter signal is
generated when new out-of-band data arrives for a socket

(Chapter 24). The F_GETOWN command returns the current owner of the socket.

The term "socket owner" is defined by POSIX. Historically, Berkeley-derived
implementations have called this "the process group ID of the socket" because the variable
that stores this ID is the so_pgid member of the socket structure (p. 438 of TCPv2).

Page 280

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


#include <fcntl.h>

int fcntl(intfd, int cmd, ... /* int arg */ );

Returns: depends on cmd if OK, -1 on error

Each descriptor (including a socket) has a set of file flags that is fetched with the F_GETFL
command and set with the F_SETFL command. The two flags that affect a socket are

 O_NONBLOCK nonblocking I/O

 O_ASYNC signal-driven I/O

We will describe both of these features in more detail later. For now, we note that typical
code to enable nonblocking I/O, using fcntl, would be:

int     flags;

     /* Set a socket as nonblocking */

if  ( (flags = fcntl (fd, F_GETFL, 0)) < 0)

    err_sys("F_GETFL error");

flags |= O_NONBLOCK;

if (fcntl(fd, F_SETFL, flags) < 0)

    err_sys("F_SETFL error");

Beware of code that you may encounter that simply sets the desired flag.

    /* Wrong way to set a socket as nonblocking */

if (fcntl(fd, F_SETFL, O_NONBLOCK) < 0)

    err_sys("F_SETFL error");

While this sets the nonblocking flag, it also clears all the other file status flags. The only
correct way to set one of the file status flags is to fetch the current flags, logically OR in
the new flag, and then set the flags.

The following code turns off the nonblocking flag, assuming flags was set by the call to
fcntl shown above:

flags &= ~O_NONBLOCK;

if (fcntl(fd, F_SETFL, flags) < 0)

    err_sys("F_SETFL error");

The two signals SIGIO and SIGURG are different from other signals in that they are
generated for a socket only if the socket has been assigned an owner with the F_SETOWN
command. The integer arg value for the F_SETOWN command can be either a positive
integer, specifying the process ID to receive the signal, or a negative integer whose
absolute value is the process group ID to receive the signal. The F_GETOWN command
returns the socket owner as the return value from the fcntl function, either the process ID
(a positive return value) or the process group ID (a negative value other than  1). The
difference between specifying a process or a process group to receive the signal is that the

Page 281

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


former causes only a single process to receive the signal, while the latter causes all
processes in the process group (perhaps more than one) to receive the signal.

When a new socket is created by socket, it has no owner. But when a new socket is
created from a listening socket, the socket owner is inherited from the listening socket by
the connected socket (as are many socket options [pp. 462 463 of TCPv2]).

[ Team LiB ]

Page 282

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

7.12 Summary
Socket options run the gamut from the very general (SO_ERROR) to the very specific (IP
header options). The most commonly used options that we might encounter are 
SO_KEEPALIVE, SO_RCVBUF, SO_SNDBUF, and SO_REUSEADDR. The latter should always be set
for a TCP server before it calls bind (Figure 11.12). The SO_BROADCAST option and the 10
multicast socket options are only for applications that broadcast or multicast, respectively.

The SO_KEEPALIVE socket option is set by many TCP servers and automatically terminates a
half-open connection. The nice feature of this option is that it is handled by the TCP layer,
without requiring an application-level inactivity timer; its downside is that it cannot tell the
difference between a crashed client host and a temporary loss of connectivity to the client.
SCTP provides 17 socket options that are used by the application to control the transport. 
SCTP_NODELAY and SCTP_MAXSEG are similar to TCP_NODELAY and TCP_MAXSEG and perform
equivalent functions. The other 15 options give the application finer control of the SCTP
stack; we will discuss the use of many of these socket options in Chapter 23.

The SO_LINGER socket option gives us more control over when close returns and also lets
us force an RST to be sent instead of TCP's four-packet connection termination sequence.
We must be careful sending RSTs, because this avoids TCP's TIME_WAIT state. Much of the
time, this socket option does not provide the information that we need, in which case, an
application-level ACK is required.

Every TCP and SCTP socket has a send buffer and a receive buffer, and every UDP socket
has a receive buffer. The SO_SNDBUF and SO_RCVBUF socket options let us change the sizes
of these buffers. The most common use of these options is for bulk data transfer across
long fat pipes: TCP connections with either a high bandwidth or a long delay, often using
the RFC 1323 extensions. UDP sockets, on the other hand, might want to increase the size
of the receive buffer to allow the kernel to queue more datagrams if the application is busy.

[ Team LiB ]

Page 283

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Exercises
7.1 Write a program that prints the default TCP, UDP, and SCTP send and

receive buffer sizes and run it on the systems to which you have access.

7.2 Modify Figure 1.5 as follows: Before calling connect, call getsockopt to
obtain the socket receive buffer size and MSS. Print both values. After 
connect returns success, fetch these same two socket options and print
their values. Have the values changed? Why? Run the program
connecting to a server on your local network and also run the program
connecting to a server on a remote network. Does the MSS change?
Why? You should also run the program on any different hosts to which
you have access.

7.3 Start with our TCP server from Figures 5.2 and 5.3 and our TCP client
from Figures 5.4 and 5.5. Modify the client main function to set the
SO_LINGER socket option before calling exit, setting l_onoff to 1 and
l_linger to 0. Start the server and then start the client. Type in a line
or two at the client to verify the operation, and then terminate the
client by entering your EOF character. What happens? After you
terminate the client, run netstat on the client host and see if the
socket goes through the TIME_WAIT state.

7.4 Assume two TCP clients start at about the same time. Both set the 
SO_REUSEADDR socket option and then call bind with the same local IP
address and the same local port (say 1500). But, one client connects to
198.69.10.2 port 7000 and the second connects to 198.69.10.2 (same
peer IP address) but port 8000. Describe the race condition that occurs.

7.5 Obtain the source code for the examples in this book (see the Preface)
and compile the sock program (Section C.3). First, classify your host as
(a) no multicast support, (b) multicast support but SO_REUSEPORT not
provided, or (c) multicast support and SO_REUSEPORT provided. Try to
start multiple instances of the sock program as a TCP server (-s
command-line option) on the same port, binding the wildcard address,
one of your host's interface addresses, and the loopback address. Do
you need to specify the SO_REUSEADDR option (the -A command-line
option)? Use netstat to see the listening sockets.

7.6 Continue the previous example, but start a UDP server (-u
command-line option) and try to start two instances, both binding the
same local IP address and port. If your implementation supports 
SO_REUSEPORT, try using it (-T command-line option).

7.7 Many versions of the ping program have a -d flag to enable the
SO_DEBUG socket option. What does this do?

7.8 Continuing the example at the end of our discussion of the TCP_NODELAY
socket option, assume that a client performs two writes: the first of 4

Page 284

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


bytes and the second of 396 bytes. Also assume that the server's
delayed ACK time is 100 ms, the RTT between the client and server is
100 ms, and the server's processing time for the client's request is 50
ms. Draw a timeline that shows the interaction of the Nagle algorithm
with delayed ACKs.

7.9 Redo the previous exercise, assuming the TCP_NODELAY socket option is
set.

7.10 Redo Exercises 7.8 assuming the process calls writev one time, for
both the 4-byte buffer and the 396-byte buffer.

7.11 Read RFC 1122 [Braden 1989] to determine the recommended interval
for delayed ACKs.

7.12 Where does our server in Figures 5.2 and 5.3 spend most of its time?
Assume the server sets the SO_KEEPALIVE socket option, there is no
data being exchanged across the connection, and the client host
crashes and does not reboot. What happens?

7.13 Where does our client in Figures 5.4 and 5.5 spend most of its time?
Assume the client sets the SO_KEEPALIVE socket option, there is no data
being exchanged across the connection, and the server host crashes
and does not reboot. What happens?

7.14 Where does our client in Figures 5.4 and 6.13 spend most of its time?
Assume the client sets the SO_KEEPALIVE socket option, there is no data
being exchanged across the connection, and the server host crashes
and does not reboot. What happens?

7.15 Assume both a client and server set the SO_KEEPALIVE socket option.
Connectivity is maintained between the two peers, but there is no
application data exchanged across the connection. When the keep-alive
timer expires every two hours, how many TCP segments are exchanged
across the connection?

7.16 Almost all implementations define the constant SO_ACCEPTCONN in the
<sys/socket.h> header, but we have not described this option. Read
[Lanciani 1996] to find out why this option exists.

[ Team LiB ]

Page 285

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Chapter 8. Elementary UDP Sockets
Section 8.1.?Introduction

Section 8.2.?recvfrom and sendto Functions

Section 8.3.?UDP Echo Server: main Function

Section 8.4.?UDP Echo Server: dg_echo Function

Section 8.5.?UDP Echo Client: main Function

Section 8.6.?UDP Echo Client: dg_cli Function

Section 8.7.?Lost Datagrams

Section 8.8.?Verifying Received Response

Section 8.9.?Server Not Running

Section 8.10.?Summary of UDP Example

Section 8.11.?connect Function with UDP

Section 8.12.?dg_cli Function (Revisited)

Section 8.13.?Lack of Flow Control with UDP

Section 8.14.?Determining Outgoing Interface with UDP

Section 8.15.?TCP and UDP Echo Server Using select

Section 8.16.?Summary

Exercises

[ Team LiB ]

Page 286

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

8.1 Introduction
There are some fundamental differences between applications written using TCP versus
those that use UDP. These are because of the differences in the two transport layers: UDP
is a connectionless, unreliable, datagram protocol, quite unlike the connection-oriented,
reliable byte stream provided by TCP. Nevertheless, there are instances when it makes
sense to use UDP instead of TCP, and we will go over this design choice in Section 22.4.
Some popular applications are built using UDP: DNS, NFS, and SNMP, for example.

Figure 8.1 shows the function calls for a typical UDP client/server. The client does not
establish a connection with the server. Instead, the client just sends a datagram to the
server using the sendto function (described in the next section), which requires the
address of the destination (the server) as a parameter. Similarly, the server does not
accept a connection from a client. Instead, the server just calls the recvfrom function,
which waits until data arrives from some client. recvfrom returns the protocol address of
the client, along with the datagram, so the server can send a response to the correct client.

Figure 8.1. Socket functions for UDP client/server.

Figure 8.1 shows a timeline of the typical scenario that takes place for a UDP client/server
exchange. We can compare this to the typical TCP exchange that was shown in Figure 4.1.

In this chapter, we will describe the new functions that we use with UDP sockets, recvfrom
and sendto, and redo our echo client/server to use UDP. We will also describe the use of
the connect function with a UDP socket, and the concept of asynchronous errors.

[ Team LiB ]

Page 287

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

8.2 recvfrom and sendto Functions
These two functions are similar to the standard read and write functions, but three
additional arguments are required.

#include <sys/socket.h>

ssize_t recvfrom(int sockfd, void *buff, size_t nbytes, int flags, struct sockaddr *
from, socklen_t *addrlen);

ssize_t sendto(int sockfd, const void *buff, size_t nbytes, int flags, const struct
sockaddr *to, socklen_t addrlen);

Both return: number of bytes read or written if OK,  1 on error

The first three arguments, sockfd, buff, and nbytes, are identical to the first three
arguments for read and write: descriptor, pointer to buffer to read into or write from, and
number of bytes to read or write.

We will describe the flags argument in Chapter 14 when we discuss the recv, send,
recvmsg, and sendmsg functions, since we do not need them with our simple UDP
client/server example in this chapter. For now, we will always set the flags to 0.

The to argument for sendto is a socket address structure containing the protocol address
(e.g., IP address and port number) of where the data is to be sent. The size of this socket
address structure is specified by addrlen. The recvfrom function fills in the socket address
structure pointed to by from with the protocol address of who sent the datagram. The
number of bytes stored in this socket address structure is also returned to the caller in the
integer pointed to by addrlen. Note that the final argument to sendto is an integer value,
while the final argument to recvfrom is a pointer to an integer value (a value-result
argument).

The final two arguments to recvfrom are similar to the final two arguments to accept: The
contents of the socket address structure upon return tell us who sent the datagram (in the
case of UDP) or who initiated the connection (in the case of TCP). The final two arguments
to sendto are similar to the final two arguments to connect: We fill in the socket address
structure with the protocol address of where to send the datagram (in the case of UDP) or
with whom to establish a connection (in the case of TCP).

Both functions return the length of the data that was read or written as the value of the
function. In the typical use of recvfrom, with a datagram protocol, the return value is the
amount of user data in the datagram received.

Writing a datagram of length 0 is acceptable. In the case of UDP, this results in an IP
datagram containing an IP header (normally 20 bytes for IPv4 and 40 bytes for IPv6), an
8-byte UDP header, and no data. This also means that a return value of 0 from recvfrom is
acceptable for a datagram protocol: It does not mean that the peer has closed the
connection, as does a return value of 0 from read on a TCP socket. Since UDP is
connectionless, there is no such thing as closing a UDP connection.

If the from argument to recvfrom is a null pointer, then the corresponding length
argument (addrlen) must also be a null pointer, and this indicates that we are not
interested in knowing the protocol address of who sent us data.

Both recvfrom and sendto can be used with TCP, although there is normally no reason to

Page 288

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


do so.

[ Team LiB ]

Page 289

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

8.3 UDP Echo Server: main Function
We will now redo our simple echo client/server from Chapter 5 using UDP. Our UDP client
and server programs follow the function call flow that we diagrammed in Figure 8.1. Figure
8.2 depicts the functions that are used. Figure 8.3 shows the server main function.

Figure 8.2. Simple echo client/server using UDP.

Figure 8.3 UDP echo server.

udpcliserv/udpserv01.c

 1 #include     "unp.h"

 2 int

 3 main(int argc, char **argv)

 4 {

 5     int     sockfd;

 6     struct sockaddr_in servaddr, cliaddr;

 7     sockfd = Socket(AF_INET, SOCK_DGRAM, 0);

 8     bzero(&servaddr, sizeof(servaddr));

 9     servaddr.sin_family = AF_INET;

10     servaddr.sin_addr.s_addr = htonl(INADDR_ANY);

11     servaddr.sin_port = htons(SERV_PORT);

12     Bind(sockfd, (SA *) &servaddr, sizeof(servaddr));

13     dg_echo(sockfd, (SA *) &cliaddr, sizeof(cliaddr));

14 }

Create UDP socket, bind server's well-known port
7 12 We create a UDP socket by specifying the second argument to socket as SOCK_DGRAM
(a datagram socket in the IPv4 protocol). As with the TCP server example, the IPv4
address for the bind is specified as INADDR_ANY and the server's well-known port is the
constant SERV_PORT from the unp.h header.

13 The function dg_echo is called to perform server processing.

[ Team LiB ]

Page 290

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

8.4 UDP Echo Server: dg_echo Function
Figure 8.4 shows the dg_echo function.

Figure 8.4 dg_echo function: echo lines on a datagram socket.

lib/dg_echo.c

 1 #include     "unp.h"

 2 void

 3 dg_echo(int sockfd, SA *pcliaddr, socklen_t clilen)

 4 {

 5     int     n;

 6     socklen_t len;

 7     char    mesg[MAXLINE];

 8     for ( ; ; ) {

 9         len = clilen;

10         n = Recvfrom(sockfd, mesg, MAXLINE, 0, pcliaddr, &len);

11         Sendto(sockfd, mesg, n, 0, pcliaddr, len);

12     }

13 }

Read datagram, echo back to sender
8 12 This function is a simple loop that reads the next datagram arriving at the server's
port using recvfrom and sends it back using sendto.

Despite the simplicity of this function, there are numerous details to consider. First, this
function never terminates. Since UDP is a connectionless protocol, there is nothing like an
EOF as we have with TCP.

Next, this function provides an iterative server, not a concurrent server as we had with
TCP. There is no call to fork, so a single server process handles any and all clients. In
general, most TCP servers are concurrent and most UDP servers are iterative.

There is implied queuing taking place in the UDP layer for this socket. Indeed, each UDP
socket has a receive buffer and each datagram that arrives for this socket is placed in that
socket receive buffer. When the process calls recvfrom, the next datagram from the buffer
is returned to the process in a first-in, first-out (FIFO) order. This way, if multiple
datagrams arrive for the socket before the process can read what's already queued for the
socket, the arriving datagrams are just added to the socket receive buffer. But, this buffer
has a limited size. We discussed this size and how to increase it with the SO_RCVBUF socket
option in Section 7.5.

Figure 8.5 summarizes our TCP client/server from Chapter 5 when two clients establish
connections with the server.

Figure 8.5. Summary of TCP client/server with two clients.

Page 291

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


There are two connected sockets and each of the two connected sockets on the server host
has its own socket receive buffer.

Figure 8.6 shows the scenario when two clients send datagrams to our UDP server.

Figure 8.6. Summary of UDP client/server with two clients.

There is only one server process and it has a single socket on which it receives all arriving
datagrams and sends all responses. That socket has a receive buffer into which all arriving
datagrams are placed.

The main function in Figure 8.3 is protocol-dependent (it creates a socket of protocol
AF_INET and allocates and initializes an IPv4 socket address structure), but the dg_echo
function is protocol-independent. The reason dg_echo is protocol-independent is because
the caller (the main function in our case) must allocate a socket address structure of the
correct size, and a pointer to this structure, along with its size, are passed as arguments
to dg_echo. The function dg_echo never looks inside this protocol-dependent structure: It
simply passes a pointer to the structure to recvfrom and sendto. recvfrom fills this
structure with the IP address and port number of the client, and since the same pointer (
pcliaddr) is then passed to sendto as the destination address, this is how the datagram is
echoed back to the client that sent the datagram.

[ Team LiB ]

Page 292

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

8.5 UDP Echo Client: main Function
The UDP client main function is shown in Figure 8.7.

Figure 8.7 UDP echo client.

udpcliserv/udpcli01.c

 1 #include     "unp.h"

 2 int

 3 main(int argc, char **argv)

 4 {

 5     int     sockfd;

 6     struct sockaddr_in servaddr;

 7     if(argc != 2)

 8        err_quit("usage: udpcli <IPaddress>");

 9     bzero(&servaddr, sizeof(servaddr));

10     servaddr.sin_family = AF_INET;

11     servaddr.sin_port = htons(SERV_PORT);

12     Inet_pton(AF_INET, argv[1], &servaddr.sin_addr);

13     sockfd = Socket(AF_INET, SOCK_DGRAM, 0);

14     dg_cli(stdin, sockfd, (SA *) &servaddr, sizeof(servaddr));

15     exit(0);

16 }

Fill in socket address structure with server's address
9 12 An IPv4 socket address structure is filled in with the IP address and port number of
the server. This structure will be passed to dg_cli, specifying where to send datagrams.

13 14 A UDP socket is created and the function dg_cli is called.

[ Team LiB ]

Page 293

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

8.6 UDP Echo Client: dg_cli Function
Figure 8.8 shows the function dg_cli, which performs most of the client processing.

Figure 8.8 dg_cli function: client processing loop.

lib/dg_cli.c

 1 #include     "unp.h"

 2 void

 3 dg_cli(FILE *fp, int sockfd, const SA *pservaddr, socklen_t servlen)

 4 {

 5     int     n;

 6     char    sendline[MAXLINE], recvline[MAXLINE + 1];

 7     while (Fgets(sendline, MAXLINE, fp) != NULL) {

 8         Sendto(sockfd, sendline, strlen(sendline), 0, pservaddr, servlen);

 9         n = Recvfrom(sockfd, recvline, MAXLINE, 0, NULL, NULL);

10         recvline[n] = 0;        /* null terminate */

11         Fputs(recvline, stdout);

12     }

13 }

7 12 There are four steps in the client processing loop: read a line from standard input
using fgets, send the line to the server using sendto, read back the server's echo using
recvfrom, and print the echoed line to standard output using fputs.

Our client has not asked the kernel to assign an ephemeral port to its socket. (With a TCP
client, we said the call to connect is where this takes place.) With a UDP socket, the first
time the process calls sendto, if the socket has not yet had a local port bound to it, that is
when an ephemeral port is chosen by the kernel for the socket. As with TCP, the client can
call bind explicitly, but this is rarely done.

Notice that the call to recvfrom specifies a null pointer as the fifth and sixth arguments.
This tells the kernel that we are not interested in knowing who sent the reply. There is a
risk that any process, on either the same host or some other host, can send a datagram to
the client's IP address and port, and that datagram will be read by the client, who will
think it is the server's reply. We will address this in Section 8.8.

As with the server function dg_echo, the client function dg_cli is protocol-independent,
but the client main function is protocol-dependent. The main function allocates and
initializes a socket address structure of some protocol type and then passes a pointer to
this structure, along with its size, to dg_cli.

[ Team LiB ]

Page 294

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

8.7 Lost Datagrams
Our UDP client/server example is not reliable. If a client datagram is lost (say it is
discarded by some router between the client and server), the client will block forever in its
call to recvfrom in the function dg_cli, waiting for a server reply that will never arrive.
Similarly, if the client datagram arrives at the server but the server's reply is lost, the
client will again block forever in its call to recvfrom. A typical way to prevent this is to
place a timeout on the client's call to recvfrom. We will discuss this in Section 14.2.

Just placing a timeout on the recvfrom is not the entire solution. For example, if we do
time out, we cannot tell whether our datagram never made it to the server, or if the
server's reply never made it back. If the client's request was something like "transfer a
certain amount of money from account A to account B" (instead of our simple echo server),
it would make a big difference as to whether the request was lost or the reply was lost. We
will talk more about adding reliability to a UDP client/server in Section 22.5.

[ Team LiB ]

Page 295

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

8.8 Verifying Received Response
At the end of Section 8.6, we mentioned that any process that knows the client's
ephemeral port number could send datagrams to our client, and these would be intermixed
with the normal server replies. What we can do is change the call to recvfrom in Figure 8.8
to return the IP address and port of who sent the reply and ignore any received datagrams
that are not from the server to whom we sent the datagram. There are a few pitfalls with
this, however, as we will see.

First, we change the client main function (Figure 8.7) to use the standard echo server (
Figure 2.18). We just replace the assignment

servaddr.sin_port = htons(SERV_PORT);

with

servaddr.sin_port = htons(7);

We do this so we can use any host running the standard echo server with our client.

We then recode the dg_cli function to allocate another socket address structure to hold
the structure returned by recvfrom. We show this in Figure 8.9.

Allocate another socket address structure
9 We allocate another socket address structure by calling malloc. Notice that the dg_cli
function is still protocol-independent; because we do not care what type of socket address
structure we are dealing with, we use only its size in the call to malloc.

Compare returned address
12 18 In the call to recvfrom, we tell the kernel to return the address of the sender of the
datagram. We first compare the length returned by recvfrom in the value-result argument
and then compare the socket address structures themselves using memcmp.

Section 3.2 says that even if the socket address structure contains a length field, we need
never set it or examine it. However, memcmp compares every byte of data in the two socket
address structures, and the length field is set in the socket address structure that the
kernel returns; so in this case we must set it when constructing the sockaddr. If we don't,
the memcmp will compare a 0 (since we didn't set it) with a 16 (assuming sockaddr_in) and
will not match.

Figure 8.9 Version of dg_cli that verifies returned socket address.

udpcliserv/dgcliaddr.c

 1 #include     "unp.h"

 2 void

 3 dg_cli(FILE *fp, int sockfd, const SA *pservaddr, socklen_t servlen)

 4 {

Page 296

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


 5     int     n;

 6     char    sendline[MAXLINE], recvline[MAXLINE + 1];

 7     socklen_t len;

 8     struct sockaddr *preply_addr;

 9     preply_addr = Malloc(servlen);

10     while (Fgets(sendline, MAXLINE, fp) != NULL) {

11         Sendto(sockfd, sendline, strlen(sendline), 0, pservaddr, servlen);

12         len = servlen;

13         n = Recvfrom(sockfd, recvline, MAXLINE, 0, preply_addr, &len);

14         if (len != servlen || memcmp(pservaddr, preply_addr, len) != 0) {

15             printf("reply from %s (ignored)\n", Sock_ntop(preply_addr,

len));

16             continue;

17         }

18         recvline[n] = 0;      /* null terminate */

19         Fputs(recvline, stdout);

20     }

21 }

This new version of our client works fine if the server is on a host with just a single IP
address. But this program can fail if the server is multihomed. We run this program to our
host freebsd4, which has two interfaces and two IP addresses.

macosx % host freebsd4

freebsd4.unpbook.com has address 172.24.37.94

freebsd4.unpbook.com has address 135.197.17.100

macosx % udpcli02 135.197.17.100

hello

reply from 172.24.37.94:7 (ignored)

goodbye

reply from 172.24.37.94:7 (ignored)

We specified the IP address that does not share the same subnet as the client.

This is normally allowed. Most IP implementations accept an arriving IP datagram that is
destined for any of the host's IP addresses, regardless of the interface on which the
datagram arrives (pp. 217 219 of TCPv2). RFC 1122 [Braden 1989] calls this the weak
end system model. If a system implemented what this RFC calls the strong end system
model, it would accept an arriving datagram only if that datagram arrived on the interface
to which it was addressed.

The IP address returned by recvfrom (the source IP address of the UDP datagram) is not
the IP address to which we sent the datagram. When the server sends its reply, the
destination IP address is 172.24.37.78. The routing function within the kernel on freebsd4
chooses 172.24.37.94 as the outgoing interface. Since the server has not bound an IP
address to its socket (the server has bound the wildcard address to its socket, which is
something we can verify by running netstat on freebsd), the kernel chooses the source
address for the IP datagram. It is chosen to be the primary IP address of the outgoing
interface (pp. 232 233 of TCPv2). Also, since it is the primary IP address of the interface,
if we send our datagram to a nonprimary IP address of the interface (i.e., an alias), this
will also cause our test in Figure 8.9 to fail.

One solution is for the client to verify the responding host's domain name instead of its IP

Page 297

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


address by looking up the server's name in the DNS (Chapter 11), given the IP address
returned by recvfrom. Another solution is for the UDP server to create one socket for every
IP address that is configured on the host, bind that IP address to the socket, use select
across all these sockets (waiting for any one to become readable), and then reply from the
socket that is readable. Since the socket used for the reply was bound to the IP address
that was the destination address of the client's request (or the datagram would not have
been delivered to the socket), this guaranteed that the source address of the reply was the
same as the destination address of the request. We will show an example of this in Section
22.6.

On a multihomed Solaris system, the source IP address for the server's reply is the
destination IP address of the client's request. The scenario described in this section is for
Berkeley-derived implementations that choose the source IP address based on the
outgoing interface.

[ Team LiB ]

Page 298

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

8.9 Server Not Running
The next scenario to examine is starting the client without starting the server. If we do so
and type in a single line to the client, nothing happens. The client blocks forever in its call
to recvfrom, waiting for a server reply that will never appear. But, this is an example
where we need to understand more about the underlying protocols to understand what is
happening to our networking application.

First we start tcpdump on the host macosx, and then we start the client on the same host,
specifying the host freebsd4 as the server host. We then type a single line, but the line is
not echoed.

macosx % udpcli01 172.24.37.94

hello, world

we type this line but nothing is echoed back

Figure 8.10 shows the tcpdump output.

Figure 8.10 tcpdump output when server process not started on server
host.

1 0.0                    arp who-has freebsd4 tell macosx

2 0.003576 ( 0.0036)     arp reply freebsd4 is-at 0:40:5:42:d6:de

3 0.003601 ( 0.0000)     macosx.51139 > freebsd4.9877: udp 13

4 0.009781 ( 0.0062)     freebsd4 > macosx: icmp: freebsd4 udp port 9877

unreachable

First we notice that an ARP request and reply are needed before the client host can send
the UDP datagram to the server host. (We left this exchange in the output to reiterate the
potential for an ARP request-reply before an IP datagram can be sent to another host or
router on the local network.)

In line 3, we see the client datagram sent but the server host responds in line 4 with an
ICMP "port unreachable." (The length of 13 accounts for the 12 characters and the
newline.) This ICMP error, however, is not returned to the client process, for reasons that
we will describe shortly. Instead, the client blocks forever in the call to recvfrom in Figure
8.8. We also note that ICMPv6 has a "port unreachable" error, similar to ICMPv4 (Figures
A.15 and A.16), so the results described here are similar for IPv6.

We call this ICMP error an asynchronous error. The error was caused by sendto, but sendto
returned successfully. Recall from Section 2.11 that a successful return from a UDP output
operation only means there was room for the resulting IP datagram on the interface output
queue. The ICMP error is not returned until later (4 ms later in Figure 8.10), which is why
it is called asynchronous.

The basic rule is that an asynchronous error is not returned for a UDP socket unless the
socket has been connected. We will describe how to call connect for a UDP socket in
Section 8.11. Why this design decision was made when sockets were first implemented is
rarely understood. (The implementation implications are discussed on pp. 748 749 of
TCPv2.)

Consider a UDP client that sends three datagrams in a row to three different servers (i.e.,
three different IP addresses) on a single UDP socket. The client then enters a loop that

Page 299

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


calls recvfrom to read the replies. Two of the datagrams are correctly delivered (that is,
the server was running on two of the three hosts) but the third host was not running the
server. This third host responds with an ICMP port unreachable. This ICMP error message
contains the IP header and UDP header of the datagram that caused the error. (ICMPv4
and ICMPv6 error messages always contain the IP header and all of the UDP header or part
of the TCP header to allow the receiver of the ICMP error to determine which socket caused
the error. We will show this in Figures 28.21 and 28.22.) The client that sent the three
datagrams needs to know the destination of the datagram that caused the error to
distinguish which of the three datagrams caused the error. But how can the kernel return
this information to the process? The only piece of information that recvfrom can return is
an errno value; recvfrom has no way of returning the destination IP address and
destination UDP port number of the datagram in error. The decision was made, therefore,
to return these asynchronous errors to the process only if the process connected the UDP
socket to exactly one peer.

Linux returns most ICMP "destination unreachable" errors even for unconnected sockets, as
long as the SO_BSDCOMPAT socket option is not enabled. All the ICMP "destination
unreachable" errors from Figure A.15 are returned, except codes 0, 1, 4, 5, 11, and 12.

We return to this problem of asynchronous errors with UDP sockets in Section 28.7 and
show an easy way to obtain these errors on unconnected sockets using a daemon of our
own.

[ Team LiB ]

Page 300

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

8.10 Summary of UDP Example
Figure 8.11 shows as bullets the four values that must be specified or chosen when the
client sends a UDP datagram.

Figure 8.11. Summary of UDP client/server from client's perspective.

The client must specify the server's IP address and port number for the call to sendto.
Normally, the client's IP address and port are chosen automatically by the kernel, although
we mentioned that the client can call bind if it so chooses. If these two values for the client
are chosen by the kernel, we also mentioned that the client's ephemeral port is chosen
once, on the first sendto, and then it never changes. The client's IP address, however, can
change for every UDP datagram that the client sends, assuming the client does not bind a
specific IP address to the socket. The reason is shown in Figure 8.11: If the client host is
multihomed, the client could alternate between two destinations, one going out the
datalink on the left, and the other going out the datalink on the right. In this worst-case
scenario, the client's IP address, as chosen by the kernel based on the outgoing datalink,
would change for every datagram.

What happens if the client binds an IP address to its socket, but the kernel decides that an
outgoing datagram must be sent out some other datalink? In this case the IP datagram
will contain a source IP address that is different from the IP address of the outgoing
datalink (see Exercise 8.6).

Figure 8.12 shows the same four values, but from the server's perspective.

Figure 8.12. Summary of UDP client/server from server's perspective.

Page 301

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


There are at least four pieces of information that a server might want to know from an
arriving IP datagram: the source IP address, destination IP address, source port number,
and destination port number. Figure 8.13 shows the function calls that return this
information for a TCP server and a UDP server.

Figure 8.13. Information available to server from arriving IP
datagram.

A TCP server always has easy access to all four pieces of information for a connected
socket, and these four values remain constant for the lifetime of a connection. With a UDP
socket, however, the destination IP address can only be obtained by setting the 
IP_RECVDSTADDR socket option for IPv4 or the IPV6_PKTINFO socket option for IPv6 and
then calling recvmsg instead of recvfrom. Since UDP is connectionless, the destination IP
address can change for each datagram that is sent to the server. A UDP server can also
receive datagrams destined for one of the host's broadcast addresses or for a multicast
address, as we will discuss in Chapters 20 and 21. We will show how to determine the
destination address of a UDP datagram in Section 22.2, after we cover the recvmsg
function.

[ Team LiB ]

Page 302

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

8.11 connect Function with UDP
We mentioned at the end of Section 8.9 that an asynchronous error is not returned on a
UDP socket unless the socket has been connected. Indeed, we are able to call connect (
Section 4.3) for a UDP socket. But this does not result in anything like a TCP connection:
There is no three-way handshake. Instead, the kernel just checks for any immediate errors
(e.g., an obviously unreachable destination), records the IP address and port number of
the peer (from the socket address structure passed to connect), and returns immediately
to the calling process.

Overloading the connect function with this capability for UDP sockets is confusing. If the
convention that sockname is the local protocol address and peername is the foreign protocol
address is used, then a better name would have been setpeername. Similarly, a better
name for the bind function would be setsockname.

With this capability, we must now distinguish between

 An unconnected UDP socket, the default when we create a UDP socket

 A connected UDP socket, the result of calling connect on a UDP socket

With a connected UDP socket, three things change, compared to the default unconnected
UDP socket:

1. We can no longer specify the destination IP address and port for an output
operation. That is, we do not use sendto, but write or send instead. Anything
written to a connected UDP socket is automatically sent to the protocol address
(e.g., IP address and port) specified by connect.

Similar to TCP, we can call sendto for a connected UDP socket, but we cannot
specify a destination address. The fifth argument to sendto (the pointer to the
socket address structure) must be a null pointer, and the sixth argument (the size
of the socket address structure) should be 0. The POSIX specification states that
when the fifth argument is a null pointer, the sixth argument is ignored.

2. We do not need to use recvfrom to learn the sender of a datagram, but read, recv,
or recvmsg instead. The only datagrams returned by the kernel for an input
operation on a connected UDP socket are those arriving from the protocol address
specified in connect. Datagrams destined to the connected UDP socket's local
protocol address (e.g., IP address and port) but arriving from a protocol address
other than the one to which the socket was connected are not passed to the
connected socket. This limits a connected UDP socket to exchanging datagrams with
one and only one peer.

Technically, a connected UDP socket exchanges datagrams with only one IP address,
because it is possible to connect to a multicast or broadcast address.

3. Asynchronous errors are returned to the process for connected UDP sockets.

The corollary, as we previously described, is that unconnected UDP sockets do not
receive asynchronous errors.

Figure 8.14 summarizes the first point in the list with respect to 4.4BSD.

Figure 8.14. TCP and UDP sockets: can a destination protocol address
be specified?

Page 303

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


The POSIX specification states that an output operation that does not specify a destination
address on an unconnected UDP socket should return ENOTCONN, not EDESTADDRREQ.

Figure 8.15 summarizes the three points that we made about a connected UDP socket.

Figure 8.15. Connected UDP socket.

The application calls connect, specifying the IP address and port number of its peer. It
then uses read and write to exchange data with the peer.

Datagrams arriving from any other IP address or port (which we show as "???" in Figure
8.15) are not passed to the connected socket because either the source IP address or
source UDP port does not match the protocol address to which the socket is connected.
These datagrams could be delivered to some other UDP socket on the host. If there is no
other matching socket for the arriving datagram, UDP will discard it and generate an ICMP
"port unreachable" error.

In summary, we can say that a UDP client or server can call connect only if that process
uses the UDP socket to communicate with exactly one peer. Normally, it is a UDP client
that calls connect, but there are applications in which the UDP server communicates with a
single client for a long duration (e.g., TFTP); in this case, both the client and server can
call connect.

The DNS provides another example, as shown in Figure 8.16.

Figure 8.16. Example of DNS clients and servers and the connect
function.

A DNS client can be configured to use one or more servers, normally by listing the IP
addresses of the servers in the file /etc/resolv.conf. If a single server is listed (the
leftmost box in the figure), the client can call connect, but if multiple servers are listed
(the second box from the right in the figure), the client cannot call connect. Also, a DNS
server normally handles any client request, so the servers cannot call connect.

Calling connect Multiple Times for a UDP Socket

Page 304

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


A process with a connected UDP socket can call connect again for that socket for one of two
reasons:

 To specify a new IP address and port

 To unconnect the socket

The first case, specifying a new peer for a connected UDP socket, differs from the use of 
connect with a TCP socket: connect can be called only one time for a TCP socket.

To unconnect a UDP socket, we call connect but set the family member of the socket
address structure (sin_family for IPv4 or sin6_family for IPv6) to AF_UNSPEC. This might
return an error of EAFNOSUPPORT (p. 736 of TCPv2), but that is acceptable. It is the process
of calling connect on an already connected UDP socket that causes the socket to become
unconnected (pp. 787 788 of TCPv2).

The Unix variants seem to differ on exactly how to unconnect a socket, and you may
encounter approaches that work on some systems and not others. For example, calling 
connect with NULL for the address works only on some systems (and on some, it only
works if the third argument, the length, is nonzero). The POSIX specification and BSD man
pages are not much help here, only mentioning that a null address should be used and not
mentioning the error return (even on success) at all. The most portable solution is to zero
out an address structure, set the family to AF_UNSPEC as mentioned above, and pass it to
connect.

Another area of disagreement is around the local binding of a socket during the unconnect
process. AIX keeps both the chosen local IP address and the port, even from an implicit
bind. FreeBSD and Linux set the local IP address back to all zeros, even if you previously
called bind, but leave the port number intact. Solaris sets the local IP address back to all
zeros if it was assigned by an implicit bind; but if the program called bind explicitly, then
the IP address remains unchanged.

Performance
When an application calls sendto on an unconnected UDP socket, Berkeley-derived kernels
temporarily connect the socket, send the datagram, and then unconnect the socket (pp.
762 763 of TCPv2). Calling sendto for two datagrams on an unconnected UDP socket then
involves the following six steps by the kernel:

 Connect the socket

 Output the first datagram

 Unconnect the socket

 Connect the socket

 Output the second datagram

 Unconnect the socket

Another consideration is the number of searches of the routing table. The first temporary
connect searches the routing table for the destination IP address and saves (caches) that
information. The second temporary connect notices that the destination address equals the
destination of the cached routing table information (we are assuming two sendtos to the
same destination) and we do not need to search the routing table again (pp. 737 738 of
TCPv2).

When the application knows it will be sending multiple datagrams to the same peer, it is
more efficient to connect the socket explicitly. Calling connect and then calling write two

Page 305

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


times involves the following steps by the kernel:

 Connect the socket

 Output first datagram

 Output second datagram

In this case, the kernel copies only the socket address structure containing the destination
IP address and port one time, versus two times when sendto is called twice. [Partridge and
Pink 1993] note that the temporary connecting of an unconnected UDP socket accounts for
nearly one-third of the cost of each UDP transmission.

[ Team LiB ]

Page 306

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

8.12 dg_cli Function (Revisited)
We now return to the dg_cli function from Figure 8.8 and recode it to call connect. Figure
8.17 shows the new function.

Figure 8.17 dg_cli function that calls connect.

udpcliserv/dgcliconnect.c

 1 #include     "unp.h"

 2 void

 3 dg_cli(FILE *fp, int sockfd, const SA *pservaddr, socklen_t servlen)

 4 {

 5     int     n;

 6     char    sendline[MAXLINE], recvline[MAXLINE + 1];

 7     Connect(sockfd, (SA *) pservaddr, servlen);

 8     while (Fgets(sendline, MAXLINE, fp) != NULL) {

 9         Write(sockfd, sendline, strlen(sendline));

10         n = Read(sockfd, recvline, MAXLINE);

11         recvline[n] = 0;        /* null terminate */

12         Fputs(recvline, stdout);

13     }

14 }

The changes are the new call to connect and replacing the calls to sendto and recvfrom
with calls to write and read. This function is still protocol-independent since it doesn't look
inside the socket address structure that is passed to connect. Our client main function,
Figure 8.7, remains the same.

If we run this program on the host macosx, specifying the IP address of the host freebsd4
(which is not running our server on port 9877), we have the following output:

macosx % udpcli04 172.24.37.94

hello, world

read error: Connection refused

The first point we notice is that we do not receive the error when we start the client
process. The error occurs only after we send the first datagram to the server. It is sending
this datagram that elicits the ICMP error from the server host. But when a TCP client calls 
connect, specifying a server host that is not running the server process, connect returns
the error because the call to connect causes the TCP three-way handshake to happen, and
the first packet of that handshake elicits an RST from the server TCP (Section 4.3).

Figure 8.18 shows the tcpdump output.

Figure 8.18 tcpdump output when running Figure 8.17.

macosx % tcpdump

Page 307

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


1  0.0                    macosx.51139 > freebsd4.9877: udp 13

2  0.006180 ( 0.0062)     freebsd4 > macosx: icmp: freebsd4 udp port 9877

unreachable

We also see in Figure A.15 that this ICMP error is mapped by the kernel into the error
ECONNREFUSED, which corresponds to the message string output by our err_sys function:
"Connection refused."

Unfortunately, not all kernels return ICMP messages to a connected UDP socket, as we have
shown in this section. Normally, Berkeley-derived kernels return the error, while System V
kernels do not. For example, if we run the same client on a Solaris 2.4 host and connect to
a host that is not running our server, we can watch with tcpdump and verify that the ICMP
"port unreachable" error is returned by the server host, but the client's call to read never
returns. This bug was fixed in Solaris 2.5. UnixWare does not return the error, while AIX,
Digital Unix, HP-UX, and Linux all return the error.

[ Team LiB ]

Page 308

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

8.13 Lack of Flow Control with UDP
We now examine the effect of UDP not having any flow control. First, we modify our dg_cli
function to send a fixed number of datagrams. It no longer reads from standard input. 
Figure 8.19 shows the new version. This function writes 2,000 1,400-byte UDP datagrams
to the server.

We next modify the server to receive datagrams and count the number received. This
server no longer echoes datagrams back to the client. Figure 8.20 shows the new dg_echo
function. When we terminate the server with our terminal interrupt key (SIGINT), it prints
the number of received datagrams and terminates.

Figure 8.19 dg_cli function that writes a fixed number of datagrams to
the server.

udpcliserv/dgcliloop1.c

 1 #include     "unp.h"

 2 #define NDG      2000          /*  datagrams to send */

 3 #define DGLEN    1400          /*  length of each datagram */

 4 void

 5 dg_cli(FILE *fp, int sockfd, const SA *pservaddr, socklen_t servlen)

 6 {

 7     int     i;

 8     char    sendline[DGLEN];

 9     for (i = 0; i < NDG; i++) {

10         Sendto(sockfd, sendline, DGLEN, 0, pservaddr, servlen);

11     }

12 }

Figure 8.20 dg_echo function that counts received datagrams.

udpcliserv/dgecholoop1.c

 1 #include     "unp.h"

 2 static void recvfrom_int(int);

 3 static int count;

 4 void

 5 dg_echo(int sockfd, SA *pcliaddr, socklen_t clilen)

 6 {

 7     socklen_t len;

 8     char    mesg[MAXLINE];

 9     Signal(SIGINT, recvfrom_int);

10     for ( ; ; ) {

11         len = clilen;

12         Recvfrom(sockfd, mesg, MAXLINE, 0, pcliaddr, &len);

13         count++;

14     }

15 }

Page 309

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


16 static void

17 recvfrom_int(int signo)

18 {

19     printf("\nreceived %d datagrams\n", count);

20     exit(0);

21 }

We now run the server on the host freebsd, a slow SPARCStation. We run the client on the
RS/6000 system aix, connected directly with 100Mbps Ethernet. Additionally, we run
netstat -s on the server, both before and after, as the statistics that are output tell us
how many datagrams were lost. Figure 8.21 shows the output on the server.

Figure 8.21 Output on server host.

freebsd % netstat -s -p udp

udp:

        71208 datagrams received

        0 with incomplete header

        0 with bad data length field

        0 with bad checksum

        0 with no checksum

        832 dropped due to no socket

        16 broadcast/multicast datagrams dropped due to no socket

        1971 dropped due to full socket buffers

        0 not for hashed pcb

        68389 delivered

        137685 datagrams output

freebsd % udpserv06             start our server

                                                                        we run

the client here

     ^C                              we type our interrupt key after the client

is finished

received 30 datagrams

freebsd % netstat -s -p udp

udp:

        73208 datagrams received

        0 with incomplete header

        0 with bad data length field

        0 with bad checksum

        0 with no checksum

        832 dropped due to no socket

        16 broadcast/multicast datagrams dropped due to no socket

        3941 dropped due to full socket buffers

        0 not for hashed pcb

        68419 delivered

        137685 datagrams output

The client sent 2,000 datagrams, but the server application received only 30 of these, for a
98% loss rate. There is no indication whatsoever to the server application or to the client
application that these datagrams were lost. As we have said, UDP has no flow control and it
is unreliable. It is trivial, as we have shown, for a UDP sender to overrun the receiver.

If we look at the netstat output, the total number of datagrams received by the server
host (not the server application) is 2,000 (73,208 - 71,208). The counter "dropped due to
full socket buffers" indicates how many datagrams were received by UDP but were
discarded because the receiving socket's receive queue was full (p. 775 of TCPv2). This
value is 1,970 (3,491 - 1,971), which when added to the counter output by the application
(30), equals the 2,000 datagrams received by the host. Unfortunately, the netstat counter
of the number dropped due to a full socket buffer is systemwide. There is no way to

Page 310

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


determine which applications (e.g., which UDP ports) are affected.

The number of datagrams received by the server in this example is not predictable. It
depends on many factors, such as the network load, the processing load on the client host,
and the processing load on the server host.

If we run the same client and server, but this time with the client on the slow Sun and the
server on the faster RS/6000, no datagrams are lost.

aix % udpserv06  

^? we type our interrupt key after the client is finished

received 2000 datagrams  

UDP Socket Receive Buffer
The number of UDP datagrams that are queued by UDP for a given socket is limited by the
size of that socket's receive buffer. We can change this with the SO_RCVBUF socket option,
as we described in Section 7.5. The default size of the UDP socket receive buffer under
FreeBSD is 42,080 bytes, which allows room for only 30 of our 1,400-byte datagrams. If
we increase the size of the socket receive buffer, we expect the server to receive additional
datagrams. Figure 8.22 shows a modification to the dg_echo function from Figure 8.20 that
sets the socket receive buffer to 240 KB.

Figure 8.22 dg_echo function that increases the size of the socket
receive queue.

udpcliserv/dgecholoop2.c

 1 #include    "unp.h"

 2 static void recvfrom_int(int);

 3 static int count;

 4 void

 5 dg_echo(int sockfd, SA *pcliaddr, socklen_t clilen)

 6 {

 7     int     n;

 8     socklen_t len;

 9     char    mesg[MAXLINE];

10     Signal(SIGINT, recvfrom_int);

11     n = 220 * 1024;

12     Setsockopt(sockfd, SOL_SOCKET, SO_RCVBUF, &n, sizeof(n));

13     for ( ; ; ) {

14         len = clilen;

15         Recvfrom(sockfd, mesg, MAXLINE, 0, pcliaddr, &len);

16         count++;

17     }

18 }

19 static void

20 recvfrom_int(int signo)

21 {

22     printf("\nreceived %d datagrams\n", count);

Page 311

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


23     exit(0);

24 }

If we run this server on the Sun and the client on the RS/6000, the count of received
datagrams is now 103. While this is slightly better than the earlier example with the
default socket receive buffer, it is no panacea.

Why do we set the receive socket buffer size to 220 x 1,024 in Figure 8.22? The maximum
size of a socket receive buffer in FreeBSD 5.1 defaults to 262,144 bytes (256 x 1,024), but
due to the buffer allocation policy (described in Chapter 2 of TCPv2), the actual limit is
233,016 bytes. Many earlier systems based on 4.3BSD restricted the size of a socket buffer
to around 52,000 bytes.

[ Team LiB ]

Page 312

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

8.14 Determining Outgoing Interface with UDP
A connected UDP socket can also be used to determine the outgoing interface that will be
used to a particular destination. This is because of a side effect of the connect function
when applied to a UDP socket: The kernel chooses the local IP address (assuming the
process has not already called bind to explicitly assign this). This local IP address is chosen
by searching the routing table for the destination IP address, and then using the primary
IP address for the resulting interface.

Figure 8.23 shows a simple UDP program that connects to a specified IP address and then
calls getsockname, printing the local IP address and port.

Figure 8.23 UDP program that uses connect to determine outgoing
interface.

udpcliserv/udpcli09.c

 1 #include     "unp.h"

 2 int

 3 main(int argc, char **argv)

 4 {

 5     int     sockfd;

 6     socklen_t len;

 7     struct sockaddr_in cliaddr, servaddr;

 8     if (argc != 2)

 9         err_quit("usage: udpcli <IPaddress>");

10     sockfd = Socket(AF_INET, SOCK_DGRAM, 0);

11     bzero(&servaddr, sizeof(servaddr));

12     servaddr.sin_family = AF_INET;

13     servaddr.sin_port = htons(SERV_PORT);

14     Inet_pton(AF_INET, argv[1], &servaddr.sin_addr);

15     Connect(sockfd, (SA *) &servaddr, sizeof(servaddr));

16     len = sizeof(cliaddr);

17     Getsockname(sockfd, (SA *) &cliaddr, &len);

18     printf("local address %s\n", Sock_ntop((SA *) &cliaddr, len));

19     exit(0);

20 }

If we run the program on the multihomed host freebsd, we have the following output:

freebsd % udpcli09 206.168.112.96

local address 12.106.32.254:52329

freebsd % udpcli09 192.168.42.2

local address 192.168.42.1:52330

freebsd % udpcli09 127.0.0.1

local address 127.0.0.1:52331

Page 313

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


The first time we run the program, the command-line argument is an IP address that
follows the default route. The kernel assigns the local IP address to the primary address of
the interface to which the default route points. The second time, the argument is the IP
address of a system connected to a second Ethernet interface, so the kernel assigns the
local IP address to the primary address of this second interface. Calling connect on a UDP
socket does not send anything to that host; it is entirely a local operation that saves the
peer's IP address and port. We also see that calling connect on an unbound UDP socket
also assigns an ephemeral port to the socket.

Unfortunately, this technique does not work on all implementations, mostly SVR4-derived
kernels. For example, this does not work on Solaris 2.5, but it works on AIX, HP-UX 11,
MacOS X, FreeBSD, Linux, and Solaris 2.6 and later.

[ Team LiB ]

Page 314

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

8.15 TCP and UDP Echo Server Using select
We now combine our concurrent TCP echo server from Chapter 5 with our iterative UDP
echo server from this chapter into a single server that uses select to multiplex a TCP and
UDP socket. Figure 8.24 is the first half of this server.

Create listening TCP socket
14 22 A listening TCP socket is created that is bound to the server's well-known port. We
set the SO_REUSEADDR socket option in case connections exist on this port.

Create UDP socket
23 29 A UDP socket is also created and bound to the same port. Even though the same
port is used for TCP and UDP sockets, there is no need to set the SO_REUSEADDR socket
option before this call to bind, because TCP ports are independent of UDP ports.

Figure 8.25 shows the second half of our server.

Establish signal handler for SIGCHLD

30 A signal handler is established for SIGCHLD because TCP connections will be handled by
a child process. We showed this signal handler in Figure 5.11.

Prepare for select

31 32 We initialize a descriptor set for select and calculate the maximum of the two
descriptors for which we will wait.

Figure 8.24 First half of echo server that handles TCP and UDP using 
select.

udpcliserv/udpservselect01.c

 1 #include     "unp.h"

 2 int

 3 main(int argc, char **argv)

 4 {

 5     int     listenfd, connfd, udpfd, nready, maxfdp1;

 6     char    mesg[MAXLINE];

 7     pid_t   childpid;

 8     fd_set  rset;

 9     ssize_t n;

10     socklen_t len;

11     const int on = 1;

12     struct sockaddr_in cliaddr, servaddr;

13     void    sig_chld(int);

14         /* create listening TCP socket */

15     listenfd = Socket(AF_INET, SOCK_STREAM, 0);

16     bzero(&servaddr, sizeof(servaddr));

17     servaddr.sin_family = AF_INET;

18     servaddr.sin_addr.s_addr = htonl(INADDR_ANY);

19     servaddr.sin_port = htons(SERV_PORT);

Page 315

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


20     Setsockopt(listenfd, SOL_SOCKET, SO_REUSEADDR, &on, sizeof(on));

21     Bind(listenfd, (SA *) &servaddr, sizeof(servaddr));

22     Listen(listenfd, LISTENQ);

23          /* create UDP socket */

24     udpfd = Socket(AF_INET, SOCK_DGRAM, 0);

25     bzero(&servaddr, sizeof(servaddr));

26     servaddr.sin_family = AF_INET;

27     servaddr.sin_addr.s_addr = htonl(INADDR_ANY);

28     servaddr.sin_port = htons(SERV_PORT);

29     Bind(udpfd, (SA *) &servaddr, sizeof(servaddr));

Call select

34 41 We call select, waiting only for readability on the listening TCP socket or readability
on the UDP socket. Since our sig_chld handler can interrupt our call to select, we handle
an error of EINTR.

Handle new client connection

42 51 We accept a new client connection when the listening TCP socket is readable, fork a
child, and call our str_echo function in the child. This is the same sequence of steps we
used in Chapter 5.

Figure 8.25 Second half of echo server that handles TCP and UDP
using select.

udpcliserv/udpservselect01.c

30     Signal(SIGCHLD, sig_chld);     /* must call waitpid() */

31     FD_ZERO(&rset);

32     maxfdp1 = max(listenfd, udpfd) + 1;

33     for ( ; ; ) {

34         FD_SET(listenfd, &rset);

35         FD_SET(udpfd, &rset);

36         if ( (nready = select(maxfdp1, &rset, NULL, NULL, NULL)) < 0) {

37             if (errno == EINTR)

38                 continue;     /* back to for() */

39             else

40                 err_sys("select error");

41          }

42          if (FD_ISSET(listenfd, &rset)) {

43              len = sizeof(cliaddr);

44              connfd = Accept(listenfd, (SA *) &cliaddr, &len);

45              if ( (childpid = Fork()) == 0) { /* child process */

46                  Close(listenfd);     /* close listening socket */

47                  str_echo(connfd);    /* process the request */

48                  exit(0);

49               }

50               Close(connfd);     /* parent closes connected socket */

51          }

52          if (FD_ISSET(udpfd, &rset)) {

53              len = sizeof(cliaddr);

Page 316

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


54              n = Recvfrom(udpfd, mesg, MAXLINE, 0, (SA *) &cliaddr, &len);

55              Sendto(udpfd, mesg, n, 0, (SA *) &cliaddr, len);

56          }

57     }

58 }

Handle arrival of datagram

52 57 If the UDP socket is readable, a datagram has arrived. We read it with recvfrom and
send it back to the client with sendto.

[ Team LiB ]

Page 317

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

8.16 Summary
Converting our echo client/server to use UDP instead of TCP was simple. But lots of
features provided by TCP are missing: detecting lost packets and retransmitting, verifying
responses as being from the correct peer, and the like. We will return to this topic in 
Section 22.5 and see what it takes to add some reliability to a UDP application.

UDP sockets can generate asynchronous errors, that is, errors that are reported some time
after a packet is sent. TCP sockets always report these errors to the application, but with
UDP, the socket must be connected to receive these errors.

UDP has no flow control, and this is easy to demonstrate. Normally, this is not a problem,
because many UDP applications are built using a request-reply model, and not for
transferring bulk data.

There are still more points to consider when writing UDP applications, but we will save
these until Chapter 22, after covering the interface functions, broadcasting, and
multicasting.

[ Team LiB ]

Page 318

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Exercises
8.1 We have two applications, one using TCP and the other using UDP. 4,096

bytes are in the receive buffer for the TCP socket and two 2,048-byte
datagrams are in the receive buffer for the UDP socket. The TCP
application calls read with a third argument of 4,096 and the UDP
application calls recvfrom with a third argument of 4,096. Is there any
difference?

8.2 What happens in Figure 8.4 if we replace the final argument to sendto
(which we show as len) with clilen?

8.3 Compile and run the UDP server in Figures 8.3 and 8.4 and then the UDP
client in Figures 8.7 and 8.8. Verify that the client and server work
together.

8.4 Run the ping program in one window, specifying the -i 60 option (send
one packet every 60 seconds; some systems use -I instead of -i), the
-v option (print all received ICMP errors), and the loopback address
(normally 127.0.0.1). We will use this program to see the ICMP port
unreachable returned by the server host. Next, run our client from the
previous exercise in another window, specifying the IP address of some
host that is not running the server. What happens?

8.5 We said with Figure 8.5 that each connected TCP socket has its own
socket receive buffer. What about the listening socket; do you think it
has its own socket receive buffer?

8.6 Use the sock program (Section C.3) and a tool such as tcpdump (Section
C.5) to test what we claimed in Section 8.10: If the client binds an IP
address to its socket but sends a datagram that goes out some other
interface, the resulting IP datagram still contains the IP address that was
bound to the socket, even though this does not correspond to the
outgoing interface.

8.7 Compile the programs from Section 8.13 and run the client and server on
different hosts. Put a printf in the client each time a datagram is
written to the socket. Does this change the percentage of received
packets? Why? Put a printf in the server each time a datagram is read
from the socket. Does this change the percentage of received packets?
Why?

8.8 What is the largest length that we can pass to sendto for a UDP/IPv4
socket, that is, what is the largest amount of data that can fit into a
UDP/IPv4 datagram? What changes with UDP/IPv6?

Modify Figure 8.8 to send one maximum-size UDP datagram, read it
back, and print the number of bytes returned by recvfrom.

Page 319

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


8.9 Modify Figure 8.25 to conform to RFC 1122 by using IP_RECVDSTADDR for
the UDP socket.

[ Team LiB ]

Page 320

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Chapter 9. Elementary SCTP Sockets
Section 9.1.?Introduction

Section 9.2.?Interface Models

Section 9.3.?sctp_bindx Function

Section 9.4.?sctp_connectx Function

Section 9.5.?sctp_getpaddrs Function

Section 9.6.?sctp_freepaddrs Function

Section 9.7.?sctp_getladdrs Function

Section 9.8.?sctp_freeladdrs Function

Section 9.9.?sctp_sendmsg Function

Section 9.10.?sctp_recvmsg Function

Section 9.11.?sctp_opt_info Function

Section 9.12.?sctp_peeloff Function

Section 9.13.?shutdown Function

Section 9.14.?Notifications

Section 9.15.?Summary

Exercises

[ Team LiB ]

Page 321

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

9.1 Introduction
SCTP is a newer transport protocol, standardized in the IETF in 2000 (compared with TCP,
which was standardized in 1981). It was first designed to meet the needs of the growing
IP telephony market; in particular, transporting telephony signaling across the Internet.
The requirements it was designed to fulfill are described in RFC 2719 [Ong et al. 1999].
SCTP is a reliable, message-oriented protocol, providing multiple streams between
endpoints and transport-level support for multihoming. Since it is a newer transport
protocol, it does not have the same ubiquity as TCP or UDP; however, it provides some new
features that may simplify certain application designs. We will discuss the reasons to
consider using SCTP instead of TCP in Section 23.12.

Although there are some fundamental differences between SCTP and TCP, the one-to-one
interface for SCTP provides very nearly the same application interface as TCP. This allows
for trivial porting of applications, but does not permit use of some of SCTP's advanced
features. The one-to-many interface provides full support for these features, but may
require significant retooling of existing applications. The one-to-many interface is
recommended for most new applications developed for SCTP.

This chapter describes additional elementary socket functions that can be used with SCTP.
We first describe the two different interface models that are available to the application
developer. We will develop a version of our echo server using the one-to-many model in 
Chapter 10. We also describe the new functions available for and used exclusively with
SCTP. We look at the shutdown function and how its use with SCTP differs from TCP. We
then briefly cover the use of notifications in SCTP. Notifications allow an application to be
informed of significant protocol events other than the arrival of user data. We will see an
example of how to use notifications in Section 23.4.

Since SCTP is a newer protocol, the interface for all its features has not yet completely
stabilized. As of this writing, the interfaces described are believed to be stable, but are not
yet as ubiquitous as the rest of the sockets API. Users of applications designed to use SCTP
exclusively may need to be prepared to install kernel patches or otherwise upgrade their
operating system, and applications which need to be ubiquitous need to be able to use TCP
if SCTP is not available on the system they are running on.

[ Team LiB ]

Page 322

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

9.2 Interface Models
There are two types of SCTP sockets: a one-to-one socket and a one-to-many socket. A
one-to-one socket corresponds to exactly one SCTP association. (Recall from Section 2.5
that an SCTP association is a connection between two systems, but may involve more than
two IP addresses due to multihoming.) This mapping is similar to the relationship between
a TCP socket and a TCP connection. With a one-to-many socket, several SCTP associations
can be active on a given socket simultaneously. This mapping is similar to the manner in
which a UDP socket bound to a particular port can receive interleaved datagrams from
several remote UDP endpoints that are all simultaneously sending data.

When deciding which style of interface to use, the application needs to consider several
factors, including:

 What type of server is being written, iterative or concurrent?

 How many socket descriptors does the server wish to manage?

 Is it important to optimize the association setup to enable data on the third (and
possibly fourth) packet of the four-way handshake?

 How much connection state does the application wish to maintain?

When the sockets API for SCTP was under development, different terminology was
used for the two styles of sockets, and readers may sometimes encounter these
older terms in documentation or source code. The original term for the one-to-one
socket was a "TCP-style" socket, and the original term for a one-to-many socket was
a "UDP-style" socket.

These style terms were later dropped because they tended to cause confusion by
creating expectations that SCTP would behave more like TCP or UDP, depending on
which style of socket was used. In fact, these terms referred to only one aspect of
the differences between TCP and UDP sockets (i.e., whether a socket supports
multiple concurrent transport-layer associations). The current terminology
("one-to-one" versus "one-to-many") focuses our attention on the key difference
between the two socket styles. Finally, note that some writers use the term
"many-to-one" instead of "one-to-many"; the terms are interchangeable.

The One-to-One Style
The one-to-one style was developed to ease the porting of existing TCP applications to
SCTP. It provides nearly an identical model to that described in Chapter 4. There are some
differences one should be aware of, especially when porting existing TCP applications to
SCTP using this style.

1. Any socket options must be converted to the SCTP equivalent. Two commonly found
options are TCP_NODELAY and TCP_MAXSEG. These can be easily mapped to
SCTP_NODELAY and SCTP_MAXSEG.

2. SCTP preserves message boundaries; thus, application-layer message boundaries
are not required. For example, an application protocol based on TCP might do a 
write() system call to write a two-byte message length field, x, followed by a
write() system call that writes x bytes of data. However, if this is done with SCTP,
the receiving SCTP will receive two separate messages (i.e., the read call will return
twice: once with a two-byte message, and then again with an x byte message).

3. Some TCP applications use a half-close to signal the end of input to the other side.
To port such applications to SCTP, the application-layer protocol will need to be

Page 323

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


rewritten so that the application signals the end of input in the application data
stream.

4. The send function can be used in the normal fashion. For the sendto and sendmsg
functions, any address information included is treated as an override of the primary
destination address (see Section 2.8).

A typical user of the one-to-one style will follow the timeline shown in Figure 9.1. When
the server is started, it opens a socket, binds to an address, and waits for a client
connection with the accept system call. Sometime later, the client is started, it opens a
socket, and initiates an association with the server. We assume the client sends a request
to the server, the server processes the request, and the server sends back a reply to the
client. This cycle continues until the client initiates a shutdown of the association. This
action closes the association, whereupon the server either exits or waits for a new
association. As can be seen by comparison to a typical TCP exchange, an SCTP one-to-one
socket exchange proceeds in a fashion similar to that shown in Figure 4.1.

Figure 9.1. Socket functions for SCTP one-to-one style.

A one-to-one-style SCTP socket is an IP socket (family AF_INET or AF_INET6), with type
SOCK_STREAM and protocol IPPROTO_SCTP.

The One-to-Many Style
The one-to-many style provides an application writer the ability to write a server without
managing a large number of socket descriptors. A single socket descriptor will represent
multiple associations, much the same way that a UDP socket can receive messages from
multiple clients. An association identifier is used to identify a single association on a

Page 324

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


one-to-many-style socket. This association identifier is a value of type sctp_assoc_t; it is
normally an integer. It is an opaque value; an application should not use an association
identifier that it has not previously been given by the kernel. Users of the one-to-many
style should keep the following issues in mind:

1. When the client closes the association, the server side will automatically close as
well, thus removing any state for the association inside the kernel.

2. Using the one-to-many style is the only method that can be used to cause data to
be piggybacked on the third or fourth packet of the four-way handshake (see 
Exercise 9.3).

3. Any sendto, sendmsg, or sctp_sendmsg to an address for which an association does
not yet exist will cause an active open to be attempted, thus creating (if successful)
a new association with that address. This behavior occurs even if the application
doing the send has called the listen function to request a passive open.

4. The user must use the sendto, sendmsg, or sctp_sendmsg functions, and may not
use the send or write function. (If the sctp_peeloff function is used to create a
one-to-one-style socket, send or write may be used on it.)

5. Anytime one of the send functions is called, the primary destination address that
was chosen by the system at association initiation time (Section 2.8) will be used
unless the MSG_ADDR_OVER flag is set by the caller in a supplied sctp_sndrcvinfo
structure. To supply this, the caller needs to use the sendmsg function with ancillary
data, or the sctp_sendmsg function.

6. Association events (one of a number of SCTP notifications discussed in Section 9.14)
may be enabled, so if an application does not wish to receive these events, it should
disable them explicitly using the SCTP_EVENTS socket option. By default, the only
event that is enabled is the sctp_data_io_event, which provides ancillary data to
the recvmsg and sctp_recvmsg call. This default setting applies to both the
one-to-one and one-to-many style.

When the SCTP sockets API was first developed, the one-to-many-style interface
was defined to have the association notification turned on by default as well. Later
versions of the API document have since disabled all notifications except the 
sctp_data_io_event for both the one-to-one- and one-to-many-style interface.
However not all implementations may have this behavior. It is always good practice
for an application writer to explicitly disable (or enable) the notifications that are
unwanted (or desired). This explicit approach assures the developer that the
expected behavior will result no matter which OS the code is ported to.

A typical one-to-many style timeline is depicted in Figure 9.2. First, the server is started,
creates a socket, binds to an address, calls listen to enable client associations, and calls
sctp_recvmsg, which blocks waiting for the first message to arrive. A client opens a socket
and calls sctp_sendto, which implicitly sets up the association and piggybacks the data
request to the server on the third packet of the four-way handshake. The server receives
the request, and processes and sends back a reply. The client receives the reply and closes
the socket, thus closing the association. The server loops back to receive the next
message.

Figure 9.2. Socket functions for SCTP one-to-many style.

Page 325

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


This example shows an iterative server, where (possibly interleaved) messages from many
associations (i.e., many clients) can be processed by a single thread of control. With SCTP,
a one-to-many socket can also be used in conjunction with the sctp_peeloff function
(see Section 9.12) to allow the iterative and concurrent server models to be combined as
follows:

1. The sctp_peeloff function can be used to peel off a particular association (for
example, a long-running session) from a one-to-many socket into its own
one-to-one socket.

2. The one-to-one socket of the extracted association can then be dispatched to its
own thread or forked process (as in the concurrent model).

3. Meanwhile, the main thread continues to handle messages from any remaining
associations in an iterative fashion on the original socket.

A one-to-many-style SCTP socket is an IP socket (family AF_INET or AF_INET6) with type
SOCK_SEQPACKET and protocol IPPROTO_SCTP.

[ Team LiB ]

Page 326

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

9.3 sctp_bindx Function
An SCTP server may wish to bind a subset of IP addresses associated with the host system.
Traditionally, a TCP or UDP server can bind one or all addresses on a host, but they cannot
bind a subset of addresses. The sctp_bindx function provides more flexibility by allowing
an SCTP socket to bind a particular subset of addresses.

#include <netinet/sctp.h>

int sctp_bindx(int sockfd, const struct sockaddr *addrs, int addrcnt, int flags);

Returns: 0 if OK,  1 on error

The sockfd is a socket descriptor returned by the socket function. The second argument,
addrs, is a pointer to a packed list of addresses. Each socket address structure is placed in
the buffer immediately following the preceding socket address structure, with no
intervening padding. See Figure 9.4 for an example.

The number of addresses being passed to sctp_bindx is specified by the addrcnt
parameter. The flags parameter directs the sctp_bindx call to perform one of the two
actions shown in Figure 9.3.

Figure 9.3. flags used with sctp_bindx function.

The sctp_bindx call can be used on a bound or unbound socket. For an unbound socket, a
call to sctp_bindx will bind the given set of addresses to the socket descriptor. If
sctp_bindx is used on a bound socket, the call can be used with SCTP_BINDX_ADD_ADDR to
associate additional addresses with the socket descriptor or with SCTP_BINDX_REM_ADDR to
remove a list of addresses associated with the socket descriptor. If sctp_bindx is
performed on a listening socket, future associations will use the new address configuration;
the change does not affect any existing associations. The two flags passed to sctp_bindx
are mutually exclusive; if both are given, sctp_bindx will fail, returning the error code
EINVAL. The port number in all the socket address structures must be the same and must
match any port number that is already bound; if it doesn't, then sctp_bindx will fail,
returning the error code EINVAL.

If an endpoint supports the dynamic address feature, a call to sctp_bindx with the
SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR flag will cause the endpoint to send an
appropriate message to the peer to change the peer's address lists. Since adding and
removing addresses from a connected association is optional functionality,
implementations that do not support this functionality will return EOPNOTSUPP. Note that
both ends of an association must support this feature for proper operation. This feature can
be useful if the system supports dynamic provisioning of interfaces; for example, if a new
Ethernet interface is brought up, the application can use SCTP_BINDX_ADD_ADDR to start
using the additional interface on an existing connection.

[ Team LiB ]

Page 327

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

9.4 sctp_connectx Function
#include <netinet/sctp.h>

int sctp_connectx(int sockfd, const struct sockaddr *addrs, int addrcnt);

Returns: 0 for success,  1 on error

The sctp_connectx function is used to connect to a multihomed peer. We specify addrcnt
addresses, all belonging to the same peer, in the addrs parameter. The addrs parameter is
a packed list of addresses, as in Figure 9.4. The SCTP stack uses one or more of the given
addresses for establishing the association. All the addresses listed in addrs are considered
to be valid, confirmed addresses.

Figure 9.4. Packed address list format for SCTP calls.

[ Team LiB ]

Page 328

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

9.5 sctp_getpaddrs Function
The getpeername function was not designed with the concept of a multihoming-aware
transport protocol; when using SCTP, it only returns the primary address. When all the
addresses are required, the sctp_getpaddrs function provides a mechanism for an
application to retrieve all the addresses of a peer.

#include <netinet/sctp.h>

int sctp_getpaddrs(int sockfd, sctp_assoc_t id, struct sockaddr **addrs);

Returns: the number of peer addresses stored in addrs,  1 on error

The sockfd parameter is the socket descriptor returned by the socket function. The id is
the association identification for a one-to-many-style socket. If the socket is using the
one-to-one style, the id field is ignored. addrs is the address of a pointer that
sctp_getpaddrs will fill in with a locally allocated, packed list of addresses. See Figures 9.4
and 23.12 for details on the structure of this return value. The caller should use
sctp_freepaddrs to free resources allocated by sctp_getpaddrs when finished with them.

[ Team LiB ]

Page 329

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

9.6 sctp_freepaddrs Function
The sctp_freepaddrs function frees resources allocated by the sctp_getpaddrs function. It
is called as follows:

#include <netinet/sctp.h>

void sctp_freepaddrs(struct sockaddr *addrs);

addrs is the pointer to the array of addresses returned by sctp_getpaddrs.

[ Team LiB ]

Page 330

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

9.7 sctp_getladdrs Function
The sctp_getladdrs function can be used to retrieve the local addresses that are part of an
association. This function is often necessary when a local endpoint wishes to know exactly
which local addresses are in use (which may be a proper subset of the system's
addresses).

#include <netinet/sctp.h>

int sctp_getladdrs(int sockfd, sctp_assoc_t id, struct sockaddr **addrs);

Returns: the number of local addresses stored in addrs,  1 on error

The sockfd is the socket descriptor returned by the socket function. id is the association
identification for a one-to-many-style socket. If the socket is using the one-to-one style,
the id field is ignored. The addrs parameter is an address of a pointer that sctp_getladdrs
will fill in with a locally allocated, packed list of addresses. See Figures 9.4 and 23.12 for
details on the structure of this return value. The caller should use sctp_freeladdrs to free
resources allocated by sctp_getladdrs when finished with them.

[ Team LiB ]

Page 331

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

9.8 sctp_freeladdrs Function
The sctp_freeladdrs function frees resources allocated by the sctp_getladdrs function. It
is called as follows:

#include <netinet/sctp.h>

void sctp_freeladdrs(struct sockaddr *addrs);

addrs is the pointer to the array of addresses returned by sctp_getladdrs.

[ Team LiB ]

Page 332

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

9.9 sctp_sendmsg Function
An application can control various features of SCTP by using the sendmsg function along
with ancillary data (described in Chapter 14). However, because the use of ancillary data
may be inconvenient, many SCTP implementations provide an auxiliary library call
(possibly implemented as a system call) that eases an application's use of SCTP's
advanced features. The call takes the following form:

ssize_t sctp_sendmsg(int sockfd, const void *msg, size_t msgsz, const struct
sockaddr *to, socklen_t tolen, uint32_t ppid, uint32_t flags, uint16_t stream,
uint32_t timetolive, uint32_t context);

Returns: the number of bytes written,  1 on error

The user of sctp_sendmsg has a greatly simplified sending method at the cost of more
arguments. The sockfd field holds the socket descriptor returned from a socket system
call. The msg field points to a buffer of msgsz bytes to be sent to the peer endpoint to.
The tolen field holds the length of the address stored in to. The ppid field holds the
pay-load protocol identifier that will be passed with the data chunk. The flags field will be
passed to the SCTP stack to identify any SCTP options; valid values for this field may be
found in Figure 7.16.

A caller specifies an SCTP stream number by filling in the stream. The caller may specify
the lifetime of the message in milliseconds in the lifetime field, where 0 represents an
infinite lifetime. A user context, if any, may be specified in context. A user context
associates a failed message transmission, received via a message notification, with some
local application-specific context. For example, to send a message to stream number 1,
with the send flags set to MSG_PR_SCTP_TTL, the lifetime set to 1000 milliseconds, a
payload protocol identifier of 24, and a context of 52, a user would formulate the following
call:

ret = sctp_sendmsg(sockfd,

                   data, datasz, &dest, sizeof(dest),

                   24, MSG_PR_SCTP_TTL, 1, 1000, 52);

This approach is much easier than allocating the necessary ancillary data and setting up
the appropriate structures in the msghdr structure. Note that if an implementation maps
the sctp_sendmsg to a sendmsg function call, the flags field of the sendmsg call is set to 0.

[ Team LiB ]

Page 333

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

9.10 sctp_recvmsg Function
Just like sctp_sendmsg, the sctp_recvmsg function provides a more user-friendly interface
to the advanced SCTP features. Using this function allows a user to retrieve not only its
peer's address, but also the msg_flags field that would normally accompany the recvmsg
function call (e.g., MSG_NOTIFICATION, MSG_EOR, etc.). The function also allows the user to
retrieve the sctp_sndrcvinfo structure that accompanies the message that was read into
the message buffer. Note that if an application wishes to receive sctp_sndrcvinfo
information, the sctp_data_io_event must be subscribed to with the SCTP_EVENTS socket
option (ON by default). The sctp_recvmsg function takes the following form:

ssize_t sctp_recvmsg(int sockfd, void *msg, size_t msgsz, struct sockaddr *from,
socklen_t *fromlen, struct sctp_sndrcvinfo *sinfo, int *msg_flags);

Returns: the number of bytes read,  1 on error

On return from this call, msg is filled with up to msgsz bytes of data. The message
sender's address is contained in from, with the address size filled in the fromlen argument.
Any message flags will be contained in the msg_flags argument. If the notification
sctp_data_io_event has been enabled (the default), the sctp_sndrcvinfo structure will
be filled in with detailed information about the message as well. Note that if an
implementation maps the sctp_recvmsg to a recvmsg function call, the flags field of the
call will be set to 0.

[ Team LiB ]

Page 334

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

9.11 sctp_opt_info Function
The sctp_opt_info function is provided for implementations that cannot use the
getsockopt functions for SCTP. This inability to use the getsockopt function is because
some of the SCTP socket options, for example, SCTP_STATUS, need an in-out variable to
pass the association identification. For systems that cannot provide an in-out variable to
the getsockopt function, the user will need to use sctp_opt_info. For systems like
FreeBSD that do allow in-out variables in the socket option call, the sctp_opt_info call is a
library call that repackages the arguments into the appropriate getsockopt call. For
portability's sake, applications should use sctp_opt_info for all the options that require
in-out variables (Section 7.10).

The call has the following format:

int sctp_opt_info(int sockfd, sctp_assoc_t assoc_id, int opt void *arg, socklen_t *
siz);

Returns: 0 for success,  1 on error

sockfd is the socket descriptor that the user would like the socket option to affect. assoc_id
is the identification of the association (if any) on which the user is performing the option. 
opt is the socket option (as defined in Section 7.10) for SCTP. arg is the socket option
argument, and siz is a pointer to a socklen_t which holds the size of the argument.

[ Team LiB ]

Page 335

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

9.12 sctp_peeloff Function
As previously mentioned, it is possible to extract an association contained by a
one-to-many socket into an individual one-to-one-style socket. The semantics are much
like the accept function call with an additional argument. The caller passes the sockfd of
the one-to-many socket and the association identification id that is being extracted. At the
completion of the call, a new socket descriptor is returned. This new descriptor will be a
one-to-one-style socket descriptor with the requested association. The function takes the
following form:

int sctp_peeloff(int sockfd, sctp_assoc_t id);

Returns: a new socket descriptor on success,  1 on error

[ Team LiB ]

Page 336

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

9.13 shutdown Function
The shutdown function that we discussed in Section 6.6 can be used with an SCTP endpoint
using the one-to-one-style interface. Because SCTP's design does not provide a half-closed
state, an SCTP endpoint reacts to a shutdown call differently than a TCP endpoint. When an
SCTP endpoint initiates a shutdown sequence, both endpoints must complete transmission
of any data currently in the queue and close the association. The endpoint that initiated the
active open may wish to invoke shutdown instead of close so that the endpoint can be
used to connect to a new peer. Unlike TCP, a close followed by the opening of a new
socket is not required. SCTP allows the endpoint to issue a shutdown, and after the
shutdown completes, the endpoint can reuse the socket to connect to a new peer. Note that
the new connection will fail if the endpoint does not wait until the SCTP shutdown
sequence completes. Figure 9.5 shows the typical function calls in this scenario.

Figure 9.5. Calling shutdown to close an SCTP association.

Note that in Figure 9.5, we depict the user receiving the MSG_NOTIFICATION events. If the
user had not subscribed to receive these events, then a read of length 0 would have been
returned. The effects of the shutdown function for TCP were described in Section 6.6. The
shutdown function howto holds the following semantics for SCTP:

SHUT_RD The same semantics as for TCP discussed in Section 6.6; no SCTP protocol
action is taken.

SHUT_WR Disables further send operations and initiates the SCTP shutdown
procedures, which will terminate the association. Note that this option does
not provide a half-closed state, but does allow the local endpoint to read any
queued data that the peer may have sent prior to receiving the SCTP
SHUTDOWN message.

SHUT_RDWR Disables all read and write operations, and initiates the SCTP shutdown
procedure. Any queued data that was in transit to the local endpoint will be
acknowledged and then silently discarded.

[ Team LiB ]

Page 337

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

9.14 Notifications
SCTP makes a variety of notifications available to the application programmer. The SCTP
user can track the state of its association(s) via these notifications. Notifications
communicate transport-level events, including network status change, association
startups, remote operational errors, and undeliverable messages. For both the one-to-one
and the one-to-many styles, all events are disabled by default with the exception of 
sctp_data_io_event. We will see an example of using notifications in Section 23.7.

Eight events can be subscribed to using the SCTP_EVENTS socket option. Seven of these
events generate additional data termed a notification that a user will receive via the
normal socket descriptor. The notifications are added to the socket descriptor inline with
data as the events that generate them occur. When reading from a socket with notification
subscriptions, user data and notifications will be interleaved on the socket buffer. To
differentiate between peer data and a notification, the user uses either the recvmsg
function or the sctp_recvmsg function. When the data returned is an event notification,
the msg_flags field of these two functions will contain the MSG_NOTIFICATION flag. This flag
tells the application that the message just read is not data from the peer, but a notification
from the local SCTP stack.

Each type of notification is in tag-length-value form, where the first eight bytes of the
message identify what type of notification has arrived and its total length. Enabling the 
sctp_data_io_event event causes the receipt of sctp_sndrcvinfo structures on every read
of user data (this option is enabled by default for both interface styles). This information is
normally received in ancillary data using the recvmsg call. An application can also use the
sctp_recvmsg call, which will fill a pointer to the sctp_sndrcvinfo structure with this
information.

Two notifications contain an SCTP error cause code field. The values for this field are listed
in Section 3.3.10 of RFC 2960 [Stewart et al. 2000] and in the "CAUSE CODES" section of 
http://www.iana.org/assignments/sctp-parameters.

Notifications have the following form:

struct sctp_tlv {

  u_int16_t sn_type;

  u_int16_t sn_flags;

  u_int32_t sn_length;

};

/* notification event */

union sctp_notification {

  struct sctp_tlv sn_header;

  struct sctp_assoc_change sn_assoc_change;

  struct sctp_paddr_change sn_paddr_change;

  struct sctp_remote_error sn_remote_error;

  struct sctp_send_failed sn_send_failed;

  struct sctp_shutdown_event sn_shutdown_event;

  struct sctp_adaption_event sn_adaption_event;

  struct sctp_pdapi_event sn_pdapi_event;

};

Note that the sn_header field is used to interpret the type value, to decode the actual
message being sent. Figure 9.6 illustrates the value found in the sn_header. sn_type field

Page 338

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.iana.org/assignments/sctp-parameters
http://www.iana.org/assignments/sctp-parameters
http://www.processtext.com/abcchm.html


and the corresponding subscription field used with the SCTP_EVENTS socket option.

Figure 9.6. sn_type and event subscription field.

Each notification has its own structure that gives further information about the event that
has occurred on the transport.

SCTP_ASSOC_CHANGE

This notification informs an application that a change has occurred to an association; either
a new association has begun or an existing association has ended. The information
provided with this event is defined as follows:

struct sctp_assoc_change {

  u_int16_t sac_type;

  u_int16_t sac_flags;

  u_int32_t sac_length;

  u_int16_t sac_state;

  u_int16_t sac_error;

  u_int16_t sac_outbound_streams;

  u_int16_t sac_inbound_streams;

  sctp_assoc_t sac_assoc_id;

  uint8_t sac_info[];

};

The sac_state describes the type of event that has occurred on the association, and will
take one of the following values:

SCTP_COMM_UP This state indicates that a new association has just
been started. The inbound and outbound streams
fields indicate how many streams are available in each
direction. The association identification is filled with a
unique value that can be used to communicate with
the local SCTP stack regarding this association.

SCTP_COMM_LOST This state indicates that the association specified by
the association identification has closed due to either
an unreachability threshold being triggered (i.e., the
SCTP endpoint timed out multiple times and hit its
threshold, which indicates the peer is no longer
reachable), or the peer performed an abortive close
(usually with the SO_LINGER option or by using
sendmsg with a MSG_ABORT flag) of the association. Any
user-specific information will be found in the sac_info
field of the notification.

SCTP_RESTART This state indicates that the peer has restarted. The
most likely cause of this notification is a peer crash
and restart. The application should verify the number

Page 339

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


SCTP_COMM_UP This state indicates that a new association has just
been started. The inbound and outbound streams
fields indicate how many streams are available in each
direction. The association identification is filled with a
unique value that can be used to communicate with
the local SCTP stack regarding this association.

of streams in each direction, since these values may
change during a restart.

SCTP_SHUTDOWN_COMP This state indicates that a shutdown initiated by the
local endpoint (via either a shutdown call or a sendmsg
with a MSG_EOF flag) has completed. For the
one-to-one style, after receiving this notification, the
socket descriptor can be used again to connect to a
different peer.

SCTP_CANT_STR_ASSOC This state indicates that a peer did not respond to an
association setup attempt (i.e., the INIT message).

The sac_error field holds any SCTP protocol error cause code that may have caused an
association change. The sac_outbound_streams and sac_inbound_streams fields inform the
application how many streams in each direction have been negotiated on the association. 
sac_assoc_id holds a unique handle for an association that can be used to identify the
association in both socket options and future notifications. sac_info holds any other
information available to the user. For example, if an association was aborted by the peer
with a user-defined error, that error would be found in this field.

SCTP_PEER_ADDR_CHANGE

This notification indicates that one of the peer's addresses has experienced a change of
state. This change may either be a failure, such as the destination is not responding when
sent to, or a recovery, such as a destination that was in a failed state has recovered. The
structure that accompanies an address change is as follows:

struct sctp_paddr_change {

  u_int16_t spc_type;

  u_int16_t spc_flags;

  u_int32_t spc_length;

  struct sockaddr_storage spc_aaddr;

  u_int32_t spc_state;

  u_int32_t spc_error;

  sctp_assoc_t spc_assoc_id;

};

The spc_aaddr field holds the address of the peer affected by this event. The spc_state
field holds one of the values described in Figure 9.7.

Figure 9.7. SCTP peer address state notifications.

Page 340

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


When an address is declared SCTP_ADDR_UNREACHABLE, any data sent to that address will be
rerouted to an alternate address. Note also that some of the states will only be available on
SCTP implementations that support the dynamic address option (e.g., SCTP_ADDR_ADDED
and SCTP_ADDR_REMOVED).

The spc_error field contains any notification error code to provide more information about
the event, and spc_assoc_id holds the association identification.

SCTP_REMOTE_ERROR

A remote peer may send an operational error message to the local endpoint. These
messages can indicate a variety of error conditions for the association. The entire error
chunk will be passed to the application in wire format when this notification is enabled. The
format of the message will be as follows:

struct sctp_remote_error {

  u_int16_t sre_type;

  u_int16_t sre_flags;

  u_int32_t sre_length;

  u_int16_t sre_error;

  sctp_assoc_t sre_assoc_id;

  u_int8_t sre_data[];

};

The sre_error will hold one of the SCTP protocol error cause codes, sre_assoc_id will
contain the association identification, and sre_data will hold the complete error in wire
format.

SCTP_SEND_FAILED

When a message cannot be delivered to a peer, the message is sent back to the user
through this notification. This notification is usually soon followed by an association failure
notification. In most cases, the only way a message will not be delivered is if the
association has failed. The only time a message failure will occur without an association
failure is when the partial reliability extension of SCTP is being used.

When an error notification is sent, the following format will be read by the application:

struct sctp_send_failed {

 u_int16_t ssf_type;

 u_int16_t ssf_flags;

 u_int32_t ssf_length;

 u_int32_t ssf_error;

 struct sctp_sndrcvinfo ssf_info;

 sctp_assoc_t ssf_assoc_id;

 u_int8_t ssf_data[];

};

ssf_flags will be set to one of two values:

 SCTP_DATA_UNSENT, which indicates that the message could never be transmitted to
the peer (e.g., flow control prevented the message from being sent before its
lifetime expired), so the peer never received it

 SCTP_DATA_SENT, which indicates that the data was transmitted to the peer at least

Page 341

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


once, but was never acknowledged. In this case, the peer may have received the
message, but it was unable to acknowledge it.

This distinction may be important to a transaction protocol, which might perform different
actions to recover from a broken connection based on whether or not a given message
might have been received. ssf_error, if not zero, holds an error code specific to this
notification. The ssf_info field provides the information passed (if any) to the kernel when
the data was sent (e.g., stream number, context, etc.). ssf_assoc_id holds the association
identification, and ssf_data holds the undelivered message.

SCTP_SHUTDOWN_EVENT

This notification is passed to an application when a peer sends a SHUTDOWN chunk to the
local endpoint. This notification informs the application that no new data will be accepted
on the socket. All currently queued data will be transmitted, and at the completion of that
transmission, the association will be shut down. The notification format is as follows:

struct sctp_shutdown_event {

  uint16_t sse_type;

  uint16_t sse_flags;

  uint32_t sse_length;

  sctp_assoc_t sse_assoc_id;

};

sse_assoc_id holds the association identification for the association that is shutting down
and can no longer accept data.

SCTP_ADAPTION_INDICATION

Some implementations support an adaption layer indication parameter. This parameter is
exchanged in the INIT and INIT-ACK to inform each peer what type of application adaption
is being performed. The notification will have the following form:

struct sctp_adaption_event {

  u_int16_t sai_type;

  u_int16_t sai_flags;

  u_int32_t sai_length;

  u_int32_t sai_adaption_ind;

  sctp_assoc_t sai_assoc_id;

};

The sai_assoc_id identifies of association that this adaption layer notification.
sai_adaption_ind is the 32-bit integer that the peer communicates to the local host in the
INIT or INIT-ACK message. The outgoing adaption layer is set with the 
SCTP_ADAPTION_LAYER socket option (Section 7.10). The adaption layer INIT/INIT-ACK
option is described in [Stewart et al. 2003b], and a sample usage of the option for remote
direct memory access/direct data placement is described in [Stewart et al. 2003a].

SCTP_PARTIAL_DELIVERY_EVENT

The partial delivery application interface is used to transport large messages to the user via
the socket buffer. Consider a user writing a single message of 4MB. A message of this size
would tax or exhaust system resources. An SCTP implementation would fail to handle such
a message unless the implementation had a mechanism to begin delivering the message
before all of it arrived. When an implementation does this form of delivery, it is termed "

Page 342

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


the partial delivery API." The partial delivery API is invoked by the SCTP implementation
sending data with the msg_flags field remaining clear until the last piece of the message is
ready to be delivered. The last piece of the message will have the msg_flags set to
MSG_EOR. Note that if an application is going to receive large messages, it should use
either recvmsg or sctp_recvmsg so that the msg_flags field can be examined for this
condition.

In some instances, the partial delivery API will need to communicate a status to the
application. For example, if the partial delivery API needs to be aborted, the 
SCTP_PARTIAL_DELIVERY_EVENT notification must be sent to the receiving application. This
notification has the following format:

struct sctp_pdapi_event {

  uint16_t pdapi_type;

  uint16_t pdapi_flags;

  uint32_t pdapi_length;

  uint32_t pdapi_indication;

  sctp_assoc_t pdapi_assoc_id;

};

The pdapi_assoc_id field identifies the association upon which the partial delivery API
event has occurred. The pdapi_indication holds the event that has occurred. Currently, the
only valid value found in this field is SCTP_PARTIAL_DELIVERY_ABORTED, which indicates
that the currently active partial delivery has been aborted.

[ Team LiB ]

Page 343

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

9.15 Summary
SCTP provides the application writer with two different interface styles: the one-to-one
style, mostly compatible with existing TCP applications to ease migration to SCTP, and the
one-to-many style, allowing access to all of SCTP's features. The sctp_peeloff function
provides a method of extracting an association from one style to the other. SCTP also
provides numerous notifications of transport events to which an application may wish to
subscribe. These events can aid an application in better managing the associations it
maintains.

Since SCTP is multihomed, not all the standard sockets functions introduced in Chapter 4
are adequate. Functions like sctp_bindx, sctp_connectx, sctp_getladdrs, and
sctp_getpaddrs provide methods to better control and examine the multiple addresses
that can make up an SCTP association. Utility functions such as sctp_sendmsg and
sctp_recvmsg can simplify the use of these advanced features. We will explore many of the
concepts introduced in this chapter in more detail through examples in Chapters 10 and 23
.

[ Team LiB ]

Page 344

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Exercises
9.1 In what situation would an application programmer be most likely to use

the sctp_peeloff function?

9.2 We say "the server side will automatically close as well" in our discussion
of the one-to-many style; why is this true?

9.3 Why must the one-to-many style be used to cause data to be
piggybacked on the third packet of the four-way handshake? (Hint: You
must be able to send data at the time of association setup.)

9.4 In what scenario would you find data piggybacked on both the third and
fourth packets of the four-way handshake?

9.5 Section 9.7 indicates that the local address set may be a proper subset
of the bound addresses. In what circumstance would this occur?

[ Team LiB ]

Page 345

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Chapter 10. SCTP Client/Server Example
Section 10.1.?Introduction

Section 10.2.?SCTP One-to-Many-Style Streaming Echo Server: main Function

Section 10.3.?SCTP One-to-Many-Style Streaming Echo Client: main Function

Section 10.4.?SCTP Streaming Echo Client: str_cli Function

Section 10.5.?Exploring Head-of-Line Blocking

Section 10.6.?Controlling the Number of Streams

Section 10.7.?Controlling Termination

Section 10.8.?Summary

Exercises

[ Team LiB ]

Page 346

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

10.1 Introduction
We will now use some of the elementary functions from Chapters 4 and Chapter 9 to write
a complete one-to-many SCTP client/server example. Our simple example is similar to the
echo server presented in Chapter 5, and performs the following steps:

1. A client reads a line of text from standard input and sends the line to the server.
The line follows the form [#] text, where the number in brackets is the SCTP
stream number on which the text message should be sent.

2. The server receives the text message from the network, increases the stream
number on which the message arrived by one, and sends the text message back to
the client on this new stream number.

3. The client reads the echoed line and prints it on its standard output, displaying the
stream number, stream sequence number, and text string.

Figure 10.1 depicts this simple client/server along with the functions used for input and
output.

Figure 10.1. Simple SCTP streaming echo client and server.

We show two arrows between the client and server depicting two unidirectional streams
being used, even though the overall association is full-duplex. The fgets and fputs
functions are from the standard I/O library. We do not use the writen and readline
functions defined in Section 3.9 since they are unnecessary. Instead, we use the
sctp_sendmsg and sctp_recvmsg functions defined in Sections 9.9 and Sections 9.10,
respectively.

For this example, we use a one-to-many-style server. We make this choice for one
important reason. The examples in Chapter 5 can be modified to run over SCTP with one
minor change: modify the socket function call to specify IPPROTO_SCTP instead of
IPPROTO_TCP as the third argument. Simply making this change, however, would not take
advantage of any of the additional features provided by SCTP except multihoming. Using
the one-to-many style allows us to exercise all of SCTP's features.

[ Team LiB ]

Page 347

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

10.2 SCTP One-to-Many-Style Streaming Echo Server: 
main Function
Our SCTP client and server follow the flow of functions diagrammed in Figure 9.2. We show
an iterative server program in Figure 10.2.

Set stream increment option
13 14 By default, our server responds using the next higher stream than the one on which
the message was received. If an integer argument is passed on the command line, the
server interprets the argument as the value of stream_increment, that is, it decides
whether or not to increment the stream number of incoming messages. We will use this
option in our discussion of head-of-line blocking in Section 10.5.

Create an SCTP socket
15 An SCTP one-to-many-style socket is created.

Bind an address
16 20 An Internet socket address structure is filled in with the wildcard address (
INADDR_ANY) and the server's well-known port, SERV_PORT. Binding the wildcard address
tells the system that this SCTP endpoint will use all available local addresses in any
association that is set up. For multihomed hosts, this binding means that a remote
endpoint will be able to make associations with and send packets to any of the local host's
routeable addresses. Our choice of the SCTP port number is based on Figure 2.10. Note
that the server makes the same considerations that were made earlier in our previous
example found in Section 5.2.

Set up for notifications of interest
21 23 The server changes its notification subscription for the one-to-many SCTP socket.
The server subscribes to just the sctp_data_io_event, which will allow the server to see
the sctp_sndrcvinfo structure. From this structure, the server can determine the stream
number on which the message arrived.

Enable incoming associations
24 The server enables incoming associations with the listen call. Then, control enters the
main processing loop.

Figure 10.2 SCTP streaming echo server.

sctp/sctpserv01.c

 1 #include     "unp.h"

 2 int

 3 main(int argc, char **argv)

 4 {

 5     int     sock_fd, msg_flags;

 6     char    readbuf [BUFFSIZE];

 7     struct sockaddr_in servaddr, cliaddr;

 8     struct sctp_sndrcvinfo sri;

 9     struct sctp_event_subscribe evnts;

10     int     stream_increment = 1;

Page 348

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


11     socklen_t len;

12     size_t rd_sz;

13     if (argc == 2)

14         stream_increment = atoi (argv[1]);

15     sock_fd = Socket (AF_INET, SOCK_SEQPACKET, IPPROTO_SCTP);

16     bzero (&servaddr, sizeof(servaddr));

17     servaddr.sin_family = AF_INET;

18     servaddr.sin_addr.s_addr = htonl (INADDR_ANY);

19     servaddr.sin_port = htons (SERV_PORT);

20     Bind (sock_fd, (SA *) &servaddr, sizeof (servaddr));

21     bzero (&evnts, sizeof (evnts)) ;

22     evnts.sctp_data_io_event = 1;

23     Setsockopt (sock_fd, IPPROTO_SCTP, SCTP_EVENTS, &evnts, sizeof (evnts))

;

24     Listen(sock_fd, LISTENQ) ;

25     for ( ; ; ) {

26         len = sizeof(struct sockaddr_in) ;

27         rd_sz = Sctp_recvmsg(sock_fd, readbuf, sizeof (readbuf) ,

28                               (SA *) &cliaddr, &len, &sri, &msg_flags) ;

29         if (stream_increment) {

30             sri.sinfo_stream++;

31             if (sri.sinfo_stream >=

32                sctp_get_no_strms (sock_fd, (SA *) &cliaddr, len) )

33                sri.sinfo_stream = 0;

34         }

35         Sctp_sendmsg (sock_fd, readbuf, rd_sz,

36                       (SA *) &cliaddr, len,

37                       sri.sinfo_ppid,

38                       sri.sinfo_flags, sri.sinfo_stream, 0, 0) ;

39     }

40 }

Wait for message
26 28 The server initializes the size of the client socket address structure, then blocks
while waiting for a message from any remote peer.

Increment stream number if desired
29 34 When a message arrives, the server checks the stream_increment flag to see if it
should increment the stream number. If the flag is set (no arguments were passed on the
command line), the server increments the stream number of the message. If that number
grows larger than or equal to the maximum streams, which is obtained by calling our
internal function call sctp_get_no_strms, the server resets the stream to 0. The function
sctp_get_no_strms is not shown. It uses the SCTP_STATUS SCTP socket option discussed
in Section 7.10 to find the number of streams negotiated.

Send back response
35 38 The server sends back the message using the payload protocol ID, flags, and the
possibly modified stream number from the sri structure.

Notice that this server does not want association notification, so it disables all events that
would pass messages up the socket buffer. The server relies on the information in the 
sctp_sndrcvinfo structure and the returned address found in cliaddr to locate the peer
association and return the echo.

Page 349

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


This program runs forever until the user shuts it down with an external signal.

[ Team LiB ]

Page 350

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

10.3 SCTP One-to-Many-Style Streaming Echo Client: 
main Function
Figure 10.3 shows our SCTP client main function.

Validate arguments and create a socket
9 15 The client validates the arguments passed to it. First, the client verifies that the caller
provided a host to send messages to. It then checks if the "echo to all" option is being
enabled (we will see this used in Section 10.5). Finally, the client creates an SCTP
one-to-many-style socket.

Set up server address
16 20 The client translates the server address, passed on the command line, using the
inet_pton function. It combines that with the server's well-known port number and uses
the resulting address as the destination for the requests.

Set up for notifications of interest
21 23 The client explicitly sets the notification subscription provided by our one-to-many
SCTP socket. Again, it wants no MSG_NOTIFICATION events. Therefore, the client turns these
off (as was done in the server) and only enables the receipt of the sctp_sndrcvinfo
structure.

Call echo processing function
24 28 If the echo_to_all flag is not set, the client calls the sctpstr_cli function,
discussed in Section 10.4. If the echo_to_all flag is set, the client calls the
sctpstr_cli_echoall function. We will discuss this function in Section 10.5 as we explore
uses for SCTP streams.

Figure 10.3 SCTP streaming echo client main.

sctp/sctpclient01.c

 1 #include     "unp.h"

 2 int

 3 main(int argc, char **argv)

 4 {

 5     int     sock_fd;

 6     struct sockaddr_in servaddr;

 7     struct sctp_event_subscribe evnts;

 8     int     echo_to_all = 0;

 9     if (argc < 2)

10         err_quit("Missing host argument - use '%s host [echo] '\n", argv[0])

;

11     if (argc > 2) {

12         printf("Echoing messages to all streams\n") ;

13         echo_to_all = 1;

14     }

15     sock_fd = Socket(AF_INET, SOCK_SEQPACKET, IPPROTO_SCTP);

16     bzero(&servaddr, sizeof (servaddr) ) ;

17     servaddr.sin_family = AF_INET;

Page 351

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


18     servaddr.sin_addr.s_addr = htonl (INADDR_ANY);

19     servaddr.sin_port = htons (SERV_PORT);

20     Inet_pton(AF_INET, argv[1], &servaddr.sin_addr);

21     bzero(&evnts, sizeof (evnts)) ;

22     evnts.sctp_data_io_event = 1 ;

23     Setsockopt(sock_fd, IPPROTO_SCTP, SCTP_EVENTS, &evnts, sizeof (evnts)) ;

24     if (echo_to_all == 0)

25         sctpstr_cli (stdin, sock_fd, (SA *) &servaddr, sizeof (servaddr)) ;

26     else

27         sctpstr_cli_echoall(stdin, sock_fd, (SA *) &servaddr,

28                              sizeof (servaddr)) ;

29     Close (sock_fd) ;

30     return (0) ;

31 }

Finish up
29 31 On return from processing, the client closes the SCTP socket, which shuts down any
SCTP associations using the socket. The client then returns from main with a return code of
0, indicating that the program ran successfully.

[ Team LiB ]

Page 352

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

10.4 SCTP Streaming Echo Client: str_cli Function
Figure 10.4 shows our SCTP default client processing function.

Figure 10.4 SCTP sctp_strcli function.

sctp/sctp_strcli.c

 1 #include     "unp.h"

 2 void

 3 sctpstr_cli (FILE *fp, int sock_fd, struct sockaddr *to, socklen_t tolen)

 4 {

 5     struct sockaddr_in peeraddr;

 6     struct sctp_sndrcvinfo sri;

 7     char    sendline [MAXLINE], recvline [MAXLINE];

 8     socklen_t len;

 9     int     out_sz, rd_sz;

10     int     msg_flags;

11     bzero (&sri, sizeof (sri) ) ;

12     while (fgets (sendline, MAXLINE, fp) != NULL) {

13         if (sendline [0] != ' [') {

14             printf ("Error, line must be of the form '[streamnum] text

'\n");

15             continue;

16         }

17         sri.sinfo_stream = strtol (&sendline [1], NULL, 0);

18         out_sz = strlen (sendline);

19         Sctp_sendmsg (sock_fd, sendline, out_sz,

20                       to, tolen, 0, 0, sri.sinfo_stream, 0, 0);

21         len = sizeof (peeraddr) ;

22         rd_sz = Sctp_recvmsg (sock_fd, recvline, sizeof (recvline),

23                               (SA *) &peeraddr, &len, &sri, &msg_flags) ;

24         printf ("From str:%d seq:%d (assoc:0x%x):",

25                 sri.sinfo_stream, sri.sinfo_ssn, (u_int)

sri.sinfo_assoc_id);

26         printf ("%.*s", rd_sz, recvline);

27     }

28 }

Initialize the sri structure and enter loop
11 12 The client starts by clearing the sctp_sndrcvinfo structure, sri. The client then
enters a loop that reads from the fp passed by our caller with a blocking call to fgets. The
main program passes stdin to this function, so user input is read and processed in the
loop until the terminal EOF character (Control-D) is typed by the user. This user action
ends the function and causes a return to the caller.

Validate input
13 16 The client examines the user input to make sure it is of the form [#] text. If the
format is invalid, the client prints an error message and re-enters the blocking call to the 
fgets function.

Page 353

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


Translate stream number
17 The client translates the user requested stream found in the input into the
sinfo_stream field in the sri structure.

Send message
18 20 After initializing the appropriate lengths of the address and the size of the actual
user data, the client sends the message using the sctp_sendmsg function.

Block while waiting for message
21 23 The client now blocks and waits for the echoed message from the server.

Display returned message and loop
24 26 The client displays the returned message echoed to it displaying the stream number,
stream sequence number, as well as the text message. After displaying the message, the
client loops back to get another request from the user.

Running the Code
A user starts the SCTP echo server with no arguments on a FreeBSD machine. The client is
started with just the address of our server.

freebsd4% sctpclient01 10.1.1.5  

[0]Hello Send a message on stream 0

From str:1 seq:0 (assoc:0xc99e15a0) : [0]Hello Server echoes on stream 1

[4]Message two Send a message on stream 4

From str:5 seq:0 (assoc:0xc99e15a0) : [4]Message

two

Server echoes on stream 5

[4]Message three Send a second message on
stream 4

From str:5 seq:1 (assoc:0xc99e15a0) : [4]Message

three

Server echoes on stream 5

^D Control-D is our EOF character

freebsd4%

Notice that the client sends the message on streams 0 and 4 while our server sends the
messages back on streams 1 and 5. This behavior is expected from our server with no
arguments. Also notice that the stream sequence number incremented on the second
message received on stream 5, as expected.

[ Team LiB ]

Page 354

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

10.5 Exploring Head-of-Line Blocking
Our simple server provides a method to send text messages to any of a number of
streams. A stream in SCTP is not a stream of bytes (as in TCP), but a sequence of
messages that is ordered within the association. These sub-ordered streams are used to
avoid the head-of-line blocking found in TCP.

Head-of-line blocking occurs when a TCP segment is lost and a subsequent TCP segment
arrives out of order. That subsequent segment is held until the first TCP segment is
retransmitted and arrives at the receiver. Delaying delivery of the subsequent segment
assures that the receiving application sees all data in the order in which the sending
application sent it. This delay to achieve complete ordering is quite useful, but it has a
downside. Assume that semantically independent messages are being sent over a single
TCP connection. For example, a server may send three different pictures for a Web browser
to display. To make the pictures appear on the user's screen in parallel, a server sends a
piece from the first picture, then a piece from the second picture, and finally a piece from
the third picture. The server repeats this process until all three pictures are successfully
transmitted to the browser. But what happens if a TCP packet holding a piece of the first
picture is lost? The client will hold all data until that missing piece is retransmitted and
arrives successfully, delaying all data for the second and third pictures, as well as data for
the first picture. Figure 10.5 illustrates this problem.

Figure 10.5. Sending three pictures over one TCP connection.

Although this is not how HTTP works, several extensions, such as SCP [Spero 1996] and
SMUX [Gettys and Nielsen 1998], have been proposed to permit this type of parallel
functionality on top of TCP. These multiplexing protocols have been proposed to avoid the
harmful behavior of multiple parallel TCP connections that do not share state [Touch 1997].
Although creating one TCP connection per picture (as HTTP clients normally do) avoids the
head-of-line blocking problem, each connection has to discover the RTT and available
bandwidth independently; a loss on one connection (a signal of congestion on the path)
does not necessarily cause the other connections to slow down. This leads to lower
aggregate utilization of congested networks.

This blocking is not really what the application would like to occur. Ideally, only later pieces
of the first picture would be delayed while pieces of the second and third pictures that
arrive in order would be delivered immediately to the user.

Head-of-line blocking can be minimized by SCTP's multistream feature. In Figure 10.6, we
see the same three pictures being sent. This time, the server uses streams so that
head-of-line blocking only occurs where it is desired, allowing delivery of the second and
third pictures but holding the partially received first picture until in-order delivery is

Page 355

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


possible.

Figure 10.6. Sending three pictures over three SCTP streams.

We now complete our client code, including the missing function sctpstr_cli_echoall (
Figure 10.7, p. 296), which we will use to demonstrate how SCTP minimizes head-of-line
blocking. This function is similar to our previous sctpstr_cli function except the client no
longer expects a stream number in brackets preceding each message. Instead, the
function sends the user message to all SERV_MAX_SCTP_STRM streams. After sending the
messages, the client waits for all the responses to arrive from the server. In running the
code, we also pass an additional argument to the server so that the server responds on the
same stream on which a message was received. This way, the user can better track the
responses sent and their order of arrival.

Initialize data structures and wait for input
13 15 As before, the client initializes the sri structure used to set up the stream it will be
sending and receiving from. In addition, the client zeros out the data buffer from which it
will collect user input. Then, the client enters the main loop, once again blocking on user
input.

Pre-process message
16 20 The client sets up the message size and then deletes the newline character that is at
the end of the buffer (if any).

Send message to each stream
21 26 The client sends the message using the sctp_sendmsg function, sending the whole
buffer of SCTP_MAXLINE bytes. Before sending the message, it appends the string ".msg."
and the stream number so that we can observe the order of the arriving messages. In this
way, we can compare the arrival order to the order in which the client sent the actual
messages. Note also the client sends the messages to a set number of streams without
regard to how many were actually set up. It is possible that one or more of the sends may
fail if the peer negotiates the number of streams downward.

This code has the potential to fail if the send or receive windows are too small. If the peer's
receive window is too small, it is possible that the client will block. Since the client does
not read any information until all of its sends are complete, the server could also
potentially block while waiting for the client to finish reading the responses the server
already sent. The result of such a scenario would be a deadlock of the two endpoints. This
code is not meant to be scalable, but instead to illustrate streams and head-of-line
blocking in a simple, straightforward manner.

Page 356

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


Figure 10.7 sctp_strcliecho.

sctp/sctp_strcliecho.c

 1 #include     "unp . h"

 2 #define SCTP_MAXLINE     800

 3 void

 4 sctpstr_cli_echoall (FILE *fp, int sock_fd, struct sockaddr *to,

 5                      socklen_t tolen)

 6 {

 7     struct sockaddr_in peeraddr;

 8     struct sctp_sndrcvinfo sri;

 9     char    sendline [SCTP_MAXLINE], recvline [SCTP_MAXLINE];

10     socklen_t len;

11     int     rd_sz, i, strsz;

12     int     msg_flags;

13     bzero(sendline, sizeof (sendline));

14     bzero(&sri, sizeof (sri));

15     while (fgets (sendline, SCTP_MAXLINE - 9, fp) ! = NULL) {

16         strsz = strlen (sendline);

17         if (sendline [strsz - 1] == '\n') {

18             sendline [strsz - 1] = '\0';

19             strsz--;

20         }

21         for (i = 0; i < SERV_MAX_SCTP_STRM; i++) {

22             snprintf (sendline + strsz, sizeof (sendline) - strsz,

23                       ".msg. %d", i) ;

24             Sctp_sendmsg (sock_fd, sendline, sizeof (sendline),

25                           to, tolen, 0, 0, i, 0, 0) ;

26         }

27         for (i = 0; i < SERV_MAX_SCTP_STRM; i++) {

28             len = sizeof (peeraddr) ;

29             rd_sz = Sctp_recvmsg (sock_fd, recvline, sizeof (recvline),

30                                   (SA *) &peeraddr, &len, &sri, &msg_flags);

31             printf ("From str:%d seq:%d (assoc: 0X%X) :",

32                     sri . sinfo_stream, sri . sinfo_ssn,

33                     (u_int) sri . sinfo_assoc_id) ;

34             printf ("%.*s\n", rd_sz, recvline) ;

35         }

36     }

37 }

Read back echoed messages and display
27 35 We now block, reading all the response messages from our server and displaying
each as we did before. After the last message is read, the client loops back for more user
input.

Running the Code
We execute the client and server on two separate FreeBSD machines, separated by a
configurable router, as illustrated in Figure 10.8. The router can be configured to insert
both delay and loss. We execute the program first with no loss inserted by the router.

Figure 10.8. SCTP client/server lab.

Page 357

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


We start the server with an additional argument of "0", forcing the server to not increment
the stream number on its replies.

Next, we start the client, passing it the address of the echo server and an additional
argument so that it will send a message to each stream.

freebsd4% sctpclient01 10.1.4.1 echo

Echoing messages to all streams

Hello

From str:0 seq:0 (assoc:0xc99e15a0):Hello.msg.0

From str:1 seq:0 (assoc:0xc99e15a0):Hello.msg.1

From str:2 seq:1 (assoc:0xc99e15a0):Hello.msg.2

From str:3 seq:0 (assoc:0xc99e15a0):Hello.msg.3

From str:4 seq:0 (assoc:0xc99e15a0):Hello.msg.4

From str:5 seq:0 (assoc:0xc99e15a0):Hello.msg.5

From str:6 seq:0 (assoc:0xc99e15a0):Hello.msg.6

From str:7 seq:0 (assoc:0xc99e15a0):Hello.msg.7

From str:8 seq:0 (assoc:0xc99e15a0):Hello.msg.8

From str:9 seq:0 (assoc:0xc99e15a0):Hello.msg.9

^D

freebsd4%

With no loss, the client sees the responses arrive back in the order in which the client sent
them. We now change the parameters of our router to lose 10% of all packets traveling in
both directions and restart our client.

freebsd4% sctpclient01 10.1.4.1 echo

Echoing messages to all streams

Hello

From str:0 seq:0 (assoc:0xc99e15a0):Hello.msg.0

From str:2 seq:0 (assoc:0xc99e15a0):Hello.msg.2

From str:3 seq:0 (assoc:0xc99e15a0):Hello.msg.3

From str:5 seq:0 (assoc:0xc99e15a0):Hello.msg.5

From str:1 seq:0 (assoc:0xc99e15a0):Hello.msg.1

From str:8 seq:0 (assoc:0xc99e15a0):Hello.msg.8

From str:4 seq:0 (assoc:0xc99e15a0):Hello.msg.4

From str:7 seq:0 (assoc:0xc99e15a0):Hello.msg.7

From str:9 seq:0 (assoc:0xc99e15a0):Hello.msg.9

From str:6 seq:0 (assoc:0xc99e15a0):Hello.msg.6

^D

freebsd4%

We can verify that the messages within a stream are properly being held for reordering by
having the client send two messages to each stream. We also modify the client to add a

Page 358

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


suffix to its message number to help us identify each message duplicate. The modifications
to the server are shown in Figure 10.9.

Figure 10.9 sctp_strcliecho modifications.

sctp/sctp_strcliecho2.c

21          for (i = 0; i < SERV_MAX_SCTP_STRM; i++) {

22              snprintf (sendline + strsz, sizeof (sendline) - strsz,

23                        ".msg.%d 1", i);

24              Sctp_sendmsg (sock_fd, sendline, sizeof (sendline),

25                            to, tolen, 0, 0, i, 0, 0);

26              snprintf (sendline + strsz, sizeof (sendline) - strsz,

27                        ".msg.%d 2", i);

28              Sctp_sendmsg (sock_fd, sendline, sizeof (sendline),

29                            to, tolen, 0, 0, i, 0, 0);

30          }

31          for (i = 0; i < SERV_MAX_SCTP_STRM * 2; i++) {

32              len = sizeof (peeraddr);

Add additional message number and send

22 25 The client adds an additional message number, "1", to help us track which message
is being sent. Then the client sends the message using the sctp_sendmsg function.

Change message number and send it again

26 29 The client now changes the number from "1" to "2" and sends this updated message
to the same stream.

Read messages and display

31 Here the code requires only one small change: We double the number of messages the
client expects to receive back from the echo server.

Running the Modified Code
We start our server and modified client, as before, and obtain the following output from the
client:

freebsd4% sctpclient01 10.1.4.1 echo

Echoing messages to all streams

Hello

From str:0 seq:0 (assoc:0xc99e15a0):Hello.msg.0 1

From str:0 seq:1 (assoc:0xc99e15a0):Hello.msg.0 2

From str:1 seq:0 (assoc:0xc99e15a0):Hello.msg.1 1

From str:4 seq:0 (assoc:0xc99e15a0):Hello.msg.4 1

From str:5 seq:0 (assoc:0xc99e15a0):Hello.msg.5 1

From str:7 seq:0 (assoc:0xc99e15a0):Hello.msg.7 1

From str:8 seq:0 (assoc:0xc99e15a0):Hello.msg.8 1

From str:9 seq:0 (assoc:0xc99e15a0):Hello.msg.9 1

From str:3 seq:0 (assoc:0xc99e15a0):Hello.msg.3 1

From str:3 seq:1 (assoc:0xc99e15a0):Hello.msg.3 2

From str:1 seq:1 (assoc:0xc99e15a0):Hello.msg.1 2

From str:5 seq:1 (assoc:0xc99e15a0):Hello.msg.5 2

From str:2 seq:0 (assoc:0xc99e15a0):Hello.msg.2 1

From str:6 seq:0 (assoc:0xc99e15a0):Hello.msg.6 1

From str:6 seq:1 (assoc:0xc99e15a0):Hello.msg.6 2

From str:2 seq:1 (assoc:0xc99e15a0):Hello.msg.2 2

Page 359

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


From str:7 seq:1 (assoc:0xc99e15a0):Hello.msg.7 2

From str:8 seq:1 (assoc:0xc99e15a0):Hello.msg.8 2

From str:9 seq:1 (assoc:0xc99e15a0):Hello.msg.9 2

From str:4 seq:1 (assoc:0xc99e15a0):Hello.msg.4 2

^D

freebsd4%

As we can see from the output, messages are lost, and yet only the messages in a
particular stream are delayed. The other streams do not have their data delayed. SCTP
streams can be a powerful mechanism to escape head-of-line blocking yet preserve order
within a set of related messages.

[ Team LiB ]

Page 360

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

10.6 Controlling the Number of Streams
We have seen how SCTP streams can be used, but how can we control the number of
streams an endpoint requests at association initialization? Our previous examples used the
system default for the number of outbound streams. For the FreeBSD KAME
implementation of SCTP, this default is set to 10 streams. What if our application and
server would like to use more than 10 streams? In Figure 10.10, we show a modification
that allows a server to increase the number of streams the endpoint requests on
association startup. Note that this change must be made on the socket before an
association is created.

Figure 10.10 Requesting more streams in our server.

sctp/sctpserv02.c

14      if (argc == 2)

15          stream_increment = atoi (argv[1]);

16      sock_fd = Socket (AF_INET, SOCK_SEQPACKET, IPPROTO_SCTP);

17      bzero (&initm, sizeof (initm));

18      initm.sinit_num_ostreams = SERV_MORE_STRMS_SCTP;

19      Setsockopt (sock_fd, IPPROTO_SCTP, SCTP_INITMSG, &initm, sizeof

(initm));

Initial setup
14 16 As before, the server sets up the flags based on additional arguments and opens the
socket.

Modifying the streams request
17 19 These lines contain the new code we have added to our server. The server first zeros
out the sctp_initmsg structure. This change assures that the setsockopt call will not
unintentionally change any other values. The server then sets the sinit_max_ostreams
field to the number of streams it would like to request. Next, it sets the socket option with
the initial message parameters.

An alternative to setting a socket option would be to use the sendmsg function and provide
ancillary data to request different stream parameters from the default. This type of
ancillary data is only effective on the one-to-many-style socket interface.

[ Team LiB ]

Page 361

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

10.7 Controlling Termination
In our examples, we have depended on the client closing the socket to shut down the
association. But the client application may not always wish to close the socket. For that
matter, our server may not want to keep the association open after sending the reply
message. In these cases, we need to look at two alternative mechanisms for shutting down
an association. For the one-to-many-style interface, two possible methods are available to
the application: one is graceful, while the other is disruptive.

If a server wishes to shut down an association after sending a message, we apply the 
MSG_EOF flag to the reply message in the sinfo_flags field of the sctp_sndrcvinfo
structure. This flag forces an association to shut down after the message being sent is
acknowledged. The other alternative is to apply the MSG_ABORT flag to the sinfo_flags
field. This flag will force an immediate termination of the association with an ABORT chunk.
An ABORT chunk is similar to a TCP RST segment, terminating any association without
delay. Note that any data not yet transfered will be discarded. However, closing an SCTP
session with an ABORT chunk does not have any negative side effects like preventing TCP's
TIME_WAIT state; the ABORT chunk causes a "graceful" abortive close. Figure 10.11 shows
the modifications needed to our echo server to initiate a graceful shutdown when the
response message is sent to the peer. Figure 10.12 shows a modified client that sends an
ABORT chunk before closing the socket.

Figure 10.11 The server terminates an association on reply.

sctp/sctpserv03.c

25     for ( ; ; ) {

26         len = sizeof(struct sockaddr_in);

27         rd_sz = Sctp_recvmsg(sock_fd, readbuf, sizeof (readbuf),

28                              (SA *) &cliaddr, &len, &sri, &msg_flags);

29         if (stream_increment) {

30             sri.sinfo_stream++;

31             if (sri.sinfo_stream >=

32                 sctp_get_no_strms (sock_fd, (SA *) &cliaddr, len))

33                 sri.sinfo_stream = 0;

34         }

35         Sctp_sendmsg (sock_fd, readbuf, rd_sz,

36                       (SA *) &cliaddr, len,

37                       sri.sinfo_ppid,

38                       (sri.sinfo_flags | MSG_EOF), sri.sinfo_stream, 0, 0);

Send back response, but shut down association
38 We can see that the change in this line is simply OR'ing the MSG_EOF flag to the
sctp_sendmsg function. This flag value causes our server to shut down the association after
the reply message is successfully acknowledged.

Figure 10.12 The client aborts the association before closing.

sctp/sctpclient02.c

25     if (echo_to_all == 0)

26         sctpstr_cli(stdin, sock_fd, (SA *) &servaddr, sizeof (servaddr));

27     else

28         sctpstr_cli_echoall(stdin, sock_fd, (SA *) &servaddr,

29                             sizeof (servaddr));

30     strcpy(byemsg, "goodbye");

Page 362

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


31     Sctp_sendmsg(sock_fd, byemsg, strlen (byemsg),

32                  (SA *) &servaddr, sizeof (servaddr), 0, MSG_ABORT, 0, 0,

0);

33     Close(sock_fd);

Abort association before close
30 32 In these lines, the client prepares a message that is included with the abort as a
user error cause. The client then calls the sctp_sendmsg function with the MSG_ABORT flag.
This flag sends an ABORT chunk, which immediately terminates the association. The
ABORT chunk includes the user-initiated error cause with the message ("goodbye") in the
upper layer reason field.

Close socket descriptor
33 Even though the association has been aborted, we still need to close the socket
descriptor to free the system resources associated with it.

[ Team LiB ]

Page 363

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

10.8 Summary
We have looked at a simple SCTP client and server spanning about 150 lines of code. Both
the client and server used the one-to-many-style SCTP interface. The server was
constructed in an iterative style, common when using the one-to-many-style interface,
receiving each message and responding on either the same stream the message was sent
on or on one stream higher. We then looked at the head-of-line blocking problem. We
modified our client to emphasize the problem and to show how SCTP streams can be used
to avoid this problem. We looked at how the number of streams can be manipulated using
one of the many socket options available to control SCTP behavior. Finally, we again
modified our server and client so that they could be made to either abort an association
including a user upper layer reason code, or in our server's case, shut down the association
gracefully after sending a message.

We will examine SCTP more deeply in Chapter 23

[ Team LiB ]

Page 364

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Exercises
10.1 In our client code shown in Figure 10.4, what will happen if SCTP

returns an error? How would you correct this problem?

10.2 What will happen if our server exits before responding? Is there any
way the client can be made aware of this?

10.3 In Figure 10.7 on line 22, we set out_sz to 800 bytes. Why do you
think we do this? Is there a better way to find a more optimal size to
set this to?

10.4 What effects will the Nagle algorithm (see Section 7.10) have on our
client shown in Figure 10.7? Would turning off the Nagle algorithm be
better for this program? Build the client and server code, then modify
both of them to disable the Nagle algorithm.

10.5 In Section 10.6, we state that an application should change the number
of streams before setting up an association. What happens if the
application changes the number of streams afterwards?

10.6 When modifying the number of streams, we state that the
one-to-many-style socket is the only style that can use ancillary data to
request more streams. Why is this true? (Hint: The ancillary data must
be sent with a message.)

16.7 Why can a server get away with not tracking the associations it has
open? Is there any danger in not tracking associations?

16.8 In Section 10.7, we modified the server to terminate the association
after replying to each message. Will this cause any problems? Is it a
good design decision?

[ Team LiB ]

Page 365

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Chapter 11. Name and Address
Conversions

Section 11.1.?Introduction

Section 11.2.?Domain Name System (DNS)

Section 11.3.?gethostbyname Function

Section 11.4.?gethostbyaddr Function

Section 11.5.?getservbyname and getservbyport Functions

Section 11.6.?getaddrinfo Function

Section 11.7.?gai_strerror Function

Section 11.8.?freeaddrinfo Function

Section 11.9.?getaddrinfo Function: IPv6

Section 11.10.?getaddrinfo Function: Examples

Section 11.11.?host_serv Function

Section 11.12.?tcp_connect Function

Section 11.13.?tcp_listen Function

Section 11.14.?udp_client Function

Section 11.15.?udp_connect Function

Section 11.16.?udp_server Function

Section 11.17.?getnameinfo Function

Section 11.18.?Re-entrant Functions

Section 11.19.?gethostbyname_r and gethostbyaddr_r Functions

Section 11.20.?Obsolete IPv6 Address Lookup Functions

Section 11.21.?Other Networking Information

Section 11.22.?Summary

Exercises

[ Team LiB ]

Page 366

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

11.1 Introduction
All the examples so far in this text have used numeric addresses for the hosts (e.g.,
206.6.226.33) and numeric port numbers to identify the servers (e.g., port 13 for the
standard daytime server and port 9877 for our echo server). We should, however, use
names instead of numbers for numerous reasons: Names are easier to remember; the
numeric address can change but the name can remain the same; and with the move to
IPv6, numeric addresses become much longer, making it much more error-prone to enter
an address by hand. This chapter describes the functions that convert between names and
numeric values: gethostbyname and gethostbyaddr to convert between hostnames and
IPv4 addresses, and getservbyname and getservbyport to convert between service names
and port numbers. It also describes two protocol-independent functions: getaddrinfo and
getnameinfo, which convert between hostnames and IP addresses and between service
names and port numbers.

[ Team LiB ]

Page 367

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

11.2 Domain Name System (DNS)
The DNS is used primarily to map between hostnames and IP addresses. A hostname can
be either a simple name, such as solaris or freebsd, or a fully qualified domain name
'(FQDN), such as solaris.unpbook.com.

Technically, an FQDN is also called an absolute name and must end with a period, but
users often omit the ending period. The trailing period tells the resolver that this name is
fully qualified and it doesn't need to search its list of possible domains.

In this section, we will cover only the basics of the DNS that we need for network
programming. Readers interested in additional details should consult Chapter 14 of TCPv1
and [Albitz and Liu 2001]. The additions required for IPv6 are in RFC 1886 [Thomson and
Huitema 1995] and RFC 3152 [Bush 2001].

Resource Records
Entries in the DNS are known as resource records (RRs). There are only a few types of RRs
that we are interested in.

A An A record maps a hostname into a 32-bit IPv4 address. For example, here are
the four DNS records for the host freebsd in the unpbook.com domain, the first of
which is an A record:
[View full width]

freebsd   IN    A     12.106.32.254

          IN    AAAA  3ffe:b80:1f8d:1:a00:20ff

:fea7:686b

          IN    MX    5  freebsd.unpbook.com.

          IN    MX    10 mailhost.unpbook.com.

AAAA A AAAA record, called a "quad A" record, maps a hostname into a 128-bit IPv6
address. The term "quad A" was chosen because a 128-bit address is four times
larger than a 32-bit address.

PTR PTR records (called "pointer records") map IP addresses into hostnames. For an
IPv4 address, then 4 bytes of the 32-bit address are reversed, each byte is
converted to its decimal ASCII value (0 255), and in-addr.arpa is the
appended. The resulting string is used in the PTR query.

 For an IPv6 address, the 32 4-bit nibbles of the 128-bit address are reversed,
each nibble is converted to its corresponding hexadecimal ASCII value (0 9a f),
and ip6.arpa is appended.

 For example, the two PTR records for our host freebsd would be
254.32.106.12.in-addr.arpa and
b.6.8.6.7.a.e.f.f.f.0.2.0.0.a.0.1.0.0.0.d.8.f.1.0.8.b.0.e.f.f.3.ip6.arp

a.

Earlier standards specified that IPv6 addresses were looked up in the ip6.int
domain. This was changed to ip6.arpa for consistency with IPv4. There will be a
transition period during which both zones will be populated.

MX An MX record specifies a host to act as a "mail exchanger" for the specified host.

Page 368

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


A An A record maps a hostname into a 32-bit IPv4 address. For example, here are
the four DNS records for the host freebsd in the unpbook.com domain, the first of
which is an A record:
[View full width]

freebsd   IN    A     12.106.32.254

          IN    AAAA  3ffe:b80:1f8d:1:a00:20ff

:fea7:686b

          IN    MX    5  freebsd.unpbook.com.

          IN    MX    10 mailhost.unpbook.com.

In the example for the host freebsd above, two MX records are provided: The first
has a preference value of 5 and the second has a preference value of 10. When
multiple MX records exist, they are used in order of preference, starting with the
smallest value.

We do not use MX records in this text, but we mention them because they are
used extensively in the real world.

CNAM
E

CNAME stands for "canonical name." A common use is to assign CNAME records
for common services, such as ftp and www. If people use these service names
instead of the actual hostnames, it is transparent when a service is moved to
another host. For example, the following could be CNAMEs for our host linux:

ftp          IN     CNAME    linux.unpbook.com.

www          IN     CNAME    linux.unpbook.com.

It is too early in the deployment of IPv6 to know what conventions administrators will use
for hosts that support both IPv4 and IPv6. In our example earlier in this section, we
specified both an A record and a AAAA record for our host freebsd. One possibility is to
place both the A record and the AAAA record under the host's normal name (as shown
earlier) and create another RR whose name ends in -4 containing the A record, another RR
whose name ends in -6 containing the AAAA record, and another RR whose name ends in
-611 containing a AAAA record with the host's link-local address (which is sometimes
handy for debugging purposes). All the records for another of our hosts are then

aix          IN     A          192.168.42.2

             IN     AAAA       3ffe:b80:1f8d:2:204:acff:fe17:bf38

             IN     MX         5 aix.unpbook.com.

             IN     MX         10 mailhost.unpbook.com.

aix-4        IN     A          192.168.42.2

aix-6        IN     AAAA       3ffe:b80:1f8d:2:204:acff:fe17:bf38

aix-611      IN     AAAA                 fe80::204:acff:fe17:bf38

This gives us additional control over the protocol chosen by some applications, as we will
see in the next chapter.

Resolvers and Name Servers
Organizations run one or more name servers, often the program known as BIND (Berkeley
Internet Name Domain). Applications such as the clients and servers that we are writing in
this text contact a DNS server by calling functions in a library known as the resolver. The
common resolver functions are gethostbyname and gethostbyaddr, both of which are
described in this chapter. The former maps a hostname into its IPv4 addresses, and the

Page 369

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


latter does the reverse mapping.

Figure 11.1 shows a typical arrangement of applications, resolvers, and name servers. We
now write the application code. On some systems, the resolver code is contained in a
system library and is link-edited into the application when the application is built. On
others, there is a centralized resolver daemon that all applications share, and the system
library code performs RPCs to this daemon. In either case, application code calls the
resolver code using normal function calls, typically calling the functions gethostbyname
and gethostbyaddr.

Figure 11.1. Typical arrangement of clients, resolvers, and name
servers.

The resolver code reads its system-dependent configuration files to determine the location
of the organization's name servers. (We use the plural "name servers" because most
organizations run multiple name servers, even though we show only one local server in the
figure. Multiple name servers are absolutely required for reliability and redundancy.) The
file /etc/resolv.conf normally contains the IP addresses of the local name servers.

It might be nice to use the names of the name servers in the /etc/resolv.conf file, since
the names are easier to remember and configure, but this introduces a chicken-and-egg
problem of where to go to do the name-to-address conversion for the server that will do
the name and address conversion!

The resolver sends the query to the local name server using UDP. If the local name server
does not know the answer, it will normally query other name servers across the Internet,
also using UDP. If the answers are too large to fit in a UDP packet, the resolver will
automatically switch to TCP.

DNS Alternatives
It is possible to obtain name and address information without using the DNS. Common
alternatives are static host files (normally the file /etc/hosts, as we describe in Figure
11.21), the Network Information System (NIS) or Lightweight Directory Access Protocol
(LDAP). Unfortunately, it is implementation-dependent how an administrator configures a
host to use the different types of name services. Solaris 2.x, HP-UX 10 and later, and
FreeBSD 5.x and later use the file /etc/nsswitch.conf, and AIX uses the file
/etc/netsvc.conf. BIND 9.2.2 supplies its own version named the Information Retrieval
Service (IRS), which uses the file /etc/irs.conf. If a name server is to be used for
hostname lookups, then all these systems use the file /etc/resolv.conf to specify the IP
addresses of the name servers. Fortunately, these differences are normally hidden to the
application programmer, so we just call the resolver functions such as gethostbyname and
gethostbyaddr.

[ Team LiB ]

Page 370

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


Page 371

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

11.3 gethostbyname Function
Host computers are normally known by human-readable names. All the examples that we
have shown so far in this book have intentionally used IP addresses instead of names, so
we know exactly what goes into the socket address structures for functions such as 
connect and sendto, and what is returned by functions such as accept and recvfrom. But,
most applications should deal with names, not addresses. This is especially true as we
move to IPv6, since IPv6 addresses (hex strings) are much longer than IPv4
dotted-decimal numbers. (The example AAAA record and ip6.arpa PTR record in the
previous section should make this obvious.)

The most basic function that looks up a hostname is gethostbyname. If successful, it
returns a pointer to a hostent structure that contains all the IPv4 addresses for the host.
However, it is limited in that it can only return IPv4 addresses. See Section 11.6 for a
function that handles both IPv4 and IPv6 addresses. The POSIX specification cautions that 
gethostbyname may be withdrawn in a future version of the spec.

It is unlikely that gethostbyname implementations will actually disappear until the whole
Internet is using IPv6, which will be far in the future. However, withdrawing the function
from the POSIX specification is a way to assert that it should not be used in new code. We
encourage the use of getaddrinfo (Section 11.6) in new programs.

#include <netdb.h>

struct hostent *gethostbyname (const char *hostname);

Returns: non-null pointer if OK,NULL on error with h_errno set

The non-null pointer returned by this function points to the following hostent structure:

struct hostent {

   char  *h_name;       /* official (canonical) name of host */

   char **h_aliases;    /* pointer to array of pointers to alias names */

   int    h_addrtype;   /* host address type: AF_INET */

   int    h_length;     /* length of address: 4 */

   char **h_addr_list;  /* ptr to array of ptrs with IPv4 addrs */

};

In terms of the DNS, gethostbyname performs a query for an A record. This function can
return only IPv4 addresses.

Figure 11.2 shows the arrangement of the hostent structure and the information that it
points to assuming the hostname that is looked up has two alias names and three IPv4
addresses. Of these fields, the official hostname and all the aliases are null-terminated C
strings.

Figure 11.2. hostent structure and the information it contains.

Page 372

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


The returned h_name is called the canonical name of the host. For example, given the
CNAME records shown in the previous section, the canonical name of the host 
ftp.unpbook.com would be linux.unpbook.com. Also, if we call gethostbyname from the
host aix with an unqualified hostname, say solaris, the FQDN (solaris.unpbook.com) is
returned as the canonical name.

Some versions of gethostbyname allow the hostname argument to be a dotted-decimal
string. That is, a call of the form

hptr = gethostbyname ("192.168.42.2");

will work. This code was added because the Rlogin client accepts only a hostname, calling 
gethostbyname, and will not accept a dotted-decimal string [Vixie 1996]. The POSIX
specification permits, but does not require, this behavior, so a portable application cannot
depend on it.

gethostbyname differs from the other socket functions that we have described in that it
does not set errno when an error occurs. Instead, it sets the global integer h_errno to one
of the following constants defined by including <netdb.h>:

 HOST_NOT_FOUND

 TRY_AGAIN

 NO_RECOVERY

 NO_DATA (identical to NO_ADDRESS)

The NO_DATA error means the specified name is valid, but it does not have an A record. An
example of this is a hostname with only an MX record.

Most modern resolvers provide the function hstrerror, which takes an h_errno value as its
only argument and returns a const char * pointer to a description of the error. We show
some examples of the strings returned by this function in the next example.

Example
Figure 11.3 shows a simple program that calls gethostbyname for any number of
command-line arguments and prints all the returned information.

Figure 11.3 Call gethostbyname and print returned information.

Page 373

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


names/hostent.c

 1 #include     "unp.h"

 2 int

 3 main(int argc, char **argv)

 4 {

 5     char   *ptr, **pptr;

 6     char     str [INET_ADDRSTRLEN];

 7     struct hostent *hptr;

 8     while (--argc > 0) {

 9          ptr = *++argv;

10          if ( (hptr = gethostbyname (ptr) ) == NULL) {

11              err_msg ("gethostbyname error for host: %s: %s",

12                      ptr, hstrerror (h_errno) );

13              continue;

14          }

15          printf ("official hostname: %s\n", hptr->h_name);

16          for (pptr = hptr->h_aliases; *pptr ! = NULL; pptr++)

17              printf ("\talias: %s\n", *pptr);

18          switch (hptr->h_addrtype) {

19          case AF_INET:

20              pptr = hptr->h_addr_list;

21              for ( ; *pptr != NULL; pptr++)

22                  printf ("\taddress: %s\n",

23                          Inet_ntop (hptr->h_addrtype, *pptr, str, sizeof

(str)));

24              break;

25          default:

26              err_ret ("unknown address type");

27              break;

28          }

29      }

30      exit(0);

31 }

8 14 gethostbyname is called for each command-line argument.

15 17 The official hostname is output followed by a list of alias names.

18 24 pptr points to the array of pointers to the individual addresses. For each address, we
call inet_ntop and print the returned string.

We first execute the program with the name of our host aix, which has just one IPv4
address.

freebsd % hostent aix

official hostname: aix.unpbook.com

        address: 192.168.42.2

Notice that the official hostname is the FQDN. Also notice that even though this host has
an IPv6 address, only the IPv4 address is returned.

Page 374

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


Next is a Web server with multiple IPv4 addresses.

freebsd % hostent cnn.com

official hostname: cnn.com

        address: 64.236.16.20

        address: 64.236.16.52

        address: 64.236.16.84

        address: 64.236.16.116

        address: 64.236.24.4

        address: 64.236.24.12

        address: 64.236.24.20

        address: 64.236.24.28

Next is a name that we showed in Section 11.2 as having a CNAME record.

freebsd % hostent www

official hostname: linux. unpbook. com

        alias: www.unpbook.com

        address: 206.168.112.219

As expected, the official hostname differs from our command-line argument.

To see the error strings returned by the hstrerror function, we first specify a non-existent
hostname, and then a name that has only an MX record.

freebsd % hostent nosuchname.invalid

gethostbyname error for host: nosuchname.invalid: Unknown host

freebsd % hostent uunet.uu.net

gethostbyname error for host: uunet.uu.net: No address associated with name

[ Team LiB ]

Page 375

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

11.4 gethostbyaddr Function
The function gethostbyaddr takes a binary IPv4 address and tries to find the hostname
corresponding to that address. This is the reverse of gethostbyname.

#include <netdb.h>

struct hostent *gethostbyaddr (const char *addr, socklen_t len, int family);

Returns: non-null pointer if OK, NULL on error with h_errno set

This function returns a pointer to the same hostent structure that we described with
gethostbyname. The field of interest in this structure is normally h_name, the canonical
hostname.

The addr argument is not a char*, but is really a pointer to an in_addr structure
containing the IPv4 address. len is the size of this structure: 4 for an IPv4 address. The
family argument is AF_INET.

In terms of the DNS, gethostbyaddr queries a name server for a PTR record in the
in-addr.arpa domain.

[ Team LiB ]

Page 376

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

11.5 getservbyname and getservbyport Functions
Services, like hosts, are often known by names, too. If we refer to a service by its name in
our code, instead of by its port number, and if the mapping from the name to port number
is contained in a file (normally /etc/services), then if the port number changes, all we
need to modify is one line in the /etc/services file instead of having to recompile the
applications. The next function, getservbyname, looks up a service given its name.

The canonical list of port numbers assigned to services is maintained by the IANA at 
http://www.iana.org/assignments/port-numbers (Section 2.9). A given /etc/services file
is likely to contain a subset of the IANA assignments.

#include <netdb.h>

struct servent *getservbyname (const char *servname, const char *protoname);

Returns: non-null pointer if OK, NULL on error

This function returns a pointer to the following structure:

struct servent {

  char   *s_name;      /* official service name */

  char  **s_aliases;   /* alias list */

  int     s-port;      /* port number, network-byte order */

  char   *s_proto;     /* protocol to use */

};

The service name servname must be specified. If a protocol is also specified (protoname is
a non-null pointer), then the entry must also have a matching protocol. Some Internet
services are provided using either TCP or UDP (for example, the DNS and all the services
in Figure 2.18), while others support only a single protocol (e.g., FTP requires TCP). If
protoname is not specified and the service supports multiple protocols, it is
implementation-dependent as to which port number is returned. Normally this does not
matter, because services that support multiple protocols often use the same TCP and UDP
port number, but this is not guaranteed.

The main field of interest in the servent structure is the port number. Since the port
number is returned in network byte order, we must not call htons when storing this into a
socket address structure.

Typical calls to this function could be as follows:

struct servent *sptr;

sptr = getservbyname("domain", "udp"); /* DNS using UDP */

sptr = getservbyname("ftp", "tcp");    /* FTP using TCP */

sptr = getservbyname("ftp", NULL);     /* FTP using TCP */

sptr = getservbyname("ftp", "udp");    /* this call will fail */

Since FTP supports only TCP, the second and third calls are the same, and the fourth call

Page 377

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.iana.orgassignments/port-numbers
http://www.iana.org/assignments/port-numbers
http://www.processtext.com/abcchm.html


will fail. Typical lines from the /etc/services file are

freebsd % grep -e ^ftp -e ^domain /etc/services

ftp-data         20/tcp    #File Transfer [Default Data]

ftp              21/tcp    #File Transfer [Control]

domain           53/tcp    #Domain Name Server

domain           53/udp    #Domain Name Server

ftp-agent       574/tcp    #FTP Software Agent System

ftp-agent       574/udp    #FTP Software Agent System

ftps-data       989/tcp                 # ftp protocol, data, over TLS/SSL

ftps            990/tcp                 # ftp protocol, control, over TLS/SSL

The next function, getservbyport, looks up a service given its port number and an optional
protocol.

#include <netdb.h>

struct servent *getservbyport (int port, const char *protoname);

Returns: non-null pointer if OK, NULL on error

The port value must be network byte ordered. Typical calls to this function could be as
follows:

struct servent *sptr;

sptr = getservbyport (htons (53), "udp"); /* DNS using UDP */

sptr = getservbyport (htons (21), "tcp"); /* FTP using TCP */

sptr = getservbyport (htons (21), NULL);  /* FTP using TCP */

sptr = getservbyport (htons (21), "udp"); /* this call will fail */

The last call fails because there is no service that uses port 21 with UDP.

Be aware that a few port numbers are used with TCP for one service, but the same port
number is used with UDP for a totally different service. For example, the following:

freebsd % grep 514 /etc/services

shell           514/tcp    cmd          #like exec, but automatic

syslog          514/udp

shows that port 514 is used by the rsh command with TCP, but with the syslog daemon
with UDP. Ports 512 514 have this property.

Example: Using gethostbyname and getservbyname

We can now modify our TCP daytime client from Figure 1.5 to use gethostbyname and
getservbyname and take two command-line arguments: a hostname and a service name.
Figure 11.4 shows our program. This program also shows the desired behavior of
attempting to connect to all the IP addresses for a multihomed server, until one succeeds
or all the addresses have been tried.

Page 378

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


Figure 11.4 Our daytime client that uses gethostbyname and getservbyname.

names/daytimetcpcli1.c

 1 #include     "unp.h"

 2 int

 3 main (int argc, char **argv)

 4 {

 5     int     sockfd, n;

 6     char     recvline [MAXLINE + 1];

 7     struct sockaddr_in servaddr;

 8     struct in_addr **pptr;

 9     struct in_addr *inetaddrp [2];

10     struct in_addr inetaddr;

11     struct hostent *hp;

12     struct servent *sp;

13     if (argc ! = 3)

14         err_quit ("usage: daytimetcpclil <hostname> <service>");

15     if ( (hp = gethostbyname (argv [1]) ) == NULL) {

16         if (inet_aton (argv [1], &inetaddr) == 0) {

17            err_quit ("hostname error for %s: %s", argv [1],

18                     hstrerror (h_errno) );

19         } else {

20             inetaddrp [0] = &inetaddr;

21             inetaddrp [1] = NULL;

22             pptr = inetaddrp;

23         }

24     } else {

25         pptr = (struct in_addr **) hp->h_addr_list;

26     }

27     if ( (sp = getservbyname (argv [2], "tcp") ) == NULL)

28         err_quit ("getservbyname error for %s", argv [2] );

29     for ( ; *pptr != NULL; pptr++) {

30         sockfd = Socket (AF_INET, SOCK_STREAM, 0) ;

31         bzero (&servaddr, sizeof (servaddr) ) ;

32         servaddr.sin_family = AF_INET;

33         servaddr.sin_port = sp->s_port;

34         memcpy (&servaddr.sin_addr, *pptr, sizeof (struct in_addr) ) ;

35         printf ("trying %s\n", Sock_ntop ( (SA *) &servaddr, sizeof

(servaddr) ) ) ;

36         if (connect (sockfd, (SA *) &servaddr, sizeof (servaddr) ) == 0)

37             break;               /* success */

38         err_ret ("connect error");

39         close (sockfd) ;

40      }

41     if (*pptr == NULL)

42          err_quit ("unable to connect");

43      while ( (n = Read (sockfd, recvline, MAXLINE) ) > 0) {

44          recvline [n] = 0;               /* null terminate */

45          Fputs (recvline, stdout);

46      }

Page 379

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


47      exit (0);

48 }

Call gethostbyname and getservbyname

13 28 The first command-line argument is a hostname, which we pass as an argument to
gethostbyname, and the second is a service name, which we pass as an argument to
getservbyname. Our code assumes TCP, and that is what we use as the second argument
to getservbyname. If gethostbyname fails to look up the name, we try using the inet_aton
function (Section 3.6) to see if the argument was an ASCII-format address. If it was, we
construct a single-element list consisting of the corresponding address.

Try each server address

29 35 We now code the calls to socket and connect in a loop that is executed for every
server address until a connect succeeds or the list of IP addresses is exhausted. After
calling socket, we fill in an Internet socket address structure with the IP address and port
of the server. While we could move the call to bzero and the subsequent two assignments
out of the loop, for efficiency, the code is easier to read as shown. Establishing the
connection with the server is rarely a performance bottleneck for a network client.

Call connect

36 39 connect is called, and if it succeeds, break terminates the loop. If the connection
establishment fails, we print an error and close the socket. Recall that a descriptor that
fails a call to connect must be closed and is no longer usable.

Check for failure

41 42 If the loop terminates because no call to connect succeeded, the program
terminates.

Read server's reply

43 47 Otherwise, we read the server's response, terminating when the server closes the
connection.

If we run this program specifying one of our hosts that is running the daytime server, we
get the expected output.

freebsd % daytimetcpcli1 aix daytime

trying 192.168.42.2:13

Sun Jul 27 22:44:19 2003

What is more interesting is to run the program to a multihomed system that is not running
the daytime server.

freebsd % daytimetcpcli1 gateway.tuc.noao.edu daytime

trying 140.252.108.1:13

connect error: Operation timed out

trying 140.252.1.4:13

connect error: Operation timed out

trying 140.252.104.1:13

connect error: Connection refused

unable to connect

[ Team LiB ]

Page 380

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


Page 381

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

11.6 getaddrinfo Function
The gethostbyname and gethostbyaddr functions only support IPv4. The API for resolving
IPv6 addresses went through several iterations, as will be described in Section 11.20; the
final result is the getaddrinfo function. The getaddrinfo function handles both
name-to-address and service-to-port translation, and returns sockaddr structures instead
of a list of addresses. These sockaddr structures can then be used by the socket functions
directly. In this way, the getaddrinfo function hides all the protocol dependencies in the
library function, which is where they belong. The application deals only with the socket
address structures that are filled in by getaddrinfo. This function is defined in the POSIX
specification.

The POSIX definition of this function comes from an earlier proposal by Keith Sklower for a
function named getconninfo. This function was the result of discussions with Eric Allman,
William Durst, Michael Karels, and Steven Wise, and from an early implementation written
by Eric Allman. The observation that specifying a hostname and a service name would
suffice for connecting to a service independent of protocol details was made by Marshall
Rose in a proposal to X/Open.

#include <netdb.h>

int getaddrinfo (const char *hostname, const char *service, const struct
addrinfo *hints, struct addrinfo **result) ;

Returns: 0 if OK, nonzero on error (see Figure 11.7)

This function returns through the result pointer a pointer to a linked list of addrinfo
structures, which is defined by including <netdb.h>.

struct addrinfo {

   int          ai_flags;           /* AI_PASSIVE, AI_CANONNAME */

   int          ai_family;          /* AF_xxx */

   int          ai_socktype;        /* SOCK_xxx */

   int          ai_protocol;        /* 0 or IPPROTO_xxx for IPv4 and IPv6 */

   socklen_t    ai_addrlen;         /* length of ai_addr */

   char        *ai_canonname;       /* ptr to canonical name for host */

   struct sockaddr    *ai_addr;     /* ptr to socket address structure */

   struct addrinfo    *ai_next;     /* ptr to next structure in linked list */

};

The hostname is either a hostname or an address string (dotted-decimal for IPv4 or a hex
string for IPv6). The service is either a service name or a decimal port number string. (See
also Exercise 11.4, where we want to allow an address string for the host or a port number
string for the service.)

hints is either a null pointer or a pointer to an addrinfo structure that the caller fills in with
hints about the types of information the caller wants returned. For example, if the specified
service is provided for both TCP and UDP (e.g., the domain service, which refers to a DNS
server), the caller can set the ai_socktype member of the hints structure to SOCK_DGRAM.
The only information returned will be for datagram sockets.

The members of the hints structure that can be set by the caller are:

Page 382

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


 ai_flags (zero or more AI_XXX values OR'ed together)

 ai_family (an AF_xxx value)

 ai_socktype (a SOCK_xxx value)

 ai_protocol

The possible values for the ai_flags member and their meanings are:

AI_PASSIVE The caller will use the socket for a passive open.

AI_CANONNAME Tells the function to return the canonical name of the host.

AI_NUMERICHOST Prevents any kind of name-to-address mapping; the hostname
argument must be an address string.

AI_NUMERICSERV Prevents any kind of name-to-service mapping; the service argument
must be a decimal port number string.

AI_V4MAPPED If specified along with an ai_family of AF_INET6, then returns
IPv4-mapped IPv6 addresses corresponding to A records if there are
no available AAAA records.

AI_ALL If specified along with AI_V4MAPPED, then returns IPv4-mapped IPv6
addresses in addition to any AAAA records belonging to the name.

AI_ADDRCONFIG Only looks up addresses for a given IP version if there is one or more
interface that is not a loopback interface configured with an IP address
of that version.

If the hints argument is a null pointer, the function assumes a value of 0 for ai_flags,
ai_socktype, and ai_protocol, and a value of AF_UNSPEC for ai_family.

If the function returns success (0), the variable pointed to by the result argument is filled
in with a pointer to a linked list of addrinfo structures, linked through the ai_next pointer.
There are two ways that multiple structures can be returned:

1. If there are multiple addresses associated with the hostname, one structure is
returned for each address that is usable with the requested address family (the 
ai_family hint, if specified).

2. If the service is provided for multiple socket types, one structure can be returned for
each socket type, depending on the ai_socktype hint. (Note that most getaddrinfo
implementations consider a port number string to be implemented only by the
socket type requested in ai_socktype; if ai_socktype is not specified, an error is
returned instead.)

For example, if no hints are provided and if the domain service is looked up for a host with
two IP addresses, four addrinfo structures are returned:

 One for the first IP address and a socket type of SOCK_STREAM

 One for the first IP address and a socket type of SOCK_DGRAM

 One for the second IP address and a socket type of SOCK_STREAM

 One for the second IP address and a socket type of SOCK_DGRAM

Page 383

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


We show this example in Figure 11.5. There is no guaranteed order of the structures when
multiple items are returned; that is, we cannot assume that TCP services will be returned
before UDP services.

Figure 11.5. Example of information returned by getaddrinfo.

Although not guaranteed, an implementation should return the IP addresses in the same
order as they are returned by the DNS. Some resolvers allow the administrator to specify
an address sorting order in the /etc/resolv.conf file. IPv6 specifies address selection
rules (RFC 3484 [Draves 2003]), which could affect the order of addresses returned by 
getaddrinfo.

The information returned in the addrinfo structures is ready for a call to socket and then
either a call to connect or sendto (for a client), or bind (for a server). The arguments to
socket are the members ai_family, ai_socktype, and ai_protocol. The second and third
arguments to either connect or bind are ai_addr (a pointer to a socket address structure
of the appropriate type, filled in by getaddrinfo) and ai_addrlen (the length of this socket
address structure).

If the AI_CANONNAME flag is set in the hints structure, the ai_canonname member of the first
returned structure points to the canonical name of the host. In terms of the DNS, this is
normally the FQDN. Programs like telnet commonly use this flag to be able to print the
canonical hostname of the system to which they are connecting, so that if the user
supplied a shortcut or an alias, he or she knows what got looked up.

Figure 11.5 shows the returned information if we execute the following:

Page 384

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


struct addrinfo          hints, *res;

bzero(&hints, sizeof(hints) ) ;

hints.ai_flags = AI_CANONNAME;

hints.ai_family = AF_INET;

getaddrinfo("freebsd4", "domain", &hints, &res);

In this figure, everything except the res variable is dynamically allocated memory (e.g.,
from malloc). We assume that the canonical name of the host freebsd4 is
freebsd4.unpbook.com and that this host has two IPv4 addresses in the DNS.

Port 53 is for the domain service. This port number will be in network byte order in the
socket address structures. We also show the returned ai_protocol values as IPPROTO_TCP
or IPPROTO_UDP. It would also be acceptable for getaddrinfo to return an ai_protocol of
0 for the two SOCK_STREAM structures if that is sufficient to specify TCP (it is not sufficient if
the system implements SCTP, for example), and an ai_protocol of 0 for the two
SOCK_DGRAM structures if the system doesn't implement any other SOCK_DGRAM protocols for
IP (as of this writing, none are yet standardized, but two are in development in the IETF).
It is safest for getaddrinfo to always return the specific protocol.

Figure 11.6 summarizes the number of addrinfo structures returned for each address that
is being returned, based on the specified service name (which can be a decimal port
number) and any ai_socktype hint.

Figure 11.6. Number of addrinfo structures returned per IP address.

Multiple addrinfo structures are returned for each IP address only when no ai_socktype
hint is provided and the service name is supported by multiple transport protocols (as
indicated in the /etc/services file).

If we were to enumerate all 64 possible inputs to getaddrinfo (there are six input
variables), many would be invalid and some would make little sense. Instead, we will look
at the common cases.

 Specify the hostname and service. This is normal for a TCP or UDP client. On return,
a TCP client loops through all returned IP addresses, calling socket and connect for
each one, until the connection succeeds or until all addresses have been tried. We
will show an example of this with our tcp_connect function in Figure 11.10.

 For a UDP client, the socket address structure filled in by getaddrinfo would be
used in a call to sendto or connect. If the client can tell that the first address
doesn't appear to work (either by receiving an error on a connected UDP socket or
by experiencing a timeout on an unconnected socket), additional addresses can be
tried.

 If the client knows it handles only one type of socket (e.g., Telnet and FTP clients
handle only TCP; TFTP clients handle only UDP), then the ai_socktype member of
the hints structure should be specified as either SOCK_STREAM or SOCK_DGRAM.

Page 385

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


 A typical server specifies the service but not the hostname, and specifies the
AI_PASSIVE flag in the hints structure. The socket address structures returned
should contain an IP address of INADDR_ANY (for IPv4) or IN6ADDR_ANY_INIT (for
IPv6). A TCP server then calls socket, bind, and listen. If the server wants to
malloc another socket address structure to obtain the client's address from accept,
the returned ai_addrlen value specifies this size.

 A UDP server would call socket, bind, and then recvfrom. If the server wants to
malloc another socket address structure to obtain the client's address from
recvfrom, the returned ai_addrlen value specifies this size.

 As with the typical client code, if the server knows it only handles one type of
socket, the ai_socktype member of the hints structure should be set to either
SOCK_STREAM or SOCK_DGRAM. This avoids having multiple structures returned,
possibly with the wrong ai_socktype value.

 The TCP servers that we have shown so far create one listening socket, and the UDP
servers create one datagram socket. That is what we assume in the previous item.
An alternate server design is for the server to handle multiple sockets using select
or poll. In this scenario, the server would go through the entire list of structures
returned by getaddrinfo, create one socket per structure, and use select or poll.

The problem with this technique is that one reason for getaddrinfo returning
multiple structures is when a service can be handled by IPv4 and IPv6 (Figure 11.8
). But, these two protocols are not completely independent, as we will see in Section
12.2. That is, if we create a listening IPv6 socket for a given port, there is no need
to also create a listening IPv4 socket for that same port, because connections
arriving from IPv4 clients are automatically handled by the protocol stack and by
the IPv6 listening socket, assuming that the IPV6_V6ONLY socket option is not set.

Despite the fact that getaddrinfo is "better" than the gethostbyname and getservbyname
functions (it makes it easier to write protocol-independent code; one function handles both
the hostname and the service; and all the returned information is dynamically allocated,
not statically allocated), it is still not as easy to use as it could be. The problem is that we
must allocate a hints structure, initialize it to 0, fill in the desired fields, call getaddrinfo,
and then traverse a linked list trying each one. In the next sections, we will provide some
simpler interfaces for the typical TCP and UDP clients and servers that we will write in the
remainder of this text.

getaddrinfo solves the problem of converting hostnames and service names into socket
address structures. In Section 11.17, we will describe the reverse function, get nameinfo,
which converts socket address structures into hostnames and service names.

[ Team LiB ]

Page 386

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

11.7 gai_strerror Function
The nonzero error return values from getaddrinfo have the names and meanings shown
in Figure 11.7. The function gai_strerror takes one of these values as an argument and
returns a pointer to the corresponding error string.

Figure 11.7. Nonzero error return constants from getaddrinfo.

#include <netdb.h>

const char *gai_strerror (int error);

Returns: pointer to string describing error message

[ Team LiB ]

Page 387

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

11.8 freeaddrinfo Function
All the storage returned by getaddrinfo, the addrinfo structures, the ai_addr structures,
and the ai_canonname string are obtained dynamically (e.g., from malloc). This storage is
returned by calling freeaddrinfo.

#include <netdb.h>

void freeaddrinfo (struct addrinfo *ai);

ai should point to the first addrinfo structure returned by getaddrinfo. All the structures
in the linked list are freed, along with any dynamic storage pointed to by those structures
(e.g., socket address structures and canonical hostnames).

Assume we call getaddrinfo, traverse the linked list of addrinfo structures, and find the
desired structure. If we then try to save a copy of the information by copying just the 
addrinfo structure and calling freeaddrinfo, we have a lurking bug. The reason is that
the addrinfo structure itself points to dynamically allocated memory (for the socket
address structure and possibly the canonical name), and memory pointed to by our saved
structure is returned to the system when freeaddrinfo is called and can be used for
something else.

Making a copy of just the addrinfo structure and not the structures that it in turn points to
is called a shallow copy. Copying the addrinfo structure and all the structures that it
points to is called a deep copy.

[ Team LiB ]

Page 388

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

11.9 getaddrinfo Function: IPv6
The POSIX specification defines the getaddrinfo function and the information it returns for
both IPv4 and IPv6. We note the following points before summarizing these return values
in Figure 11.8.

Figure 11.8. Summary of getaddrinfo and its actions and results.

 getaddrinfo is dealing with two different inputs: the type of socket address
structure the caller wants back and the type of records that should be searched for
in the DNS or other database.

 The address family in the hints structure provided by the caller specifies the type of
socket address structure that the caller expects to be returned. If the caller
specifies AF_INET, the function must not return any sockaddr_in6 structures; if the
caller specifies AF_INET6, the function must not return any sockaddr_in structures.

 POSIX says that specifying AF_UNSPEC will return addresses that can be used with
any protocol family that can be used with the hostname and service name. This
implies that if a host has both AAAA records and A records, the AAAA records are
returned as sockaddr_in6 structures and the A records are returned as sockaddr_in
structures. It makes no sense to also return the A records as IPv4-mapped IPv6
addresses in sockaddr_in6 structures because no additional information is being
returned: These addresses are already being returned in sockaddr_in structures.

 This statement in the POSIX specification also implies that if the AI_PASSIVE flag is
specified without a hostname, then the IPv6 wildcard address (IN6ADDR_ANY_INIT or
0::0) should be returned as a sockaddr_in6 structure, along with the IPv4 wildcard
address (INADDR_ANY or 0.0.0.0), which is returned as a sockaddr_in structure. It

Page 389

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


also makes sense to return the IPv6 wildcard address first because we will see in 
Section 12.2 that an IPv6 server socket can handle both IPv6 and IPv4 clients on a
dual-stack host.

 The address family specified in the hint structure's ai_family member, along with
the flags such as AI_V4MAPPED and AI_ALL specified in the ai_flags member,
dictate the type of records that are searched for in the DNS (A and/or AAAA) and
what type of addresses are returned (IPv4, IPv6, and/or IPv4-mapped IPv6). We
summarize this in Figure 11.8.

 The hostname can also be either an IPv6 hex string or an IPv4 dotted-decimal
string. The validity of this string depends on the address family specified by the
caller. An IPv6 hex string is not acceptable if AF_INET is specified, and an IPv4
dotted-decimal string is not acceptable if AF_INET6 is specified. But, if AF_UNSPEC is
specified, either is acceptable and the appropriate type of socket address structure
is returned.

One could argue that if AF_INET6 is specified, then a dotted-decimal string should
be returned as an IPv4-mapped IPv6 address in a sockaddr_in6 structure. But,
another way to obtain this result is to prefix the dotted-decimal string with 
0::ffff:.

Figure 11.8 summarizes how we expect getaddrinfo to handle IPv4 and IPv6 addresses.
The "Result" column is what we want returned to the caller, given the variables in the first
three columns. The "Action" column is how we obtain this result.

Note that Figure 11.8 specifies only how getaddrinfo handles IPv4 and IPv6; that is, the
number of addresses returned to the caller. The actual number of addrinfo structures
returned to the caller also depends on the socket type specified and the service name, as
summarized earlier in Figure 11.6.

[ Team LiB ]

Page 390

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

11.10 getaddrinfo Function: Examples
We will now show some examples of getaddrinfo using a test program that lets us enter
all the parameters: the hostname, service name, address family, socket type, and 
AI_CANONNAME and AI_PASSIVE flags. (We do not show this test program, as it is about 350
lines of uninteresting code. It is provided with the source code for the book, as described in
the Preface.) The test program outputs information on the variable number of addrinfo
structures that are returned, showing the arguments for a call to socket and the address in
each socket address structure.

We first show the same example as in Figure 11.5.

freebsd % testga -f inet -c -h freebsd4 -s domain

socket (AF_INET, SOCK_DGRAM, 17), ai_canonname = freebsd4.unpbook.com

         address: 135.197.17.100:53

socket (AF_INET, SOCK_DGRAM, 17)

         address: 172.24.37.94:53

socket (AF_INET, SOCK_STREAM, 6), ai_canonname = freebsd4.unpbook.com

         address: 135.197.17.100:53

socket (AF_INET, SOCK_STREAM, 6)

         address: 172.24.37.94:53

The -f inet option specifies the address family, -c says to return the canonical name, -h
bsdi specifies the hostname, and -s domain specifies the service name.

The common client scenario is to specify the address family, socket type (the -t option),
hostname, and service name. The following example shows this for a multihomed host with
three IPv4 addresses:

freebsd % testga -f inet -t stream -h gateway.tuc.noao.edu -s daytime

socket (AF_INET, SOCK_STREAM, 6)

         address: 140.252.108.1:13

socket (AF_INET, SOCK_STREAM, 6)

         address: 140.252.1.4:13

socket (AF_INET, SOCK_STREAM, 6)

         address: 140.252.104.1:13

Next, we specify our host aix, which has both a AAAA record and an A record. We do not
specify the address family, but we provide a service name of ftp, which is provided by TCP
only.

freebsd % testga -h aix -s ftp -t stream

socket (AF_INET6, SOCK_STREAM, 6)

         address: [3ffe:b80:1f8d:2:204:acff:fe17:bf38]:21

socket (AF_INET, SOCK_STREAM, 6)

         address: 192.168.42.2:21

Page 391

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


Since we didn't specify the address family, and since we ran this example on a host that
supports both IPv4 and IPv6, two structures are returned: one for IPv4 and one for IPv6.

Next, we specify the AI_PASSIVE flag (the -p option); we do not specify an address family
or hostname (implying the wildcard address). We also specify a port number of 8888 and a
stream socket.

freebsd % testga -p -s 8888 -t stream

socket (AF_INET6, SOCK_STREAM, 6)

         address: [: :]: 8888

socket (AF_INET, SOCK_STREAM, 6)

         address: 0.0.0.0:8888

Two structures are returned. Since we ran this on a host that supports IPv6 and IPv4
without specifying an address family, getaddrinfo returns the IPv6 wildcard address and
the IPv4 wildcard address. The IPv6 structure is returned before the IPv4 structure,
because we will see in Chapter 12 that an IPv6 client or server on a dual-stack host can
communicate with either IPv6 or IPv4 peers.

[ Team LiB ]

Page 392

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

11.11 host_serv Function
Our first interface to getaddrinfo does not require the caller to allocate a hints structure
and fill it in. Instead, the two fields of interest, the address family and the socket type, are
arguments to our host_serv function.

#include "unp.h"

struct addrinfo *host_serv (const char *hostname, const char *service, int family
, ints socktype);

Returns: pointer to addrinfo structure if OK, NULL on error

Figure 11.9 shows the source code for this function.

Figure 11.9 host_serv function.

lib/host_serv.c

 1  #include    "unp.h"

 2  struct addrinfo *

 3  host_serv(const char *host, const char *serv, int family, int socktype)

 4  {

 5    int     n;

 6    struct addrinfo hints, *res;

 7    bzero (&hints, sizeof (struct addrinfo));

 8    hints.ai_flags = AI_CANONNAME;   /* always return canonical name */

 9    hints.ai_family = family;   /* AF_UNSPEC, AF_INET, AF_INET6, etc. */

10    hints.ai_socktype = socktype;  /* 0, SOCK_STREAM, SOCK_DGRAM, etc. */

11    if ( (n = getaddrinfo(host, serv, &hints, &res)) != 0)

12        return (NULL);

13    return (res);              /* return pointer to first on linked list */

14 }

7 13 The function initializes a hints structure, calls getaddrinfo, and returns a null pointer
if an error occurs.

We will call this function from Figure 16.17 when we want to use getaddrinfo to obtain
the host and service information, but we want to establish the connection ourself.

[ Team LiB ]

Page 393

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

11.12 tcp_connect Function
We will now write two functions that use getaddrinfo to handle most scenarios for the TCP
clients and servers that we write. The first function, tcp_connect, performs the normal
client steps: create a TCP socket and connect to a server.

#include "unp.h"

int tcp_connect (const char *hostname, const char *service);

Returns: connected socket descriptor if OK, no return on error

Figure 11.10 shows the source code.

Figure 11.10 tcp_connect function: performs normal client steps.

lib/tcp_connect.c

 1  #include     "unp.h"

 2  int

 3  tcp_connect (const char *host, const char *serv)

 4  {

 5    int     sockfd, n;

 6    struct addrinfo hints, *res, *ressave;

 7    bzero(&hints, sizeof (struct addrinfo));

 8    hints.ai_family = AF_UNSPEC;

 9    hints.ai_socktype = SOCK_STREAM;

10    if ( (n = getaddrinfo (host, serv, &hints, &res)) != 0)

11        err_quit("tcp_connect error for %s, %s: %s",

12                 host, serv, gai_strerror (n));

13    ressave = res;

14    do {

15        sockfd = socket (res->ai_family, res->ai_socktype, res->ai_protocol);

16        if (sockfd < 0)

17            continue;            /*ignore this one */

18        if (connect (sockfd, res->ai_addr, res->ai_addrlen) == 0)

19            break;               /* success */

20        Close(sockfd);          /* ignore this one */

21    } while ( (res = res->ai_next) != NULL);

22    if (res == NULL)             /* errno set from final connect() */

23        err_sys ("tcp_connect error for %s, %s", host, serv);

24    freeaddrinfo (ressave);

25    return (sockfd);

26 }

Call getaddrinfo

Page 394

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


7 13 getaddrinfo is called once and we specify the address family as AF_UNSPEC and the
socket type as SOCK_STREAM.

Try each addrinfo structure until success or end of list
14 25 Each returned IP address is then tried. socket and connect are called. It is not a
fatal error for socket to fail, as this could happen if an IPv6 address is returned but the
host kernel does not support IPv6. If connect succeeds, a break is made out of the loop.
Otherwise, when all the addresses have been tried, the loop also terminates. freeaddrinfo
returns all the dynamic memory.

This function (and our other functions that provide a simpler interface to getaddrinfo in
the following sections) terminates if either getaddrinfo fails or no call to connect
succeeds. The only return is upon success. It would be hard to return an error code (one of
the EAI_xxx constants) without adding another argument. This means that our wrapper
function is trivial.

int

Tcp_connect (const char *host, const char *serv)

{

    return (tcp_connect (host, serv));

}

Nevertheless, we still call our wrapper function instead of tcp_connect, to maintain
consistency with the remainder of the text.

The problem with the return value is that descriptors are non-negative, but we do not know
whether the EAI_xxx values are positive or negative. If these values were positive, we
could return the negative of these values if getaddrinfo fails, but we also have to return
some other negative value to indicate that all the structures were tried without success.

Example: Daytime Client
Figure 11.11 shows our daytime client from Figure 1.5 recoded to use tcp_connect.

Figure 11.11 Daytime client recorded to use tcp_connect.

names/daytimetcpcli.c

 1 #include     "unp.h"

 2 int

 3 main(int argc, char **argv)

 4 {

 5    int     sockfd, n;

 6    char     recvline [MAXLINE + 1];

 7    socklen_t len;

 8    struct sockaddr_storage ss;

 9    if (argc != 3)

10        err_quit

11            ("usage: daytimetcpcli <hostname/IPaddress> <service/port#>");

12    sockfd = Tcp_connect (argv[1], argv[2]);

13    len = sizeof (ss);

Page 395

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


14    Getpeername (sockfd, (SA *) &ss, &len);

15    printf ("connected to %s\n", Sock_ntop_host ((SA *) &ss, len));

16    while ( (n = Read (sockfd, recvline, MAXLINE)) > 0) {

17        recvline [n] = 0;          /* null terminate */

18        Fputs (recvline, stdout);

19    }

20    exit (0);

21 }

Command-line arguments

9 11 We now require a second command-line argument to specify either the service name
or the port number, which allows our program to connect to other ports.

Connect to server

12 All the socket code for this client is now performed by tcp_connect.

Print server's address

13 15 We call getpeername to fetch the server's protocol address and print it. We do this to
verify the protocol being used in the examples we are about to show.

Note that tcp_connect does not return the size of the socket address structure that was
used for the connect. We could have added a pointer argument to return this value, but
one design goal for this function was to reduce the number of arguments compared to 
getaddrinfo. What we do instead is use a sockaddr_storage socket address structure,
which is large enough to hold and fulfills the alignment constraints of any socket address
type the system supports.

This version of our client works with both IPv4 and IPv6, while the version in Figure 1.5
worked only with IPv4 and the version in Figure 1.6 worked only with IPv6. You should also
compare our new version with Figure E.12, which we coded to use gethostbyname and
getservbyname to support both IPv4 and IPv6.

We first specify the name of a host that supports only IPv4.

freebsd % daytimetcpcli linux daytime

connected to 206.168.112.96

Sun Jul 27 23:06:24 2003

Next, we specify the name of a host that supports both IPv4 and IPv6.

freebsd % daytimetcpcli aix daytime

connected to 3ffe:b80:1f8d:2:204:acff:fe17:bf38

Sun Jul 27 23:17:13 2003

The IPv6 address is used because the host has both a AAAA record and an A record, and as
noted in Figure 11.8, since tcp_connect sets the address family to AF_UNSPEC, AAAA
records are searched for first, and only if this fails is a search made for an A record.

In the next example, we force the use of the IPv4 address by specifying the host-name
with our -4 suffix, which we noted in Section 11.2 is our convention for the host-name with
only A records.

Page 396

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


freebsd % daytimetcpcli aix-4 daytime

connected to 192.168.42.2

Sun Jul 27 23:17:48 2003

[ Team LiB ]

Page 397

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

11.13 tcp_listen Function
Our next function, tcp_listen, performs the normal TCP server steps: create a TCP
socket, bind the server's well-known port, and allow incoming connection requests to be
accepted. Figure 11.12 shows the source code.

#include "unp.h"

int tcp_listen (const char *hostname, const char *service, socklen_t *addrlenp);

Returns: connected socket descriptor if OK, no return on error

Call getaddrinfo
8 15 We initialize an addrinfo structure with our hints: AI_PASSIVE, since this function is
for a server, AF_UNSPEC for the address family, and SOCK_STREAM. Recall from Figure 11.8
that if a hostname is not specified (which is common for a server that wants to bind the
wildcard address), the AI_PASSIVE and AF_UNSPEC hints will cause two socket address
structures to be returned: the first for IPv6 and the next for IPv4 (assuming a dual-stack
host).

Create socket and bind address
16 25 The socket and bind functions are called. If either call fails, we just ignore this
addrinfo structure and move on to the next one. As stated in Section 7.5, we always set
th?SO_REUSEADDR socket option for a TCP server.

Check for failure
26 27 If all the calls to socket and bind fail, we print an error and terminate. As with our
tcp_connect function in the previous section, we do not try to return an error from this
function.

28 The socket is turned into a listening socket by listen.

Return size of socket address structure
29 32 If the addrlenp argument is non-null, we return the size of the protocol addresses
through this pointer. This allows the caller to allocate memory for a socket address
structure to obtain the client's protocol address from accept. (See Exercise 11.7 also.)

Example: Daytime Server
Figure 11.13 shows our daytime server from Figure 4.11, recoded to use tcp_listen.

Require service name or port number as command-line argument

11 12 We require a command-line argument to specify either the service name or port
number. This makes it easier to test our server, since binding port 13 for the daytime
server requires superuser privileges.

Create listening socket

13 tcp_listen creates the listening socket. We pass a NULL pointer as the third argument
because we don't care what size address structure the address family uses; we will use 

Page 398

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


sockaddr_storage.

Figure 11.12 tcp_listen function: performs normal server steps.

lib/tcp_listen.c

 1 #include     "unp.h"

 2 int

 3 tcp_listen(const char *host, const char *serv, socklen_t *addrlenp)

 4 {

 5     int      listenfd, n;

 6     const int on = 1;

 7     struct addrinfo hints, *res, *ressave;

 8     bzero(&hints, sizeof (struct addrinfo)) ;

 9     hints.ai_flags = AI_PASSIVE;

10     hints.ai_family = AF_UNSPEC;

11     hints.ai_socktype = SOCK_STREAM;

12     if ( (n = getaddrinfo (host, serv, &hints, &res)) != 0)

13         err_quit("tcp_listen error for %s, %s: %s",

14                  host, serv, gai_strerror(n)) ;

15     ressave = res;

16     do {

17         listenfd =

18             socket(res->ai_family, res->ai_socktype, res->ai_protocol);

19         if (listenfd < 0)

20             continue;            /* error, try next one */

21         Setsockopt(listenfd, SOL_SOCKET, SO_REUSEADDR, &on, sizeof (on) ) ;

22         if (bind(listenfd, res->ai_addr, res->ai_addrlen) == 0)

23             break;               /* success */

24         Close (listenfd);        /* bind error, close and try next one */

25      } while ( (res = res->ai_next) != NULL);

26      if (res == NULL)            /* errno from final socket () or bind () */

27          err_sys ("tcp_listen error for %s, %s", host, serv);

28      Listen (listenfd, LISTENQ);

29      if (addrlenp)

30          *addrlenp = res->ai_addrlen;     /* return size of protocol address

*/

31      freeaddrinfo (ressave);

32      return (listenfd);

33 }

Server loop

14 22 accept waits for each client connection. We print the client address by calling
sock_ntop. In the case of either IPv4 or IPv6, this function prints the IP address and port
number. We could use the function getnameinfo (Section 11.17) to try to obtain the
hostname of the client, but that involves a PTR query in the DNS, which can take some
time, especially if the PTR query fails. Section 14.8 of TCPv3 notes that on a busy Web
server, almost 25% of all clients connecting to that server did not have PTR records in the

Page 399

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


DNS. Since we do not want a server (especially an iterative server) to wait seconds for a
PTR query, we just print the IP address and port. 

Figure 11.13 Daytime server recoded to use tcp_listen (see also Figure
11.14).

names/daytimetcpsrv1.c

 1 #include     "unp.h"

 2 #include     <time.h>

 3 int

 4 main(int argc, char **argv)

 5 {

 6     int     listenfd, connfd;

 7     socklen_t len;

 8     char    buff[MAXLINE];

 9     time_t  ticks;

10     struct sockaddr_storage cliaddr;

11     if (argc != 2)

12         err_quit("usage: daytimetcpsrv1 <service or port#>");

13     listenfd = Tcp_listen (NULL, argv[1], NULL);

14     for ( ; ; ) {

15         len = sizeof (cliaddr);

16         connfd = Accept (listenfd, (SA *) &cliaddr, &len);

17         printf("connection from %s\n", Sock_ntop ( (SA *) &cliaddr, len) );

18         ticks = time (NULL);

19         snprintf(buff, sizeof (buff), "%.24s\r\n", ctime (&ticks) ) ;

20         Write(connfd, buff, strlen (buff) ) ;

21         Close (connfd);

22     }

23 }

Example: Daytime Server with Protocol Specification
There is a slight problem with Figure 11.13: The first argument to tcp_listen is a null
pointer, which combined with the address family of AF_UNSPEC that tcp_listen specifies
might cause getaddrinfo to return a socket address structure with an address family other
than what is desired. For example, the first socket address structure returned will be for
IPv6 on a dual-stack host Figure 11.8, but we might want our server to handle only IPv4.

Clients do not have this problem since the client must always specify either an IP address
or a hostname. Client applications normally allow the user to enter this as a command-line
argument. This gives us the opportunity to specify a hostname that is associated with a
particular type of IP address (recall our -4 and -6 hostnames in Section 11.2), or to specify
either an IPv4 dotted-decimal string (forcing IPv4) or an IPv6 hex string (forcing IPv6).

But there is a simple technique for servers that lets us force a given protocol on a server,
either IPv4 or IPv6: Allow the user to enter either an IP address or a hostname as a
command-line argument to the program and pass this to getaddrinfo. In the case of an IP
address, an IPv4 dotted-decimal string differs from an IPv6 hex string. The following calls
to inet_pton either fail or succeed, as indicated:

Page 400

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


inet_pton (AF_INET,  "0.0.0.0", &foo);   /* succeeds */

inet_pton (AF_INET,  "0::0",    &foo);   /* fails */

inet_pton (AF_INET6, "0.0.0.0", &foo);   /* fails */

inet_pton (AF_INET6, "0::0",    &foo);   /* succeeds */

Therefore, if we change our servers to accept an optional argument, and if we enter

% server

it defaults to IPv6 on a dual-stack host, but entering

% server 0.0.0.0

explicitly specifies IPv4 and

% server 0::0

explicitly specifies IPv6.

Figure 11.14 shows this final version of our daytime server.

Handle command-line arguments

11 16 The only change from Figure 11.13 is the handling of the command-line arguments,
allowing the user to specify either a hostname or an IP address for the server to bind, in
addition to a service name or port.

We first start this server with an IPv4 socket and then connect to the server from clients on
two other hosts on the local subnet.

freebsd % daytimetcpsrv2 0.0.0.0 9999

connection from 192.168.42.2:32961

connection from 192.168.42.3:1389

Now we start the server with an IPv6 socket.

freebsd % daytimetcpsrv2 0: :0 9999

c nection from [3ffe:b80:1f8d:2:204:acff:fe17:bf38]:32964

connection from [3ffe:b80:1f8d:2:230:65ff:fe15:caa7]:49601

connection from [::ffff:192.168.42.2]:32967

connection from [::ffff:192.168.42.3]:49602

The first connection is from the host aix using IPv6 and the second is from the host macosx
using IPv6. The next two connections are from the hosts aix and macosx, but using IPv4,
not IPv6. We can tell this because the client's addresses returned by accept are both
IPv4-mapped IPv6 addresses.

Page 401

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


What we have just shown is that an IPv6 server running on a dual-stack host can handle
either IPv4 or IPv6 clients. The IPv4 client addresses are passed to the IPv6 server as
IPv4-mapped IPv6 addresses, as we will discuss in Section 12.2.

Figure 11.14 Protocol-independent daytime server that uses tcp_listen.

names/daytimetcpsrv2.c

 1 #include     "unp.h"

 2 #include     <time.h>

 3 int

 4 main (int argc, char **argv)

 5 {

 6     int     listenfd, connfd;

 7     socklen_t len;

 8     char     buff [MAXLINE];

 9     time_t ticks;

10     struct sockaddr_storage cliaddr;

11     if (argc == 2)

12         listenfd = Tcp_listen (NULL, argv [1], &addrlen);

13     else if (argc == 3)

14         listenfd = Tcp_listen (argv [1], argv[2], &addrlen);

15     else

16         err_quit ("usage: daytimetcpsrv2 [ <host> ] <service or port>");

17     for ( ; ; ) {

18         len = sizeof (cliaddr);

19         connfd = Accept (listenfd, (SA *) &cliaddr, &len);

20         printf ("connection from %s\n", Sock_ntop ((SA *) &cliaddr, len) ) ;

21         ticks = time (NULL);

22         snprintf (buff, sizeof (buff), "%.24s\r\n", ctime (&ticks) ) ;

23         Write (connfd, buff, strlen (buff) ) ;

24         Close (connfd);

25     }

26 }

[ Team LiB ]

Page 402

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

11.14 udp_client Function
Our functions that provide a simpler interface to getaddrinfo change with UDP because we
provide one client function that creates an unconnected UDP socket, and another in the
next section that creates a connected UDP socket.

#include "unp.h"

int udp_client (const char *hostname, const char *service, struct sockaddr **
saptr, socklen_t *lenp);

Returns: unconnected socket descriptor if OK, no return on error

This function creates an unconnected UDP socket, returning three items. First, the return
value is the socket descriptor. Second, saptr is the address of a pointer (declared by the
caller) to a socket address structure (allocated dynamically by udp_client), and in that
structure, the function stores the destination IP address and port for future calls to sendto.
The size of the socket address structure is returned in the variable pointed to by lenp. This
final argument cannot be a null pointer (as we allowed for the final argument to 
tcp_listen) because the length of the socket address structure is required in any calls to
sendto and recvfrom.

Figure 11.15 shows the source code for this function.

Figure 11.15 udp_client function: creates an unconnected UDP socket.

lib/udp_client.c

 1 #include     "unp.h"

 2 int

 3 udp_client (const char *host, const char *serv, SA **saptr, socklen_t *lenp)

 4 {

 5     int     sockfd, n;

 6     struct addrinfo hints, *res, *ressave;

 7     bzero(&hints, sizeof (struct addrinfo));

 8     hints.ai_family = AF_UNSPEC;

 9     hints.ai_socktype = SOCK_DGRAM;

10     if ( (n = getaddrinfo (host, serv, &hints, &res)) ! = 0)

11         err_quit ("udp_client error for %s, %s: %s",

12                   host, serv, gai_strerror(n));

13     ressave = res;

14     do {

15         sockfd = socket (res->ai_family, res->ai_socktype,

res->ai_protocol);

16         if (sockfd >= 0)

17             break;               /* success */

18     } while ( (res = res->ai_next) ! = NULL);

19     if (res == NULL)             /* errno set from final socket () */

20         err_sys ("udp_client error for %s, %s", host, serv);

Page 403

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


21     *saptr = Malloc (res->ai_addrlen);

22     memcpy (*saptr, res->ai_addr, res->ai_addrlen);

23     *lenp = res->ai_addrlen;

24     freeaddrinfo (ressave);

25     return (sockfd);

26 }

getaddrinfo converts the hostname and service arguments. A datagram socket is created.
Memory is allocated for one socket address structure, and the socket address structure
corresponding to the socket that was created is copied into the memory.

Example: Protocol-Independent Daytime Client
We now recode our daytime client from Figure 11.11 to use UDP and our udp_client
function. Figure 11.16 shows the protocol-independent source code.

Figure 11.16 UDP daytime client using our udp_client function.

names/daytimeudpcli1.c

 1 #include     "unp.h"

 2 int

 3 main(int argc, char **argv)

 4 {

 5     int       sockfd, n;

 6     char      recvline [MAXLINE + 1];

 7     socklen_t salen;

 8     struct sockaddr *sa;

 9     if (argc ! = 3)

10         err_quit

11             ("usage: daytimeudpclil <hostname/IPaddress> <service/port#>");

12     sockfd = Udp_client (argv [1], argv [2], (void **) &sa, &salen);

13     printf ("sending to %s\n", Sock_ntop_host (sa, salen));

14     Sendto (sockfd, "", 1, 0, sa, salen);     /* send 1-byte datagram */

15     n = Recvfrom (sockfd, recvline, MAXLINE, 0 NULL, NULL);

16     recvline [n] = '\0';         /* null terminate */

17     Fputs (recvline, stdout);

18     exit (0);

19 }

12 17 We call our udp_client function and then print the IP address and port of the server
to which we will send the UDP datagram. We send a one-byte datagram and then read and
print the reply.

We need to send only a zero-byte UDP datagram, as what triggers the daytime server's
response is just the arrival of a datagram, regardless of its length and contents. But, many
SVR4 implementations do not allow a zero-length UDP datagram.

We run our client specifying a hostname that has a AAAA record and an A record. Since the
structure with the AAAA record is returned first by getaddrinfo, an IPv6 socket is created.

Page 404

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


freebsd % daytimeudpcli1 aix daytime

sending to 3ffe:b80:1f8d:2:204:acff:fe17:bf38

Sun Jul 27 23:21:12 2003

Next, we specify the dotted-decimal address of the same host, resulting in an IPv4 socket.

freebsd % daytimeudpclil 192.168.42.2 daytime

sending to 192.168.42.2

Sun Jul 27 23:21:40 2003

[ Team LiB ]

Page 405

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

11.15 udp_connect Function
Our udp_connect function creates a connected UDP socket.

#include "unp.h"

int udp_connect (const char *hostname, const char *service);

Returns: connected socket descriptor if OK, no return on error

With a connected UDP socket, the final two arguments required by udp_client are no
longer needed. The caller can call write instead of sendto, so our function need not return
a socket address structure and its length.

Figure 11.17 shows the source code.

Figure 11.17 udp_connect function: creates a connected UDP socket.

lib/udp_connect.c

 1 #include     "unp.h"

 2 int

 3 udp_connect (const char *host, const char *serv)

 4 {

 5     int     sockfd, n;

 6     struct addrinfo hints, *res, *ressave;

 7     bzero (&hints, sizeof (struct addrinfo));

 8     hints.ai_family = AF_UNSPEC;

 9     hints.ai_socktype = SOCK_DGRAM;

10     if ( (n = getaddrinfo (host, serv, &hints, &res)) != 0)

11         err_quit ("udp_connect error for %s, %s: %s",

12                  host, serv, gai_strerror (n));

13     ressave = res;

14     do {

15         sockfd = socket (res->ai_family, res->ai_socktype,

res->ai_protocol);

16         if (sockfd < 0)

17             continue;         /* ignore this one */

18         if (connect (sockfd, res->ai_addr, res->ai_addrlen) == 0)

19             break;            /* success */

20         Close (sockfd);       /* ignore this one */

21     } while ( (res = res->ai_next) ! = NULL);

22     if (res == NULL)          /* errno set from final connect () */

23         err_sys ("udp_connect error for %s, %s", host, serv);

24     freeaddrinfo (ressave);

25     return (sockfd);

26 }

Page 406

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


This function is nearly identical to tcp_connect. One difference, however, is that the call to
connect with a UDP socket does not send anything to the peer. If something is wrong (the
peer is unreachable or there is no server at the specified port), the caller does not discover
that until it sends a datagram to the peer.

[ Team LiB ]

Page 407

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

11.16 udp_server Function
Our final UDP function that provides a simpler interface to getaddrinfo is udp_server.

#include "unp.h"

int udp_server (const char *hostname, const char *service, socklen_t *lenptr);

Returns: unconnected socket descriptor if OK, no return on error

The arguments are the same as for tcp_listen: an optional hostname, a required service
(so its port number can be bound), and an optional pointer to a variable in which the size
of the socket address structure is returned.

Figure 11.18 shows the source code.

Figure 11.18 udp_server function: creates an unconnected socket for a
UDP server.

lib/udp_server.c

 1 #include     "unp.h"

 2 int

 3 udp_server(const char *host, const char *serv, socklen_t *addrlenp)

 4 {

 5     int     sockfd, n;

 6     struct addrinfo hints, *res, *ressave;

 7     bzero(&hints, sizeof(struct addrinfo));

 8     hints.ai_flags = AI_PASSIVE;

 9     hints.ai_family = AF_UNSPEC;

10     hints.ai_socktype = SOCK_DGRAM;

11     if ( (n = getaddrinfo (host, serv, &hints, &res)) != 0)

12         err_quit ("udp_server error for %s, %s: %s",

13                   host, serv, gai_strerror(n));

14     ressave = res;

15     do {

16         sockfd = socket (res->ai_family, res->ai_socktype,

res->ai_protocol);

17         if (sockfd < 0)

18             continue;          /* error - try next one */

19         if (bind (sockfd, res->ai_addr, res->ai_addrlen) == 0)

20             break;             /* success */

21         Close (sockfd);        /* bind error - close and try next one */

22     } while ( (res = res->ai_next) != NULL);

23     if (res == NULL)           /* errno from final socket() or bind() */

24         err_sys ("udp_server error for %s, %s", host, serv);

25     if (addrlenp)

26         *addrlenp = res->ai_addrlen     * return size of protocol address */

Page 408

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


27     freeaddrinfo (ressave) ;

28     return (sockfd);

29 }

This function is nearly identical to tcp_listen, but without the call to listen. We set the
address family to AF_UNSPEC, but the caller can use the same technique that we described
with Figure 11.14 to force a particular protocol (IPv4 or IPv6).

We do not set the SO_REUSEADDR socket option for the UDP socket because this socket
option can allow multiple sockets to bind the same UDP port on hosts that support
multicasting, as we described in Section 7.5. Since there is nothing like TCP's TIME_WAIT
state for a UDP socket, there is no need to set this socket option when the server is started.

Example: Protocol-Independent Daytime Server
Figure 11.19 shows our daytime server, modified from Figure 11.14 to use UDP.

Figure 11.19 Protocol-independent UDP daytime server.

names/daytimeudpsrv2.c

 1 #include     "unp.h"

 2 #include     <time.h>

 3 int

 4 main (int argc, char **argv)

 5 {

 6     int     sockfd;

 7     ssize_t n;

 8     char     buff[MAXLINE];

 9     time_t ticks;

10     socklen_t len;

11     struct sockaddr_storage cliaddr;

12     if (argc == 2)

13         sockfd = Udp_server (NULL, argv [1] NULL);

14     else if (argc == 3)

15         sockfd = Udp_server (argv [1], argv [2], NULL);

16     else

17         err_quit ("usage: daytimeudpsrv [ <host> ] <service or port>");

18     for ( ; ; ) {

19         len = sizeof (cliaddr) ;

20         n = Recvfrom (sockfd, buff, MAXLINE, 0, (SA *) &cliaddr, &len);

21         printf ("datagram from %s\n", Sock_ntop ((SA *) &cliaddr, len));

22         ticks = time (NULL) ;

23         snprintf (buff, sizeof (buff), "%.24s\r\n", ctime (&ticks) ) ;

24         Sendto (sockfd, buff, strlen (buff), 0, (SA *) &cliaddr, len) ;

25     }

26 }

[ Team LiB ]

Page 409

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

11.17 getnameinfo Function
This function is the complement of getaddrinfo: It takes a socket address and returns a
character string describing the host and another character string describing the service.
This function provides this information in a protocol-independent fashion; that is, the caller
does not care what type of protocol address is contained in the socket address structure, as
that detail is handled by the function.

#include <netdb.h>

int getnameinfo (const struct sockaddr *sockaddr, socklen_t addrlen, char *host,
socklen_t hostlen, char *serv, socklen_t servlen, int flags) ;

Returns: 0 if OK, nonzero on error (see Figure 11.7)

sockaddr points to the socket address structure containing the protocol address to be
converted into a human-readable string, and addrlen is the length of this structure. This
structure and its length are normally returned by accept, recvfrom, getsockname, or
getpeername.

The caller allocates space for the two human-readable strings: host and hostlen specify the
host string, and serv and servlen specify the service string. If the caller does not want the
host string returned, a hostlen of 0 is specified. Similarly, a servlen of 0 specifies not to
return information on the service.

The difference between sock_ntop and getnameinfo is that the former does not involve the
DNS and just returns a printable version of the IP address and port number. The latter
normally tries to obtain a name for both the host and service.

Figure 11.20 shows the six flags that can be specified to change the operation of
getnameinfo.

Figure 11.20. flags for getnameinfo.

NI_DGRAM should be specified when the caller knows it is dealing with a datagram socket.
The reason is that given only the IP address and port number in the socket address
structure, getnameinfo cannot determine the protocol (TCP or UDP). There are a few port
numbers that are used for one service with TCP and a completely different service with
UDP. An example is port 514, which is the rsh service with TCP, but the syslog service
with UDP.

NI_NAMEREQD causes an error to be returned if the hostname cannot be resolved using the
DNS. This can be used by servers that require the client's IP address to be mapped into a
hostname. These servers then take this returned hostname and call getaddrinfo, and then
verify that one of the returned addresses is the address in the socket address structure.

NI_NOFQDN causes the returned hostname to be truncated at the first period. For example,
if the IP address in the socket address structure was 192.168.42.2, gethostbyaddr would
return a name of aix.unpbook.com. But if this flag was specified to getnameinfo, it would

Page 410

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


return the hostname as just aix.

NI_NUMERICHOST tells getnameinfo not to call the DNS (which can take time). Instead, the
numeric representation of the IP address is returned as a string, probably by calling 
inet_ntop. Similarly, NI_NUMERICSERV specifies that the decimal port number is to be
returned as a string instead of looking up the service name, and NI_NUMERICSCOPE specifies
that the numeric form of the scope identifier is to be returned instead of its name. Servers
should normally specify NI_NUMERICSERV because the client port numbers typically have no
associated service name they are ephemeral ports.

The logical OR of multiple flags can be specified if they make sense together (e.g., 
NI_DGRAM and NI_NUMERICHOST).

[ Team LiB ]

Page 411

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

11.18 Re-entrant Functions
The gethostbyname function from Section 11.3 presents an interesting problem that we
have not yet examined in the text: It is not re-entrant. We will encounter this problem in
general when we deal with threads in Chapter 26, but it is interesting to examine the
problem now (without having to deal with the concept of threads) and to see how to fix it.

First, let us look at how the function works. If we look at its source code (which is easy
since the source code for the entire BIND release is publicly available), we see that one file
contains both gethostbyname and gethostbyaddr, and the file has the following general
outline:

static struct hostent host ;     /* result stored here */

struct hostent *

gethostbyname (const char *hostname)

{

     return (gethostbyname2 (hostname, family));

}

struct hostent *

gethostbyname2 (const char *hostname, int family)

{

    /* call DNS functions for A or AAAA query */

    /* fill in host structure */

    return (&host) ;

}

struct hostent *

gethostbyaddr (const char *addr, socklen_t len, int family)

{

    /* call DNS functions for PTR query in in-addr.arpa domain */

    /* fill in host structure */

    return (&host);

}

We highlight the static storage class specifier of the result structure because that is the
basic problem. The fact that these three functions share a single host variable presents yet
another problem that we will discuss in Exercise 11.1. (gethostbyname2 was introduced
with the IPv6 support in BIND 4.9.4. It has since been deprecated; see Section 11.20 for
more detail. We will ignore the fact that gethostbyname2 is involved when we call
gethostbyname, as that doesn't affect this discussion.)

The re-entrancy problem can occur in a normal Unix process that calls gethostbyname or
gethostbyaddr from both the main flow of control and from a signal handler. When the
signal handler is called (say it is a SIGALRM signal that is generated once per second), the
main flow of control of the process is temporarily stopped and the signal handling function
is called. Consider the following:

Page 412

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


main ()

{

     struct hostent *hptr;

     ...

     signal (SIGALRM, sig_alrm);

     ...

     hptr = gethostbyname ( ... ) ;

     ...

}

void

sig_alrm (int signo)

{

    struct hostent *hptr;

    ...

    hptr = gethostbyname ( ... ) ;

    ...

}

If the main flow of control is in the middle of gethostbyname when it is temporarily stopped
(say the function has filled in the host variable and is about to return), and the signal
handler then calls gethostbyname, since only one copy of the variable host exists in the
process, it is reused. This overwrites the values that were calculated for the call from the
main flow of control with the values calculated for the call from the signal handler.

If we look at the name and address conversion functions presented in this chapter, along
with the inet_XXX functions from Chapter 4, we note the following:

 Historically, gethostbyname, gethostbyaddr, getservbyname, and get servbyport
are not re-entrant because all return a pointer to a static structure.

Some implementations that support threads (Solaris 2.x) provide re-entrant
versions of these four functions with names ending with the_r suffix, which we will
describe in the next section.

Alternately, some implementations that support threads (HP-UX 10.30 and later)
provide re-entrant versions of these functions using thread-specific data (Section
26.5).

 inet_pton and inet_ntop are always re-entrant.

 Historically, inet_ntoa is not re-entrant, but some implementations that support
threads provide a re-entrant version that uses thread-specific data.

 getaddrinfo is re-entrant only if it calls re-entrant functions itself; that is, if it calls
re-entrant versions of gethostbyname for the hostname and getservbyname for the
service name. One reason that all the memory for the results is dynamically
allocated is to allow it to be re-entrant.

 getnameinfo is re-entrant only if it calls re-entrant functions itself; that is, if it calls
re-entrant versions of gethostbyaddr to obtain the hostname and getservbyport to
obtain the service name. Notice that both result strings (for the hostname and the
service name) are allocated by the caller to allow this reentrancy.

A similar problem occurs with the variable errno. Historically, there has been a single copy
of this integer variable per process. If a process makes a system call that returns an error,
an integer error code is stored in this variable. For example, when the function named 
close in the standard C library is called, it might execute something like the following
pseudocode:

Page 413

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


 Put the argument to the system call (an integer descriptor) into a register

 Put a value in another register indicating the close system call is being called

 Invoke the system call (switch to the kernel with a special instruction)

 Test the value of a register to see if an error occurred

 If no error, return (0)

 Store the value of some other register into errno

 return (-1)

First, notice that if an error does not occur, the value of errno is not changed. That is why
we cannot look at the value of errno unless we know that an error has occurred (normally
indicated by the function returning -1).

Assume a program tests the return value of the close function and then prints the value
of errno if an error occurred, as in the following:

if (close (fd) < 0) {

    fprintf (stderr, "close error, errno = %d\n", errno)

    exit (1) ;

}

There is a small window of time between the storing of the error code into errno when the
system call returns and the printing of this value by the program, during which another
thread of execution within this process (i.e., a signal handler) can change the value of 
errno. For example, if, when the signal handler is called, the main flow of control is
between close and fprintf and the signal handler calls some other system call that
returns an error (say write), then the errno value stored from the write system call
overwrites the value stored by the close system call.

In looking at these two problems with regard to signal handlers, one solution to the
problem with gethostbyname (returning a pointer to a static variable) is to not call
nonre-entrant functions from a signal handler. The problem with errno (a single global
variable that can be changed by the signal handler) can be avoided by coding the signal
handler to save and restore the value of errno in the signal handler as follows:

void

sig_alrm(int signo)

{

     int errno_save;

     errno_save = errno;          /* save its value on entry *

     if (write( ... ) != nbytes)

         fprintf (stderr, "write error, errno = %d\n", errno);

     errno = errno_save;          /* restore its value on return */

}

In this example code, we also call fprintf, a standard I/O function, from the signal
handler. This is yet another re-entrancy problem because many versions of the standard
I/O library are nonre-entrant: Standard I/O functions should not be called from signal
handlers.

Page 414

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


We will revisit this problem of re-entrancy in Chapter 26 and we will see how threads
handle the problem of the errno variable. The next section describes some reentrant
versions of the hostname functions.

[ Team LiB ]

Page 415

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

11.19 gethostbyname_r and gethostbyaddr_r Functions
There are two ways to make a nonre-entrant function such as gethostbyname re-entrant.

1. Instead of filling in and returning a static structure, the caller allocates the structure
and the re-entrant function fills in the caller's structure. This is the technique used
in going from the nonre-entrant gethostbyname to the re-entrant gethostbyname_r.
But, this solution gets more complicated because not only must the caller provide
the hostent structure to fill in, but this structure also points to other information:
the canonical name, the array of alias pointers, the alias strings, the array of
address pointers, and the addresses (e.g., Figure 11.2). The caller must provide one
large buffer that is used for this additional information and the hostent structure
that is filled in then contains numerous pointers into this other buffer. This adds at
least three arguments to the function: a pointer to the hostent structure to fill in, a
pointer to the buffer to use for all the other information, and the size of this buffer.
A fourth additional argument is also required: a pointer to an integer in which an
error code can be stored, since the global integer h_errno can no longer be used.
(The global integer h_errno presents the same re-entrancy problem that we
described with errno.)

This technique is also used by getnameinfo and inet_ntop.

2. The re-entrant function calls malloc and dynamically allocates the memory. This is
the technique used by getaddrinfo. The problem with this approach is that the
application calling this function must also call freeaddrinfo to free the dynamic
memory. If the free function is not called, a memory leak occurs: Each time the
process calls the function that allocates the memory, the memory use of the process
increases. If the process runs for a long time (a common trait of network servers),
the memory usage just grows and grows over time.

We will now discuss the Solaris 2.x re-entrant functions for name-to-address and
address-to-name resolution.

#include <netdb.h>

struct hostent *gethostbyname_r (const char *hostname, struct hostent *result,
char *buf, int buflen, int *h_errnop) ;

struct hostent *gethostbyaddr_r (const char *addr, int len, int type, struct
hostent *result, char *buf, int buflen, int *h_errnop) ;

Both return: non-null pointer if OK, NULL on error

Four additional arguments are required for each function. result is a hostent structure
allocated by the caller. It is filled in by the function. On success, this pointer is also the
return value of the function.

buf is a buffer allocated by the caller and buflen is its size. This buffer will contain the
c onical hostname, the alias pointers, the alias strings, the address pointers, and the
actual addresses. All the pointers in the structure pointed to by result point into this buffer.
How big should this buffer be? Unfortunately, all that most man pages say is something
vague like, "The buffer must be large enough to hold all of the data associated with the
host entry." Current implementations of gethostbyname can return up to 35 alias pointers
and 35 address pointers, and internally use an 8192-byte buffer to hold alias names and
addresses. So, a buffer size of 8192 bytes should be adequate.

Page 416

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


If an error occurs, the error code is returned through the h_errnop pointer, not through the
global h_errno.

Unfortunately, this problem of re-entrancy is even worse than it appears. First, there is no
standard regarding re-entrancy and gethostbyname and gethostbyaddr. The POSIX
specification says that gethostbyname and gethostbyaddr need not be re-entrant. Unix 98
just says that these two functions need not be thread-safe.

Second, there is no standard for the _r functions. What we have shown in this section (for
example purposes) are two of the _r functions provided by Solaris 2.x. Linux provides
similar _r functions, except that instead of returning the hostent as the return value of the
function, the hostent is returned using a value-result parameter as the next to last
function argument. It returns the success of the lookup as the return value from the
function as well as in the h_errno argument. Digital Unix 4.0 and HP-UX 10.30 have
versions of these functions with different arguments. The first two arguments for 
gethostbyname_r are the same as the Solaris version, but the remaining three arguments
for the Solaris version are combined into a new hostent_data structure (which must be
allocated by the caller), and a pointer to this structure is the third and final argument. The
normal functions gethostbyname and gethostbyaddr in Digital Unix 4.0 and HP-UX 10.30
are re-entrant by using thread-specific data (Section 26.5). An interesting history of the
development of the Solaris 2.x _r functions is in [Maslen 1997].

Lastly, while a re-entrant version of gethostbyname may provide safety from different
threads calling it at the same time, this says nothing about the re-entrancy of the
underlying resolver functions.

[ Team LiB ]

Page 417

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

11.20 Obsolete IPv6 Address Lookup Functions
While IPv6 was being developed, the API to request the lookup of an IPv6 address went
through several iterations. The resulting API was complicated and not sufficiently flexible,
so it was deprecated in RFC 2553 [Gilligan et al. 1999]. RFC 2553 introduced its own new
functions, which were finally simply replaced by getaddrinfo and getnameinfo in RFC
3493 [Gilligan et al. 2003]. This section briefly describes some of the old API to assist in
the conversion of programs using the old API.

The RES_USE_INET6 Constant
Since gethostbyname doesn't have an argument to specify what address family is of
interest (like getaddrinfo's hints.ai_family struct entry), the first revision of the API
used the RES_USE_INET6 constant, which had to be added to the resolver flags using a
private, internal interface. This API was not very portable since systems that used a
different internal resolver interface had to mimic the BIND resolver interface to provide it.

Enabling RES_USE_INET6 caused gethostbyname to look up AAAA records first, and only
look up A records if a name had no AAAA records. Since the hostent structure only has one
address length field, gethostbyname could only return either IPv6 or IPv4 addresses, but
not both.

Enabling RES_USE_INET6 also caused gethostbyname2 to return IPv4 addresses as
IPv4-mapped IPv6 addresses. We will describe gethostbyname2 next.

The gethostbyname2 Function
The gethostbyname2 function adds an address family argument to gethostbyname.

#include <sys/socket.h>

#include <netdb.h>

struct hostent *gethostbyname2 (const char *name, int af) ;

Returns: non-null pointer if OK, NULL on error with h_errno set

When the af argument is AF_INET, AF_INET, gethostbyname2 behaves just like
gethostbyname, looking up and returning IPv4 addresses. When the af argument is
AF_INET6, AF_INET6, gethostbyname2 looks up and returns only AAAA records for IPv6
addresses.

The getipnodebyname Function
RFC 2553 [Gilligan et al. 1999] deprecated RES_USE_INET6 and gethostbyname2 because of
the global nature of the RES_USE_INET6 flag and the wish to provide more control over the
returned information. It introduced the getipnodebyname function to solve some of these
problems.

#include <sys/socket.h>

#include <netdb.h>

Page 418

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


#include <sys/socket.h>

struct hostent *getipnodebyname (const char *name, int af, int flags, int *
error_num) ;

Returns: non-null pointer if OK, NULL on error with error_num set

This function returns a pointer to the same hostent structure that we described with
gethostbyname. The af and flags arguments map directly to getaddrinfo's
hints.ai_family and hints.ai_flags arguments. For thread safety, the return value is
dynamically allocated, so it must be freed with the freehostent function.

#include <netdb.h>

void freehostent (struct hostent *ptr) ;

The getipnodebyname and its matching getipnodebyaddr functions are deprecated by RFC
3493 [Gilligan et al. 2003] in favor of getaddrinfo and getnameinfo.

[ Team LiB ]

Page 419

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

11.21 Other Networking Information
Our focus in this chapter has been on hostnames and IP addresses and service names and
their port numbers. But looking at the bigger picture, there are four types of information
(related to networking) that an application might want to look up: hosts, networks,
protocols, and services. Most lookups are for hosts (gethostbyname and geth tbyaddr),
with a smaller number for services (getservbyname and getservbyaddr), and an even
smaller number for networks and protocols.

All four types of information can be stored in a file and three functions are defined for each
of the four types:

1. A getXXXent function that reads the next entry in the file, opening the file if
necessary.

2. A setXXXent function that opens (if not already open) and rewinds the file.

3. An endXXXent function that closes the file.

Each of the four types of information defines its own structure, and the following definitions
are provided by including the <netdb.h> header: the hostent, netent, protoent, and
servent structures.

In addition to the three get, set, and end functions, which allow sequential processing of
the file, each of the four types of information provides some keyed lookup functions. These
functions go through the file sequentially (calling the getXXXent function to read each
line), but instead of returning each line to the caller, these functions look for an entry that
matches an argument. These keyed lookup functions have names of the form getXXXbyYYY.
For example, the two keyed lookup functions for the host information are gethostbyname
(look for an entry that matches a hostname) and gethostbyaddr (look for an entry that
matches an IP address). Figure 11.21 summarizes this information.

Figure 11.21. Four types of network-related information.

How does this apply when the DNS is being used? First, only the host and network
information is available through the DNS. The protocol and service information is always
read from the corresponding file. We mentioned earlier in this chapter (with Figure 11.1)
that different implementations employ different ways for the administrator to specify
whether to use the DNS or a file for the host and network information.

Second, if the DNS is being used for the host and network information, then only the keyed
lookup functions make sense. You cannot, for example, use gethostent and expect to
sequence through all entries in the DNS! If gethostent is called, it reads only the
/etc/hosts file and avoids the DNS.

Although the network information can be made available through the DNS, few people set
this up. [Albitz and Liu 2001] describes this feature. Typically, however, administrators
build and maintain an /etc/networks file and it is used instead of the DNS. The netstat
program with the -i option uses this file, if present, and prints the name for each network.
However, classless addressing (Appendix A) makes these functions fairly useless, and
these functions do not support IPv6 at all, so new applications should avoid using network
names.

Page 420

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Page 421

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

11.22 Summary
The set of functions that an application calls to convert a hostname into an IP address and
vice versa is called the resolver. The two functions gethostbyname and gethostbyaddr are
the historical entry points. With the move to IPv6 and threaded programming models, the 
getaddrinfo and getnameinfo functions are more useful, with the ability to resolve IPv6
addresses and their thread-safe calling conventions.

The commonly used function dealing with service names and port numbers is 
getservbyname, which takes a service name and returns a structure containing the port
number. This mapping is normally contained in a text file. Additional functions exist to
map protocol names into protocol numbers and network names into network numbers, but
these are rarely used.

Another alternative that we have not mentioned is calling the resolver functions directly,
instead of using gethostbyname and gethostbyaddr. One program that invokes the DNS
this way is sendmail, which searches for an MX record, something that the gethostby XXX
functions cannot do. The resolver functions have names that begin with res_; the res_init
function is an example. A description of these functions and an example program that calls
them can be found in Chapter 15 of [Albitz and Liu 2001] and typing man resolver should
display the man pages for these functions.

[ Team LiB ]

Page 422

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Exercises
11.1 Modify the program in Figure 11.3 to call gethostbyaddr for each

returned address, and then print the h_name that is returned. First run
the program specifying a hostname with just one IP address and then
run the program specifying a hostname that has more than one IP
address. What happens?

11.2 Fix the problem shown in the preceding exercise.

11.3 Run Figure 11.4 specifying a service name of chargen.

11.4 Run Figure 11.4 specifying a dotted-decimal IP address as the
hostname. Does your resolver allow this? Modify Figure 11.4 to allow a
dotted-decimal IP address as the hostname and a decimal port
number string as the service name. In testing the IP address for either
a dotted-decimal string or a hostname, in what order should these two
tests be performed?

11.5 Modify Figure 11.4 to work with either IPv4 or IPv6.

11.6 Modify Figure 8.9 to query the DNS and compare the returned IP
address with all the destination host's IP addresses. That is, call 
gethostbyaddr using the IP address returned by recvfrom, followed
by gethostbyname to find all the IP addresses for the host.

11.7 In Figure 11.12, the caller must pass a pointer to an integer to obtain
the size of the protocol address. If the caller does not do this (i.e.,
passes a null pointer as the final argument), how can the caller still
obtain the actual size of the protocol's addresses?

11.8 Modify Figure 11.14 to call getnameinfo instead of sock_ntop. What
flags should you pass to getnameinfo?

11.9 In Section 7.5, we discussed port stealing with the SO_REUSEADDR
socket option. To see how this works, build the protocol-independent
UDP daytime server in Figure 11.19. Start one instance of the server in
one window, binding the wildcard address and some port of your
choosing. Start a client in another window and verify that this server is
handling the client (note the printf in the server). Next, start another
instance of the server in another window, this time binding one of the
host's unicast addresses and the same port as the first server. What
problem do you immediately encounter? Fix this problem and restart
this second server. Start a client, send a datagram, and verify that the
second server has stolen the port from the first server. If possible,
start the second server again from a different login account on the first
server to see if the stealing still succeeds. Some vendors will not allow
the second bind unless the user ID is the same as that of the process
that has already bound the port.

Page 423

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


11.10 At the end of Section 2.12, we showed two telnet examples: to the
daytime server and to the echo server. Knowing that a client goes
through the two steps gethostbyname and connect, which lines output
by the client indicate which steps?

11.11
getnameinfo can take a long time (up to 80 seconds) to return an
error if a hostname cannot be found for an IP address. Write a new
function named getnameinfo_timeo that takes an additional integer
argument specifying the maximum number of seconds to wait for a
reply. If the timer expires and the NI_NAMEREQD flag is not specified,
just call inet_ntop and return an address string.

[ Team LiB ]

Page 424

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Part 3: Advanced Sockets
Chapter 12.?IPv4 and IPv6 Interoperability

Chapter 13.?Daemon Processes and the inetd Superserver

Chapter 14.?Advanced I/O Functions

Chapter 15.?Unix Domain Protocols

Chapter 16.?Nonblocking I/O

Chapter 17.?ioctl Operations

Chapter 18.?Routing Sockets

Chapter 19.?Key Management Sockets

Chapter 20.?Broadcasting

Chapter 21.?Multicasting

Chapter 22.?Advanced UDP Sockets

Chapter 23.?Advanced SCTP Sockets

Chapter 24.?Out-of-Band Data

Chapter 25.?Signal-Driven I/O

Chapter 26.?Threads

Chapter 27.?IP Options

Chapter 28.?Raw Sockets

Chapter 29.?Datalink Access

Chapter 30.?Client/Server Design Alternatives

Chapter 31.?Streams

[ Team LiB ]

Page 425

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Chapter 12. IPv4 and IPv6 Interoperability
Section 12.1.?Introduction

Section 12.2.?IPv4 Client, IPv6 Server

Section 12.3.?IPv6 Client, IPv4 Server

Section 12.4.?IPv6 Address-Testing Macros

Section 12.5.?Source Code Portability

Section 12.6.?Summary

Exercises

[ Team LiB ]

Page 426

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

12.1 Introduction
Over the coming years, there will probably be a gradual transition of the Internet from IPv4
to IPv6. During this transition phase, it is important that existing IPv4 applications
continue to work with newer IPv6 applications. For example, a vendor cannot provide a 
telnet client that works only with IPv6 telnet servers but must provide one that works
with IPv4 servers and one that works with IPv6 servers. Better yet would be one IPv6 
telnet client that can work with both IPv4 and IPv6 servers, along with one telnet server
that can work with both IPv4 and IPv6 clients. We will see how this is done in this chapter.

We assume throughout this chapter that the hosts are running dual stacks, that is, both an
IPv4 protocol stack and an IPv6 protocol stack. Our example in Figure 2.1 is a dual-stack
host. Hosts and routers will probably run like this for many years into the transition to
IPv6. At some point, many systems will be able to turn off their IPv4 stack, but only time
will tell when (and if) that will occur.

In this chapter, we will discuss how IPv4 applications and IPv6 applications can
communicate with each other. There are four combinations of clients and servers using
either IPv4 or IPv6 and we show these in Figure 12.1.

Figure 12.1. Combinations of clients and servers using IPv4 or IPv6.

We will not say much more about the two scenarios where the client and server use the
same protocol. The interesting cases are when the client and server use different protocols.

[ Team LiB ]

Page 427

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

12.2 IPv4 Client, IPv6 Server
A general property of a dual-stack host is that IPv6 servers can handle both IPv4 and IPv6
clients. This is done using IPv4-mapped IPv6 addresses (Figure A.10). Figure 12.2 shows
an example of this.

Figure 12.2. IPv6 server on dual-stack host serving IPv4 and IPv6
clients.

We have an IPv4 client and an IPv6 client on the left. The server on the right is written
using IPv6 and it is running on a dual-stack host. The server has created an IPv6 listening
TCP socket that is bound to the IPv6 wildcard address and TCP port 9999.

We assume the clients and server are on the same Ethernet. They could also be connected
by routers, as long as all the routers support IPv4 and IPv6, but that adds nothing to this
discussion. Section B.3 discusses a different case where IPv6 clients and servers are
connected by IPv4-only routers.

We assume both clients send SYN segments to establish a connection with the server. The
IPv4 client host will send the SYN in an IPv4 datagram and the IPv6 client host will send
the SYN in an IPv6 datagram. The TCP segment from the IPv4 client appears on the wire as
an Ethernet header followed by an IPv4 header, a TCP header, and the TCP data. The
Ethernet header contains a type field of 0x0800, which identifies the frame as an IPv4
frame. The TCP header contains the destination port of 9999. (Appendix A talks more about
the formats and contents of these headers.) The destination IP address in the IPv4 header,
which we do not show, would be 206.62.226.42.

The TCP segment from the IPv6 client appears on the wire as an Ethernet header followed
by an IPv6 header, a TCP header, and the TCP data. The Ethernet header contains a type
field of 0x86dd, which identifies the frame as an IPv6 frame. The TCP header has the same
format as the TCP header in the IPv4 packet and contains the destination port of 9999. The
destination IP address in the IPv6 header, which we do not show, would be 
5f1b:df00:ce3e:e200:20:800:2b37:6426.

The receiving datalink looks at the Ethernet type field and passes each frame to the
appropriate IP module. The IPv4 module, probably in conjunction with the TCP module,
detects that the destination socket is an IPv6 socket, and the source IPv4 address in the
IPv4 header is converted into the equivalent IPv4-mapped IPv6 address. That mapped
address is returned to the IPv6 socket as the client's IPv6 address when accept returns to
the server with the IPv4 client connection. All remaining datagrams for this connection are

Page 428

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


IPv4 datagrams.

When accept returns to the server with the IPv6 client connection, the client's IPv6
address does not change from whatever source address appears in the IPv6 header. All
remaining datagrams for this connection are IPv6 datagrams.

We can summarize the steps that allow an IPv4 TCP client to communicate with an IPv6
server as follows:

1. The IPv6 server starts, creates an IPv6 listening socket, and we assume it binds the
wildcard address to the socket.

2. The IPv4 client calls gethostbyname and finds an A record for the server. The server
host will have both an A record and a AAAA record since it supports both protocols,
but the IPv4 client asks for only an A record.

3. The client calls connect and the client's host sends an IPv4 SYN to the server.

4. The server host receives the IPv4 SYN directed to the IPv6 listening socket, sets a
flag indicating that this connection is using IPv4-mapped IPv6 addresses, and
responds with an IPv4 SYN/ACK. When the connection is established, the address
returned to the server by accept is the IPv4-mapped IPv6 address.

5. When the server host sends to the IPv4-mapped IPv6 address, its IP stack
generates IPv4 datagrams to the IPv4 address. Therefore, all communication
between this client and server takes place using IPv4 datagrams.

6. Unless the server explicitly checks whether this IPv6 address is an IPv4-mapped
IPv6 address (using the IN6_IS_ADDR_V4MAPPED macro described in Section 12.4),
the server never knows that it is communicating with an IPv4 client. The
dual-protocol stack handles this detail. Similarly, the IPv4 client has no idea that it
is communicating with an IPv6 server.

An underlying assumption in this scenario is that the dual-stack server host has both an
IPv4 address and an IPv6 address. This will work until all the IPv4 addresses are taken.

The scenario is similar for an IPv6 UDP server, but the address format can change for each
datagram. For example, if the IPv6 server receives a datagram from an IPv4 client, the
address returned by recvfrom will be the client's IPv4-mapped IPv6 address. The server
responds to this client's request by calling sendto with the IPv4-mapped IPv6 address as
the destination. This address format tells the kernel to send an IPv4 datagram to the
client. But the next datagram received for the server could be an IPv6 datagram, and 
recvfrom will return the IPv6 address. If the server responds, the kernel will generate an
IPv6 datagram.

Figure 12.3 summarizes how a received IPv4 or IPv6 datagram is processed, depending on
the type of the receiving socket, for TCP and UDP, assuming a dual-stack host.

Figure 12.3. Processing of received IPv4 or IPv6 datagrams,
depending on type of receiving socket.

Page 429

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


 If an IPv4 datagram is received for an IPv4 socket, nothing special is done. These
are the two arrows labeled "IPv4" in the figure: one to TCP and one to UDP. IPv4
datagrams are exchanged between the client and server.

 If an IPv6 datagram is received for an IPv6 socket, nothing special is done. These
are the two arrows labeled "IPv6" in the figure: one to TCP and one to UDP. IPv6
datagrams are exchanged between the client and server.

 When an IPv4 datagram is received for an IPv6 socket, the kernel returns the
corresponding IPv4-mapped IPv6 address as the address returned by accept (TCP)
or recvfrom (UDP). These are the two dashed arrows in the figure. This mapping is
possible because an IPv4 address can always be represented as an IPv6 address.
IPv4 datagrams are exchanged between the client and server.

 The converse of the previous bullet is false: In general, an IPv6 address cannot be
represented as an IPv4 address; therefore, there are no arrows from the IPv6
protocol box to the two IPv4 sockets

Most dual-stack hosts should use the following rules in dealing with listening sockets:

1. A listening IPv4 socket can accept incoming connections from only IPv4 clients.

2. If a server has a listening IPv6 socket that has bound the wildcard address and the 
IPV6_V6ONLY socket option (Section 7.8) is not set, that socket can accept incoming
connections from either IPv4 clients or IPv6 clients. For a connection from an IPv4
client, the server's local address for the connection will be the corresponding
IPv4-mapped IPv6 address.

3. If a server has a listening IPv6 socket that has bound an IPv6 address other than an
IPv4-mapped IPv6 address, or has bound the wildcard address but has set the 
IPv6_V6ONLY socket option (Section 7.8), that socket can accept incoming
connections from IPv6 clients only.

[ Team LiB ]

Page 430

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

12.3 IPv6 Client, IPv4 Server
We now swap the protocols used by the client and server from the example in the previous
section. First consider an IPv6 TCP client running on a dual-stack host.

1. An IPv4 server starts on an IPv4-only host and creates an IPv4 listening socket.

2. The IPv6 client starts and calls getaddrinfo asking for only IPv6 addresses (it
requests the AF_INET6 address family and sets the AI_V4MAPPED flag in its hints
structure). Since the IPv4-only server host has only A records, we see from Figure
11.8 that an IPV4-mapped IPv6 address is returned to the client.

3. The IPv6 client calls connect with the IPv4-mapped IPv6 address in the IPv6 socket
address structure. The kernel detects the mapped address and automatically sends
an IPv4 SYN to the server.

4. The server responds with an IPv4 SYN/ACK, and the connection is established using
IPv4 datagrams.

We can summarize this scenario in Figure 12.4.

Figure 12.4. Processing of client requests, depending on address type
and socket type.

 If an IPv4 TCP client calls connect specifying an IPv4 address, or if an IPv4 UDP
client calls sendto specifying an IPv4 address, nothing special is done. These are
the two arrows labeled "IPv4" in the figure.

 If an IPv6 TCP client calls connect specifying an IPv6 address, or if an IPv6 UDP
client calls sendto specifying an IPv6 address, nothing special is done. These are
the two arrows labeled "IPv6" in the figure.

 If an IPv6 TCP client specifies an IPv4-mapped IPv6 address to connect or if an
IPv6 UDP client specifies an IPv4-mapped IPv6 address to sendto, the kernel

Page 431

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


detects the mapped address and causes an IPv4 datagram to be sent instead of an
IPv6 datagram. These are the two dashed arrows in the figure.

 An IPv4 client cannot specify an IPv6 address to either connect or sendto because a
16-byte IPv6 address does not fit in the 4-byte in_addr structure within the IPv4
sockaddr_in structure. Therefore, there are no arrows from the IPv4 sockets to the
IPv6 protocol box in the figure.

In the previous section (an IPv4 datagram arriving for an IPv6 server socket), the
conversion of the received address to the IPv4-mapped IPv6 address is done by the kernel
and returned transparently to the application by accept or recvfrom. In this section (an
IPv4 datagram needing to be sent on an IPv6 socket), the conversion of the IPv4 address
to the IPv4-mapped IPv6 address is done by the resolver according to the rules in Figure
11.8, and the mapped address is then passed transparently by the application to connect
or sendto.

Summary of Interoperability
Figure 12.5 summarizes this section and the previous section, plus the combinations of
clients and servers.

Figure 12.5. Summary of interoperability between IPv4 and IPv6
clients and servers.

Each box contains "IPv4" or "IPv6" if the combination is okay, indicating which protocol is
used, or "(no)" if the combination is invalid. The third column on the final row is marked
with an asterisk because interoperability depends on the address chosen by the client.
Choosing the AAAA record and sending an IPv6 datagram will not work. But choosing the A
record, which is returned to the client as an IPv4-mapped IPv6 address, causes an IPv4
datagram to be sent, which will work. By looping through all adresses that getaddrinfo
returns, as shown in Figure 11.4, we can ensure that we will (perhaps after some timeouts)
try the IPv4-mapped IPv6 address.

Although it appears that five entries in the table will not interoperate, in the real world for
the foreseeable future, most implementations of IPv6 will be on dual-stack hosts and will
not be IPv6-only implementations. If we therefore remove the second row and the second
column, all of the "(no)" entries disappear and the only problem is the entry with the
asterisk.

[ Team LiB ]

Page 432

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

12.4 IPv6 Address-Testing Macros
There is a small class of IPv6 applications that must know whether they are talking to an
IPv4 peer. These applications need to know if the peer's address is an IPv4-mapped IPv6
address. The following 12 macros are defined to test an IPv6 address for certain properties.

#include <netinet/in.h>

int IN6_IS_ADDR_UNSPECIFIED(const struct in6_addr *aptr);

int IN6_IS_ADDR_LOOPBACK(const struct in6_addr *aptr);

int IN6_IS_ADDR_MULTICAST(const struct in6_addr *aptr);

int IN6_IS_ADDR_LINKLOCAL(const struct in6_addr *aptr);

int IN6_IS_ADDR_SITELOCAL(const struct in6_addr *aptr);

int IN6_IS_ADDR_V4MAPPED(const struct in6_addr *aptr);

int IN6_IS_ADDR_V4COMPAT(const struct in6_addr *aptr);

int IN6_IS_ADDR_MC_NODELOCAL(const struct in6_addr *aptr);

int IN6_IS_ADDR_MC_LINKLOCAL(const struct in6_addr *aptr);

int IN6_IS_ADDR_MC_SITELOCAL(const struct in6_addr *aptr);

int IN6_IS_ADDR_MC_ORGLOCAL(const struct in6_addr *aptr);

int IN6_IS_ADDR_MC_GLOBAL(const struct in6_addr *aptr);

All return: nonzero if IPv6 address is of specified type, zero otherwise

The first seven macros test the basic type of IPv6 address. We show these various address
types in Section A.5. The final five macros test the scope of an IPv6 multicast address (
Section 21.2).

IPv4-compatible addresses are used by a transition mechanism that has fallen out of favor.
You're not likely to actually see this type of address or need to test for it.

An IPv6 client could call the IN6_IS_ADDR_V4MAPPED macro to test the IPv6 address
returned by the resolver. An IPv6 server could call this macro to test the IPv6 address
returned by accept or recvfrom.

As an example of an application that needs this macro, consider FTP and its PORT
command. If we start an FTP client, log in to an FTP server, and issue an FTP dir
command, the FTP client sends a PORT command to the FTP server across the control
connection. This tells the server the client's IP address and port, to which the server then
creates a data connection. (Chapter 27 of TCPv1 contains all the details of the FTP
application protocol.) But, an IPv6 FTP client must know whether the server is an IPv4

Page 433

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


server or an IPv6 server, because the former requires a command of the form PORT a1,a2,
a3,a4,p1,p2 where the first four numbers (each between 0 and 255) form the 4-byte IPv4
address and the last two numbers form the 2-byte port number. An IPv6 server, however,
requires an EPRT command (RFC 2428 [Allman, Ostermann, and Metz 1998]), containing
an address family, text format address, and text format port. Exercise 12.1 gives an
example of IPv4 and IPv6 FTP protocol behavior.

[ Team LiB ]

Page 434

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

12.5 Source Code Portability
Most existing network applications are written assuming IPv4. sockaddr_in structures are
allocated and filled in and the calls to socket specify AF_INET as the first argument. We
saw in the conversion from Figure 1.5 to Figure 1.6 that these IPv4 applications could be
converted to use IPv6 without too much effort. Many of the changes that we showed could
be done automatically using some editing scripts. Programs that are more dependent on
IPv4, using features such as multicasting, IP options, or raw sockets, will take more work
to convert.

If we convert an application to use IPv6 and distribute it in source code, we now have to
worry about whether or not the recipient's system supports IPv6. The typical way to handle
this is with #ifdefs throughout the code, using IPv6 when possible (since we have seen in
this chapter that an IPv6 client can still communicate with IPv4 servers, and vice versa).
The problem with this approach is that the code becomes littered with #ifdefs very
quickly, and is harder to follow and maintain.

A better approach is to consider the move to IPv6 as a chance to make the program
protocol-independent. The first step is to remove calls to gethostbyname and
gethostbyaddr and use the getaddrinfo and getnameinfo functions that we described in
the previous chapter. This lets us deal with socket address structures as opaque objects,
referenced by a pointer and size, which is exactly what the basic socket functions do: bind,
connect, recvfrom, and so on. Our sock_XXX functions from Section 3.8 can help
manipulate these, independent of IPv4 or IPv6. Obviously these functions contain #ifdefs
to handle IPv4 and IPv6, but hiding all of this protocol dependency in a few library
functions makes our code simpler. We will develop a set of mcast_XXX functions in Section
21.7 that can make multicast applications independent of IPv4 or IPv6.

Another point to consider is what happens if we compile our source code on a system that
supports both IPv4 and IPv6, distribute either executable code or object files (but not the
source code), and someone runs our application on a system that does not support IPv6?
There is a chance that the local name server supports AAAA records and returns both AAAA
records and A records for some peer with which our application tries to connect. If our
application, which is IPv6-capable, calls socket to create an IPv6 socket, it will fail if the
host does not support IPv6. We handle this in the helper functions described in the
previous chapter by ignoring the error from socket and trying the next address on the list
returned by the name server. Assuming the peer has an A record, and that the name
server returns the A record in addition to any AAAA records, the creation of an IPv4 socket
will succeed. This is the type of functionality that belongs in a library function, and not in
the source code of every application.

To enable passing socket descriptors to programs that were IPv4-only or IPv6-only, RFC
2133 [Gilligan et al. 1997] introduced the IPV6_ADDRFORM socket option, which could return
or potentially change the address family associated with a socket. However, the semantics
were never completely described, and it was only useful in very specific cases, so it was
removed in the next revision of the API.

[ Team LiB ]

Page 435

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

12.6 Summary
An IPv6 server on a dual-stack host can service both IPv4 clients and IPv6 clients. An IPv4
client still sends IPv4 datagrams to the server, but the server's protocol stack converts the
client's address into an IPv4-mapped IPv6 address since the IPv6 server is dealing with
IPv6 socket address structures.

Similarly, an IPv6 client on a dual-stack host can communicate with an IPv4 server. The
client's resolver will return IPv4-mapped IPv6 addresses for all the server's A records, and
calling connect for one of these addresses results in the dual stack sending an IPv4 SYN
segment. Only a few special clients and servers need to know the protocol being used by
the peer (e.g., FTP) and the IN6_IS_ADDR_V4MAPPED macro can be used to see if the peer is
using IPv4.

[ Team LiB ]

Page 436

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Exercises
12.1 Start an IPv6 FTP client on a dual-stack host running IPv4 and IPv6.

Connect to an IPv4 FTP server, make sure the client is in "active" mode
(perhaps issuing the passive command to turn off "passive" mode),
issue the debug command, and then the dir command. Next, perform
the same operations, but to an IPv6 server, and compare the PORT
commands issued as a result of the dir commands.

12.2 Write a program that requires one command-line argument that is an
IPv4 dotted-decimal address. Create an IPv4 TCP socket and bind this
address to the socket along with some port, say 9999. Call listen and
then pause. Write a similar program that takes an IPv6 hex string as
the command-line argument and creates a listening IPv6 TCP socket.
Start the IPv4 program, specifying the wildcard address as the
argument. Then, go to another window and start the IPv6 program,
specifying the IPv6 wildcard address as the argument. Can you start
the IPv6 program since the IPv4 program has already bound that port?
Does the SO_REUSEADDR socket option make a difference? What if you
start the IPv6 program first, and then try to start the IPv4 program?

[ Team LiB ]

Page 437

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Chapter 13. Daemon Processes and the 
inetd Superserver

Section 13.1.?Introduction

Section 13.2.?syslogd Daemon

Section 13.3.?syslog Function

Section 13.4.?daemon_init Function

Section 13.5.?inetd Daemon

Section 13.6.?daemon_inetd Function

Section 13.7.?Summary

Exercises

[ Team LiB ]

Page 438

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

13.1 Introduction
A daemon is a process that runs in the background and is not associated with a controlling
terminal. Unix systems typically have many processes that are daemons (on the order of
20 to 50), running in the background, performing different administrative tasks.

The lack of a controlling terminal is typically a side effect of being started by a system
initialization script (e.g., at boot-time). But if a daemon is started by a user typing to a
shell prompt, it is important for the daemon to disassociate itself from the controlling
terminal to avoid any unwanted interraction with job control, terminal session
management, or simply to avoid unexpected output to the terminal from the daemon as it
runs in the background.

There are numerous ways to start a daemon:

1. During system startup, many daemons are started by the system initialization
scripts. These scripts are often in the directory /etc or in a directory whose name
begins with /etc/rc, but their location and contents are
implementation-dependent. Daemons started by these scripts begin with superuser
privileges.

A few network servers are often started from these scripts: the inetd superserver
(covered later in this chapter), a Web server, and a mail server (often sendmail).
The syslogd daemon that we will describe in Section 13.2 is normally started by
one of these scripts.

2. Many network servers are started by the inetd superserver. inetd itself is started
from one of the scripts in Step 1. inetd listens for network requests (Telnet, FTP,
etc.), and when a request arrives, it invokes the actual server (Telnet server, FTP
server, etc.).

3. The execution of programs on a regular basis is performed by the cron daemon, and
programs that it invokes run as daemons. The cron daemon itself is started in Step
1 during system startup.

4. The execution of a program at one time in the future is specified by the at
command. The cron daemon normally initiates these programs when their time
arrives, so these programs run as daemons.

5. Daemons can be started from user terminals, either in the foreground or in the
background. This is often done when testing a daemon, or restarting a daemon that
was terminated for some reason.

Since a daemon does not have a controlling terminal, it needs some way to output
messages when something happens, either normal informational messages or emergency
messages that need to be handled by an administrator. The syslog function is the
standard way to output these messages, and it sends the messages to the syslogd
daemon.

[ Team LiB ]

Page 439

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

13.2 syslogd Daemon
Unix systems normally start a daemon named syslogd from one of the system
initializations scripts, and it runs as long as the system is up. Berkeley-derived
implementations of syslogd perform the following actions on startup:

1. The configuration file, normally /etc/syslog.conf, is read, specifying what to do
with each type of log message that the daemon can receive. These messages can be
appended to a file (a special case of which is the file /dev/console, which writes the
message to the console), written to a specific user (if that user is logged in), or
forwarded to the syslogd daemon on another host.

2. A Unix domain socket is created and bound to the pathname /var/run/log (
/dev/log on some systems).

3. A UDP socket is created and bound to port 514 (the syslog service).

4. The pathname /dev/klog is opened. Any error messages from within the kernel
appear as input on this device.

The syslogd daemon runs in an infinite loop that calls select, waiting for any one of its
three descriptors (from Steps 2, 3, and 4) to be readable; it reads the log message and
does what the configuration file says to do with that message. If the daemon receives the 
SIGHUP signal, it rereads its configuration file.

We could send log messages to the syslogd daemon from our daemons by creating a Unix
domain datagram socket and sending our messages to the pathname that the daemon has
bound, but an easier interface is the syslog function that we will describe in the next
section. Alternately, we could create a UDP socket and send our log messages to the
loopback address and port 514.

Newer implementations disable the creation of the UDP socket, unless specified by the
administrator, as allowing anyone to send UDP datagrams to this port opens the system up
to denial-of-service attacks, where someone could fill up the filesystem (e.g., by filling up
log files) or cause log messages to be dropped (e.g., by overflowing syslog's socket
receive buffer).

Differences exist between the various implementations of syslogd. For example, Unix
domain sockets are used by Berkeley-derived implementations, but System V
implementations use a STREAMS log driver. Different Berkeley-derived implementations use
different pathnames for the Unix domain socket. We can ignore all these details if we use
the syslog function.

[ Team LiB ]

Page 440

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

13.3 syslog Function
Since a daemon does not have a controlling terminal, it cannot just fprintf to stderr. The
common technique for logging messages from a daemon is to call the syslog function.

#include <syslog.h>

void syslog(int priority, const char *message, ... );

Although this function was originally developed for BSD systems, it is provided by virtually
all Unix vendors today. The description of syslog in the POSIX specification is consistent
with what we describe here. RFC 3164 provides documentation of the BSD syslog protocol.

The priority argument is a combination of a level and a facility, which we show in Figures
13.1 and 13.2. Additional detail on the priority may be found in RFC 3164. The message is
like a format string to printf, with the addition of a %m specification, which is replaced with
the error message corresponding to the current value of errno. A newline can appear at the
end of the message, but is not mandatory.

Figure 13.1. level of log messages.

Figure 13.2. facility of log messages.

Log messages have a level between 0 and 7, which we show in Figure 13.1. These are
ordered values. If no level is specified by the sender, LOG_NOTICE is the default.

Log messages also contain a facility to identify the type of process sending the message.

Page 441

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


We show the different values in Figure 13.2. If no facility is specified, LOG_USER is the
default.

For example, the following call could be issued by a daemon when a call to the rename
function unexpectedly fails:

syslog(LOG_INFO|LOG_LOCAL2, "rename(%s, %s): %m", file1, file2);

The purpose of facility and level is to allow all messages from a given facility to be handled
the same in the /etc/syslog.conf file, or to allow all messages of a given level to be
handled the same. For example, the configuration file could contain the lines

kern.*           /dev/console

local7.debug     /var/log/cisco.log

to specify that all kernel messages get logged to the console and all debug messages from
the local7 facility get appended to the file /var/log/cisco.log.

When the application calls syslog the first time, it creates a Unix domain datagram socket
and then calls connect to the well-known pathname of the socket created by the syslogd
daemon (e.g., /var/run/log). This socket remains open until the process terminates.
Alternately, the process can call openlog and closelog.

#include <syslog.h>

void openlog(const char *ident, int options, int facility);

void closelog(void);

openlog can be called before the first call to syslog and closelog can be called when the
application is finished sending log messages.

ident is a string that will be prepended to each log message by syslog. Often this is the
program name.

The options argument is formed as the logical OR of one or more of the constants in Figure
13.3.

Figure 13.3. options for openlog.

Normally the Unix domain socket is not created when openlog is called. Instead, it is
opened during the first call to syslog. The LOG_NDELAY option causes the socket to be
created when openlog is called.

The facility argument to openlog specifies a default facility for any subsequent calls to
syslog that do not specify a facility. Some daemons call openlog and specify the facility
(which normally does not change for a given daemon). They then specify only the level in

Page 442

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


each call to syslog (since the level can change depending on the error).

Log messages can also be generated by the logger command. This can be used from
within shell scripts, for example, to send messages to syslogd.

[ Team LiB ]

Page 443

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

13.4 daemon_init Function
Figure 13.4 shows a function named daemon_init that we can call (normally from a server)
to daemonize the process. This function should be suitable for use on all variants of Unix,
but some offer a C library function called daemon that provides similar features. BSD offers
the daemon function, as does Linux.

Figure 13.4 daemon_init function: daemonizes the process.

daemon_init.c

 1 #include    "unp.h"

 2 #include    <syslog.h>

 3 #define MAXFD   64

 4 extern int daemon_proc;         /* defined in error.c */

 5 int

 6 daemon_init(const char *pname, int facility)

 7 {

 8     int     i;

 9     pid_t     pid;

10     if ( (pid = Fork()) < 0)

11         return (-1);

12     else if (pid)

13         _exit(0);               /* parent terminates */

14     /* child 1 continues... */

15     if (setsid() < 0)           /* become session leader */

16         return (-1);

17     Signal(SIGHUP, SIG_IGN);

18     if ( (pid = Fork()) < 0)

19         return (-1);

20     else if (pid)

21         _exit(0);               /* child 1 terminates */

22     /* child 2 continues... */

23     daemon_proc = 1;            /* for err_XXX() functions */

24     chdir("/");                 /* change working directory */

25     /* close off file descriptors */

26     for (i = 0; i < MAXFD; i++)

27         close(i);

28     /* redirect stdin, stdout, and stderr to /dev/null */

29     open("/dev/null", O_RDONLY);

30     open("/dev/null", O_RDWR);

31     open("/dev/null", O_RDWR);

32     openlog(pname, LOG_PID, facility);

Page 444

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


33     return (0);                 /* success */

34 }

fork
10 13 We first call fork and then the parent terminates, and the child continues. If the
process was started as a shell command in the foreground, when the parent terminates,
the shell thinks the command is done. This automatically runs the child process in the
background. Also, the child inherits the process group ID from the parent but gets its own
process ID. This guarantees that the child is not a process group leader, which is required
for the next call to setsid.

setsid

15 16 setsid is a POSIX function that creates a new session. (Chapter 9 of APUE talks
about process relationships and sessions in detail.) The process becomes the session leader
of the new session, becomes the process group leader of a new process group, and has no
controlling terminal.

Ignore SIGHUP and Fork Again
17 21 We ignore SIGHUP and call fork again. When this function returns, the parent is
really the first child and it terminates, leaving the second child running. The purpose of
this second fork is to guarantee that the daemon cannot automatically acquire a
controlling terminal should it open a terminal device in the future. When a session leader
without a controlling terminal opens a terminal device (that is not currently some other
session's controlling terminal), the terminal becomes the controlling terminal of the session
leader. But by calling fork a second time, we guarantee that the second child is no longer
a session leader, so it cannot acquire a controlling terminal. We must ignore SIGHUP
because when the session leader terminates (the first child), all processes in the session
(our second child) receive the SIGHUP signal.

Set Flag for Error Functions
23 We set the global daemon_proc to nonzero. This external is defined by our err_XXX
functions (Section D.3), and when its value is nonzero, this tells them to call syslog
instead of doing an fprintf to standard error. This saves us from having to go through all
our code and call one of our error functions if the server is not being run as a daemon (i.e.,
when we are testing the server), but call syslog if it is being run as a daemon.

Change Working Directory
24 We change the working directory to the root directory, although some daemons might
have a reason to change to some other directory. For example, a printer daemon might
change to the printer's spool directory, where it does all its work. Should the daemon ever
generate a core file, that file is generated in the current working directory. Another reason
to change the working directory is that the daemon could have been started in any
filesystem, and if it remains there, that filesystem cannot be unmounted (at least not
without using some potentially destructive, forceful measures).

Close any open descriptors
25 27 We close any open descriptors that are inherited from the process that executed the
daemon (normally a shell). The problem is determining the highest descriptor in use:
There is no Unix function that provides this value. There are ways to determine the
maximum number of descriptors that the process can open, but even this gets complicated
(see p. 43 of APUE) because the limit can be infinite. Our solution is to close the first 64
descriptors, even though most of these are probably not open.

Solaris provides a function called closefrom for use by daemons to solve this problem.

Page 445

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


Redirect stdin, stdout, and stderr to /dev/null
29 31 We open/dev/null for standard input, standard output, and standard error. This
guarantees that these common descriptors are open, and a read from any of these
descriptors returns 0 (EOF), and the kernel just discards anything written to them. The
reason for opening these descriptors is so that any library function called by the daemon
that assumes it can read from standard input or write to either standard output or standard
error will not fail. Such a failure is potentially dangerous. If the daemon ends up opening a
socket to a client, that socket descriptor ends up as stdout or stderr and some erroneous
call to something like perror then sends unexpected data to a client.

Use syslogd for Errors
32 Openlog is called. The first argument is from the caller and is normally the name of the
program (e.g., argv[0]). We specify that the process ID should be added to each log
message. The facility is also specified by the caller, as one of the values from Figure 13.2
or 0 if the default of LOG_USER is acceptable.

We note that since a daemon runs without a controlling terminal, it should never receive
the SIGHUP signal from the kernel. Therefore, many daemons use this signal as a
notification from the administrator that the daemon's configuration file has changed, and
the daemon should reread the file. Two other signals that a daemon should never receive
are SIGINT and SIGWINCH, so daemons can safely use these signals as another way for
administrators to indicate some change that the daemon should react to.

Example: Daytime Server as a Daemon
Figure 13.5 is a modification of our protocol-independent daytime server from Figure 11.14
that calls our daemon_init function to run as daemons.

There are only two changes: We call our daemon_init function as soon as the program
starts, and we call our err_msg function, instead of printf, to print the client's IP address
and port. Indeed, if we want our programs to be able to run as a daemon, we must avoid
calling the printf and fprintf functions and use our err_msg function instead.

Note how we check argc and issue the appropriate usage message before calling
daemon_init. This allows the user starting the daemon to get immediate feedback if the
command has the incorrect number of arguments. After calling daemon_init, all
subsequent error messages go to syslog.

If we run this program on our Linux host linux and then check the /var/log/messages file
(where we send all LOG_USER messages) after connecting from the same machine (e.g.,
localhost), we have

Jun 10 09:54:37 linux daytimetcpsrv2[24288]:

connection from 127.0.0.1.55862

(We have wrapped the one long line.) The date, time, and hostname are prefixed
automatically by the syslogd daemon.

Figure 13.5 Protocol-independent daytime server that runs as a
daemon.

inetd/daytimetcpsrv2.c

 1 #include     "unp.h"

Page 446

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


 2 #include     <time.h>

 3 int

 4 main(int argc, char **argv)

 5 {

 6     int     listenfd, connfd;

 7     socklen_t addrlen, len;

 8     struct sockaddr *cliaddr;

 9     char     buff[MAXLINE];

10     time_t ticks;

11     if (argc < 2 || argc > 3)

12         err_quit("usage: daytimetcpsrv2 [ <host> ] <service or port>");

13     daemon_init(argv[0], 0);

14     if (argc == 2)

15         listenfd = Tcp_listen(NULL, argv[1], &addrlen);

16     else

17         listenfd = Tcp_listen(argv[1], argv[2], &addrlen);

18     cliaddr = Malloc(addrlen);

19     for ( ; ; ) {

20         len = addrlen;

21         connfd = Accept(listenfd, cliaddr, &len);

22         err_msg("connection from %s", Sock_ntop(cliaddr, len));

23         ticks = time(NULL);

24         snprintf(buff, sizeof(buff), "%.24s/r/n", ctime(&ticks));

25         Write(connfd, buff, strlen(buff));

26         Close(connfd);

27     }

28 }

[ Team LiB ]

Page 447

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

13.5 inetd Daemon
On a typical Unix system, there could be many servers in existence, just waiting for a client
request to arrive. Examples are FTP, Telnet, Rlogin, TFTP, and so on. With systems before
4.3BSD, each of these services had a process associated with it. This process was started
at boot-time from the file /etc/rc, and each process did nearly identical startup tasks:
create a socket, bind the server's well-known port to the socket, wait for a connection (if
TCP) or a datagram (if UDP), and then fork. The child process serviced the client and the
parent waited for the next client request. There are two problems with this model:

1. All these daemons contained nearly identical startup code, first with respect to
socket creation, and also with respect to becoming a daemon process (similar to
our daemon_init function).

2. Each daemon took a slot in the process table, but each daemon was asleep most of
the time.

The 4.3BSD release simplified this by providing an Internet superserver: the inetd
daemon. This daemon can be used by servers that use either TCP or UDP. It does not
handle other protocols, such as Unix domain sockets. This daemon fixes the two problems
just mentioned:

1. It simplifies writing daemon processes since most of the startup details are handled
by inetd. This obviates the need for each server to call our daemon_init function.

2. It allows a single process (inetd) to be waiting for incoming client requests for
multiple services, instead of one process for each service. This reduces the total
number of processes in the system.

The inetd process establishes itself as a daemon using the techniques that we described
with our daemon_init function. It then reads and processes its configuration file, typically
/etc/inetd.conf. This file specifies the services that the superserver is to handle, and
what to do when a service request arrives. Each line contains the fields shown in Figure
13.6.

Figure 13.6. Fields in inetd.conf file.

Some sample lines are

ftp     stream  tcp  nowait  root     /usr/bin/ftpd      ftpd -1

telnet  stream  tcp  nowait  root     /usr/bin/telnetd   telnetd

login   stream  tcp  nowait  root     /usr/bin/rlogind   rlogind -s

tftp    dgram   udp  wait    nobody   /usr/bin/tftpd     tftpd -s /tftpboot

The actual name of the server is always passed as the first argument to a program when it
is execed.

Page 448

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


This figure and the sample lines are just examples. Most vendors have added their own
features to inetd. Examples are the ability to handle RPC servers, in addition to TCP and
UDP servers, and the ability to handle protocols other than TCP and UDP. Also, the
pathname to exec and the command-line arguments to the server obviously depend on the
implementation.

The wait-flag field can be a bit confusing. In general, it specifies whether the daemon
started by inetd intends to take over the listening socket associated with the service. UDP
services don't have separate listening and accepting sockets, and are virtually always
configured as wait. TCP services could be handled either way, at the discretion of the
person writing the daemon, but nowait is most common.

The interaction of IPv6 with /etc/inetd.conf depends on the vendor and special attention
to detail is required to get what you want. Some use a protocol of tcp6 or udp6 to indicate
that an IPv6 socket should be created for a service. Some allow protocol values of tcp46 or
udp46 indicate the daemon wants sockets that allow both IPv6 and IPv4 connections. These
special protocol names do not typically appear in the /etc/protocols file.

A picture of what the inetd daemon does is shown in Figure 13.7.

Figure 13.7. Steps performed by inetd.

Page 449

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


1. On startup, it reads the /etc/inetd.conf file and creates a socket of the
appropriate type (stream or datagram) for all the services specified in the file. The
maximum number of servers that inetd can handle depends on the maximum
number of descriptors that inetd can create. Each new socket is added to a
descriptor set that will be used in a call to select.

2. bind is called for the socket, specifying the port for the server and the wildcard IP
address. This TCP or UDP port number is obtained by calling getservbyname with
the service-name and protocol fields from the configuration file as arguments.

3. For TCP sockets, listen is called so that incoming connection requests are
accepted. This step is not done for datagram sockets.

4. After all the sockets are created, select is called to wait for any of the sockets to
become readable. Recall from Section 6.3 that a listening TCP socket becomes
readable when a new connection is ready to be accepted and a UDP socket becomes
readable when a datagram arrives. inetd spends most of its time blocked in this call
to select, waiting for a socket to be readable.

5. When select returns that a socket is readable, if the socket is a TCP socket and the
nowait flag is given, accept is called to accept the new connection.

6. The inetd daemon forks and the child process handles the service request. This is
similar to a standard concurrent server (Section 4.8).

The child closes all descriptors except the socket descriptor it is handling: the new
connected socket returned by accept for a TCP server or the original UDP socket.
The child calls dup2 three times, duplicating the socket onto descriptors 0, 1, and 2
(standard input, standard output, and standard error). The original socket descriptor
is then closed. By doing this, the only descriptors that are open in the child are 0, 1,
and 2. If the child reads from standard input, it is reading from the socket and
anything it writes to standard output or standard error is written to the socket. The
child calls getpwnam to get the password file entry for the login-name specified in
the configuration file. If this field is not root, then the child becomes the specified
user by executing the setgid and setuid function calls. (Since the inetd process is
executing with a user ID of 0, the child process inherits this user ID across the fork
, and is able to become any user that it chooses.)

The child process now does an exec to execute the appropriate server-program to
handle the request, passing the arguments specified in the configuration file.

7. If the socket is a stream socket, the parent process must close the connected socket
(like our standard concurrent server). The parent calls select again, waiting for the
next socket to become readable.

If we look in more detail at the descriptor handling that is taking place, Figure 13.8 shows
the descriptors in inetd when a new connection request arrives from an FTP client.

Figure 13.8. inetd descriptors when connection request arrives for TCP
port 21.

Page 450

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


The connection request is directed to TCP port 21, but a new connected socket is created
by accept.

Figure 13.9 shows the descriptors in the child, after the call to fork, after the child has
closed all the descriptors except the connected socket.

Figure 13.9. inetd descriptors in child.

The next step is for the child to duplicate the connected socket to descriptors 0, 1, and 2
and then close the connected socket. This gives us the descriptors shown in Figure 13.10.

Figure 13.10. inetd descriptors after dup2.

The child then calls exec. Recall from Section 4.7 that all descriptors normally remain open
across an exec, so the real server that is execed uses any of the descriptors, 0, 1, or 2, to
communicate with the client. These should be the only descriptors open in the server.

The scenario we have described handles the case where the configuration file specifies 
nowait for the server. This is typical for all TCP services and it means that inetd need not
wait for its child to terminate before accepting another connection for that service. If
another connection request arrives for the same service, it is returned to the parent
process as soon as it calls select again. Steps 4, 5, and 6 listed earlier are executed again,
and another child process handles this new request.

Page 451

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


Specifying the wait flag for a datagram service changes the steps done by the parent
process. This flag says that inetd must wait for its child to terminate before selecting on
this socket again. The following changes occur:

1. When fork returns in the parent, the parent saves the process ID of the child. This
allows the parent to know when this specific child process terminates, by looking at
the value returned by waitpid.

2. The parent disables the socket from future selects by using the FD_CLR macro to
turn off the bit in its descriptor set. This means that the child process takes over the
socket until it terminates.

3. When the child terminates, the parent is notified by a SIGCHLD signal, and the
parent's signal handler obtains the process ID of the terminating child. It reenables 
select for the corresponding socket by turning on the bit in its descriptor set for
this socket.

The reason that a datagram server must take over the socket until it terminates,
preventing inetd from selecting on that socket for readability (awaiting another client
datagram), is because there is only one socket for a datagram server, unlike a TCP server
that has a listening socket and one connected socket per client. If inetd did not turn off
readability for the datagram socket, and if the parent (inetd) executed before the child,
then the datagram from the client would still be in the socket receive buffer, causing 
select to return readable again, causing inetd to fork another (unneeded) child. inetd
must ignore the datagram socket until it knows that the child has read the datagram from
the socket receive queue. The way that inetd knows when that child is finished with the
socket is by receiving SIGCHLD, indicating that the child has terminated. We will show an
example of this in Section 22.7.

The five standard Internet services that we described in Figure 2.18 are handled internally
by inetd (see Exercise 13.2).

Since inetd is the process that calls accept for a TCP server, the actual server that is
invoked by inetd normally calls getpeername to obtain the IP address and port number of
the client. Recall Figure 4.18 where we showed that after a fork and an exec (which is
what inetd does), the only way for the actual server to obtain the identify of the client is to
call getpeername.

inetd is normally not used for high-volume servers, notably mail and Web servers.
sendmail, for example, is normally run as a standard concurrent server, as we described in
Section 4.8. In this mode, the process control cost for each client connection is just a fork,
while the cost for a TCP server invoked by inetd is a fork and an exec. Web servers use a
variety of techniques to minimize the process control overhead for each client connection,
as we will discuss in Chapter 30.

It is now common to find an extended Internet services daemon, called xinetd, on Linux
and other systems. xinetd provides the same basic function as inetd, but also includes a
long list of other interesting features. Those features include options for logging, accepting
or rejecting connections based on the client's address, configuring services one-per-file
instead of a single monolithic configuration, and many more. It is not described further
here since the basic superserver idea behind them both is the same.

[ Team LiB ]

Page 452

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

13.6 daemon_inetd Function
Figure 13.11 shows a function named daemon_inetd that we can call from a server we
know is invoked by inetd.

Figure 13.11 daemon_inetd function: daemonizes process run by inetd.

daemon_inetd.c

1 #include     "unp.h"

2 #include     <syslog.h>

3 extern int daemon_proc;         /* defined in error.c */

4 void

5 daemon_inetd(const char *pname, int facility)

6 {

7     daemon_proc = 1;            /* for our err_XXX() functions */

8     openlog(pname, LOG_PID, facility);

9 }

This function is trivial compared to daemon_init, because all of the daemonization steps
are performed by inetd when it starts. All that we do is set the daemon_proc flag for our
error functions (Figure D.3) and call openlog with the same arguments as the call in Figure
13.4.

Example: Daytime Server as a Daemon Invoked by inetd

Figure 13.12 is a modification of our daytime server from Figure 13.5 that can be invoked
by inetd.

Figure 13.12 Protocol-independent daytime server that can be invoked
by inetd.

inetd/daytimetcpsrv3.c

 1 #include     "unp.h"

 2 #include     <time.h>

 3 int

 4 main(int argc, char **argv)

 5 {

 6     socklen_t len;

 7     struct sockaddr *cliaddr;

 8     char    buff[MAXLINE];

 9     time_t  ticks;

10     daemon_inetd(argv[0], 0);

11     cliaddr = Malloc(sizeof(struct sockaddr_storage));

12     len = sizeof(struct sockaddr_storage);

13     Getpeername(0, cliaddr, &len);

14     err_msg("connection from %s", Sock_ntop(cliaddr, len));

15     ticks = time(NULL);

16     snprintf(buff, sizeof(buff), "%.24s\r\n", ctime(&ticks));

Page 453

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


17     Write(0, buff, strlen(buff));

18     Close(0);                   /* close TCP connection */

19     exit(0);

20 }

There are two major changes in this program. First, all the socket creation code is gone:
the calls to tcp_listen and to accept. Those steps are done by inetd and we reference the
TCP connection using descriptor 0 (standard input). Second, the infinite for loop is gone
because we are invoked once per client connection. After servicing this client, we
terminate.

Call getpeername

11 14 Since we do not call tcp_listen, we do not know the size of the socket address
structure it returns, and since we do not call accept, we do not know the client's protocol
address. Therefore, we allocate a buffer for the socket address structure using 
sizeof(struct sockaddr_storage) and call getpeername with descriptor 0 as the first
argument.

To run this example on our Solaris system, we first assign the service a name and port,
adding the following line to /etc/services:

mydaytime     9999/tcp

We then add the following line to /etc/inetd.conf:

mydaytime  stream  tcp  nowait  andy

      /home/andy/daytimetcpsrv3  daytimetcpsrv3

(We have wrapped the long line.) We place the executable in the specified location and
send the SIGHUP signal to inetd, telling it to reread its configuration file. The next step is
to execute netstat to verify that a listening socket has been created on TCP port 9999.

solaris % netstat -na | grep 9999

      *.9999               *.*               0      0  49152     0  LISTEN

We then invoke the server from another host.

linux % telnet solaris 9999

Trying 192.168.1.20...

Connected to solaris.

Escape character is '^]'.

Tue Jun 10 11:04:02 2003

Connection closed by foreign host.

The /var/adm/messages file (where we have directed the LOG_USER facility messages to be
logged in our /etc/syslog.conf file) contains the following entry:

Page 454

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


Jun 10 11:04:02 solaris daytimetcpsrv3[28724]: connection from

192.168.1.10.58145

[ Team LiB ]

Page 455

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

13.7 Summary
Daemons are processes that run in the background independent of control from all
terminals. Many network servers run as daemons. All output from a daemon is normally
sent to the syslogd daemon by calling the syslog function. The administrator then has
complete control over what happens to these messages, based on the daemon that sent
the message and the severity of the message.

To start an arbitrary program and have it run as a daemon requires a few steps: Call fork
to run in the background, call setsid to create a new POSIX session and become the
session leader, fork again to avoid obtaining a new controlling terminal, change the
working directory and the file mode creation mask, and close all unneeded files. Our 
daemon_init function handles all these details.

Many Unix servers are started by the inetd daemon. It handles all the required
daemonization steps, and when the actual server is started, the socket is open on standard
input, standard output, and standard error. This lets us omit calls to socket, bind, listen,
and accept, since all these steps are handled by inetd.

[ Team LiB ]

Page 456

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Exercises
13.1 What happens in Figure 13.5 if we move the call to daemon_init before

the command-line arguments have been checked, so that the call to 
err_quit comes after it?

13.2 For the five services handled internally by inetd (Figure 2.18),
considering the TCP version and the UDP version of each service, which
of the 10 servers do you think are implemented with a call to fork, and
which do not require a fork?

13.3 What happens if we create a UDP socket, bind port 7 to the socket (the
standard echo server in Figure 2.18), and send a UDP datagram to a
chargen server?

13.4 The Solaris 2.x man page for inetd describes a -t flag that causes
inetd to call syslog (with a facility of LOG_DAEMON and a level of
LOG_NOTICE) to log the client's IP address and port for any TCP service
that inetd handles. How does inetd obtain this information?

This man page also says that inetd cannot do this for a UDP service.
Why?

Is there a way around this limitation for UDP services?

[ Team LiB ]

Page 457

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Chapter 14. Advanced I/O Functions
Section 14.1.?Introduction

Section 14.2.?Socket Timeouts

Section 14.3.?recv and send Functions

Section 14.4.?readv and writev Functions

Section 14.5.?recvmsg and sendmsg Functions

Section 14.6.?Ancillary Data

Section 14.7.?How Much Data Is Queued?

Section 14.8.?Sockets and Standard I/O

Section 14.9.?Advanced Polling

Section 14.10.?Summary

Exercises

[ Team LiB ]

Page 458

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

14.1 Introduction
This chapter covers a variety of functions and techniques that we lump into the category of
"advanced I/O." First is setting a timeout on an I/O operation, which can be done in three
different ways. Next are three more variations on the read and write functions: recv and
send, which allow a fourth argument that contains flags from the process to the kernel,
readv and writev, which let us specify a vector of buffers to input into or output from, and
recvmsg and sendmsg, which combine all the features from the other I/O functions along
with the new capability of receiving and sending ancillary data.

We also consider how to determine the amount of data in the socket receive buffer, how to
use the C standard I/O library with sockets, and we discuss some advanced ways to wait
for events.

[ Team LiB ]

Page 459

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

14.2 Socket Timeouts
There are three ways to place a timeout on an I/O operation involving a socket:

1. Call alarm, which generates the SIGALRM signal when the specified time has expired.
This involves signal handling, which can differ from one implementation to the next,
and it may interfere with other existing calls to alarm in the process.

2. Block waiting for I/O in select, which has a time limit built-in, instead of blocking
in a call to read or write.

3. Use the newer SO_RCVTIMEO and SO_SNDTIMEO socket options. The problem with this
approach is that not all implementations support these two socket options.

All three techniques work with input and output operations (e.g., read, write, and other
variations such as recvfrom and sendto), but we would also like a technique that we can
use with connect, since a TCP connect can take a long time to time out (typically 75
seconds). select can be used to place a timeout on connect only when the socket is in a
nonblocking mode (which we show in Section 16.3), and the two socket options do not
work with connect. We also note that the first two techniques work with any descriptor,
while the third technique works only with socket descriptors.

We now show examples of all three techniques.

connect with a Timeout Using SIGALRM

Figure 14.1 shows our function connect_timeo that calls connect with an upper limit
specified by the caller. The first three arguments are the three required by connect and the
fourth argument is the number of seconds to wait.

Figure 14.1 connect with a timeout.

lib/connect_timeo.c

 1 #include    "unp.h"

 2 static void connect_alarm(int);

 3 int

 4 connect_timeo(int sockfd, const SA *saptr, socklen_t salen, int nsec)

 5 {

 6     Sigfunc *sigfunc;

 7     int     n;

 8     sigfunc = Signal(SIGALRM, connect_alarm);

 9     if (alarm(nsec) != 0)

10         err_msg("connect_timeo: alarm was already set");

11     if ( (n = connect(sockfd, saptr, salen)) < 0) {

12         close(sockfd);

13         if(errno == EINTR)

14            errno = ETIMEDOUT;

15     }

16     alarm(0);                   /* turn off the alarm */

17     Signal(SIGALRM, sigfunc);   /* restore previous signal handler */

18     return (n);

Page 460

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


19 }

20 static void

21 connect_alarm(int signo)

22 {

23     return;                     /* just interrupt the connect() */

24 }

Establish signal handler

8 A signal handler is established for SIGALRM. The current signal handler (if any) is saved,
so we can restore it at the end of the function.

Set alarm

9 10 The alarm clock for the process is set to the number of seconds specified by the
caller. The return value from alarm is the number of seconds currently remaining in the
alarm clock for the process (if one has already been set by the process) or 0 (if there is no
current alarm). In the former case we print a warning message since we are wiping out
that previously set alarm (see Exercise 14.2).

Call connect

11 15 connect is called and if the function is interrupted (EINTR), we set the errno value
to ETIMEDOUT instead. The socket is closed to prevent the three-way handshake from
continuing.

Turn off alarm and restore any previous signal handler

16 18 The alarm is turned off by setting it to 0 and the previous signal handler (if any) is
restored.

Handle SIGALRM

20 24 The signal handler just returns, assuming this return will interrupt the pending
connect, causing connect to return an error of EINTR. Recall our signal function (Figure
5.6) that does not set the SA_RESTART flag when the signal being caught is SIGALRM.

One point to make with this example is that we can always reduce the timeout period for a 
connect using this technique, but we cannot extend the kernel's existing timeout. That is,
on a Berkeley-derived kernel the timeout for a connect is normally 75 seconds. We can
specify a smaller value for our function, say 10, but if we specify a larger value, say 80,
the connect itself will still time out after 75 seconds.

Another point with this example is that we use the interruptibility of the system call (
connect) to return before the kernel's time limit expires. This is fine when we perform the
system call and can handle the EINTR error return. But in Section 29.7, we will encounter a
library function that performs the system call, and the library function reissues the system
call when EINTR is returned. We can still use SIGALRM in this scenario, but we will see in
Figure 29.10 that we also have to use sigsetjmp and siglongjmp to get around the
library's ignoring of EINTR.

Although this example is fairly simple, signals are quite difficult to use correctly with
multithreaded programs (see Chapter 26). So, the technique shown here is only
recommended for single-threaded programs.

recvfrom with a Timeout Using SIGALRM

Figure 14.2 is a redo of our dg_cli function from Figure 8.8, but with a call to alarm to
interrupt the recvfrom if a reply is not received within five seconds.

Page 461

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


Figure 14.2 dg_cli function with alarm to timeout recvfrom.

advio/dgclitimeo3.c

 1 #include    "unp.h"

 2 static void sig_alrm(int);

 3 void

 4 dg_cli(FILE *fp, int sockfd, const SA *pservaddr, socklen_t servlen)

 5 {

 6     int     n;

 7     char    sendline[MAXLINE], recvline[MAXLINE + 1];

 8     Signal(SIGALRM, sig_alrm);

 9     while (Fgets(sendline, MAXLINE, fp) != NULL) {

10         Sendto(sockfd, sendline, strlen(sendline), 0, pservaddr, servlen);

11         alarm(5);

12         if ( (n = recvfrom(sockfd, recvline, MAXLINE, 0, NULL, NULL)) < 0) {

13             if (errno == EINTR)

14                 fprintf(stderr, "socket timeout\n");

15             else

16                 err_sys("recvfrom error");

17         } else {

18             alarm(0);

19             recvline[n] = 0;    /* null terminate */

20             Fputs(recvline, stdout);

21         }

22     }

23 }

24 static void

25 sig_alrm(int signo)

26 {

27     return;                     /* just interrupt the recvfrom() */

28 }

Handle timeout from recvfrom

8 22 We establish a signal handler for SIGALRM and then call alarm for a five-second
timeout before each call to recvfrom. If recvfrom is interrupted by our signal handler, we
print a message and continue. If a line is read from the server, we turn off the pending 
alarm and print the reply.

SIGALRM signal handler

24 28 Our signal handler just returns, to interrupt the blocked recvfrom.

This example works correctly because we are reading only one reply each time we establish
an alarm. In Section 20.4, we will use the same technique, but since we are reading
multiple replies for a given alarm, a race condition exists that we must handle.

recvfrom with a Timeout Using select

We demonstrate the second technique for setting a timeout (using select) in Figure 14.3.
It shows our function named readable_timeo which waits up to a specified number of

Page 462

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


seconds for a descriptor to become readable.

Figure 14.3 readable_timeo function: waits for a descriptor to become
readable.

lib/readable_timeo.c

 1 #include     "unp.h"

 2 int

 3 readable_timeo(int fd, int sec)

 4 {

 5     fd_set rset;

 6     struct timeval tv;

 7     FD_ZERO(&rset);

 8     FD_SET(fd, &rset);

 9     tv.tv_sec = sec;

10     tv.tv_usec = 0;

11     return (select(fd + 1, &rset, NULL, NULL, &tv));

12         /* > 0 if descriptor is readable */

13 }

Prepare arguments for select

7 10 The bit corresponding to the descriptor is turned on in the read descriptor set. A
timeval structure is set to the number of seconds that the caller wants to wait.

Block in select

11 12 select waits for the descriptor to become readable, or for the timeout to expire. The
return value of this function is the return value of select:  1 on an error, 0 if a timeout
occurs, or a positive value specifying the number of ready descriptors.

This function does not perform the read operation; it just waits for the descriptor to be
ready for reading. Therefore, this function can be used with any type of socket, TCP or UDP.

It is trivial to create a similar function named writable_timeo that waits for a descriptor to
become writable.

We use this function in Figure 14.4, which is a redo of our dg_cli function from Figure 8.8.
This new version calls recvfrom only when our readable_timeo function returns a positive
value.

We do not call recvfrom until the function readable_timeo tells us that the descriptor is
readable. This guarantees that recvfrom will not block.

Figure 14.4 dg_cli function that calls readable_timeo to set a timeout.

advio/dgclitimeo1.c

 1 #include     "unp.h"

 2 void

 3 dg_cli(FILE *fp, int sockfd, const SA *pservaddr, socklen_t servlen)

 4 {

 5     int     n;

 6     char    sendline[MAXLINE], recvline[MAXLINE + 1];

Page 463

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


 7     while (Fgets(sendline, MAXLINE, fp) != NULL) {

 8         Sendto(sockfd, sendline, strlen(sendline), 0, pservaddr, servlen);

 9         if (Readable_timeo(sockfd, 5) == 0) {

10             fprintf(stderr, "socket timeout\n");

11         } else {

12             n = Recvfrom(sockfd, recvline, MAXLINE, 0, NULL, NULL);

13             recvline[n] = 0;    /* null terminate */

14             Fputs(recvline, stdout);

15         }

16     }

17 }

recvfrom with a Timeout Using the SO_RCVTIMEO Socket Option
Our final example demonstrates the SO_RCVTIMEO socket option. We set this option once for
a descriptor, specifying the timeout value, and this timeout then applies to all read
operations on that descriptor. The nice thing about this method is that we set the option
only once, compared to the previous two methods, which required doing something before
every operation on which we wanted to place a time limit. But this socket option applies
only to read operations, and the similar option SO_SNDTIMEO applies only to write
operations; neither socket option can be used to set a timeout for a connect.

Figure 14.5 shows another version of our dg_cli function that uses the SO_RCVTIMEO socket
option.

Set socket option

8 10 The fourth argument to setsockopt is a pointer to a timeval structure that is filled in
with the desired timeout.

Test for timeout

15 17 If the I/O operation times out, the function (recvfrom, in this case) returns
EWOULDBLOCK.

Figure 14.5 dg_cli function that uses the SO_RCVTIMEO socket option to set
a timeout.

advio/dgclitimeo2.c

 1 #include     "unp.h"

 2 void

 3 dg_cli(FILE *fp, int sockfd, const SA *pservaddr, socklen_t servlen)

 4 {

 5     int     n;

 6     char     sendline[MAXLINE], recvline[MAXLINE + 1];

 7     struct timeval tv;

 8     tv.tv_sec = 5;

 9     tv.tv_usec = 0;

10     Setsockopt(sockfd, SOL_SOCKET, SO_RCVTIMEO, &tv, sizeof(tv));

11     while (Fgets(sendline, MAXLINE, fp) != NULL) {

12         Sendto(sockfd, sendline, strlen(sendline), 0, pservaddr, servlen);

13         n = recvfrom(sockfd, recvline, MAXLINE, 0, NULL, NULL);

Page 464

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


14         if (n < 0) {

15             if (errno == EWOULDBLOCK) {

16                 fprintf(stderr, "socket timeout\n");

17                 continue;

18             } else

19                 err_sys("recvfrom error");

20         }

21         recvline[n] = 0;        /* null terminate */

22         Fputs(recvline, stdout);

23     }

24 }

[ Team LiB ]

Page 465

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

14.3 recv and send Functions
These two functions are similar to the standard read and write functions, but one
additional argument is required.

#include <sys/socket.h>

ssize_t recv(int sockfd, void *buff, size_t nbytes, int flags);

ssize_t send(int sockfd, const void *buff, size_t nbytes, int flags);

Both return: number of bytes read or written if OK,  1 on error

The first three arguments to recv and send are the same as the first three arguments to
read and write. The flags argument is either 0 or is formed by logically OR'ing one or more
of the constants shown in Figure 14.6.

Figure 14.6. flags for I/O functions.

MSG_DONTROUTE This flag tells the kernel that the destination is on a locally attached
network and not to perform a lookup of the routing table. We provided
additional information on this feature with the SO_DONTROUTE socket
option (Section 7.5). This feature can be enabled for a single output
operation with the MSG_DONTROUTE flag, or enabled for all output
operations for a given socket using the socket option.

MSG_DONTWAIT This flag specifies nonblocking for a single I/O operation, without
having to turn on the nonblocking flag for the socket, perform the I/O
operation, and then turn off the nonblocking flag. We will describe
nonblocking I/O in Chapter 16, along with turning the nonblocking flag
on and off for all I/O operations on a socket.

 This flag is newer than the others and might not be supported on all
systems.

MSG_OOB With send, this flag specifies that out-of-band data is being sent. With
TCP, only one byte should be sent as out-of-band data, as we will
describe in Chapter 24. With recv, this flag specifies that out-of-band
data is to be read instead of normal data.

MSG_PEEK This flag lets us look at the data that is available to be read, without
having the system discard the data after the recv or recvfrom returns.
We will talk more about this in Section 14.7.

MSG_WAITALL This flag was introduced with 4.3BSD Reno. It tells the kernel not to
return from a read operation until the requested number of bytes have
been read. If the system supports this flag, we can then omit the readn

Page 466

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


MSG_DONTROUTE This flag tells the kernel that the destination is on a locally attached
network and not to perform a lookup of the routing table. We provided
additional information on this feature with the SO_DONTROUTE socket
option (Section 7.5). This feature can be enabled for a single output
operation with the MSG_DONTROUTE flag, or enabled for all output
operations for a given socket using the socket option.

function (Figure 3.15) and replace it with the following macro:
[View full width]

#define readn(fd, ptr, n)   recv(fd, ptr, n,

 MSG_WAITALL)

Even if we specify MSG_WAITALL, the function can still return fewer than
the requested number of bytes if (i) a signal is caught, (ii) the
connection is terminated, or (iii) an error is pending for the socket.

There are additional flags used by other protocols, but not TCP/IP. For example, the OSI
transport layer is record-based (not a byte stream such as TCP) and supports the MSG_EOR
flag for output operations to specify the end of a logical record.

There is a fundamental design problem with the flags argument: It is passed by value; it is
not a value-result argument. Therefore, it can be used only to pass flags from the process
to the kernel. The kernel cannot pass back flags to the process. This is not a problem with
TCP/IP, because it is rare to need to pass flags back to the process from the kernel. But
when the OSI protocols were added to 4.3BSD Reno, the need arose to return MSG_EOR to
the process with an input operation. Thus, the decision was made with 4.3BSD Reno to
leave the arguments to the commonly used input functions (recv and recvfrom) as-is and
change the msghdr structure that is used with recvmsg and sendmsg. We will see in Section
14.5 that an integer msg_flags member was added to this structure, and since the
structure is passed by reference, the kernel can modify these flags on return. This also
means that if a process needs to have the flags updated by the kernel, the process must
call recvmsg instead of either recv or recvfrom.

[ Team LiB ]

Page 467

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

14.4 readv and writev Functions
These two functions are similar to read and write, but readv and writev let us read into or
write from one or more buffers with a single function call. These operations are called 
scatter read (since the input data is scattered into multiple application buffers) and gather
write (since multiple buffers are gathered for a single output operation).

#include <sys/uio.h>

ssize_t readv(int filedes, const struct iovec *iov, int iovcnt);

ssize_t writev(int filedes, const struct iovec *iov, int iovcnt);

Both return: number of bytes read or written,  1 on error

The second argument to both functions is a pointer to an array of iovec structures, which
is defined by including the <sys/uio.h> header.

struct iovec {

  void   *iov_base;   /* starting address of buffer */

  size_t  iov_len;    /* size of buffer */

};

The datatypes shown for the members of the iovec structure are those specified by POSIX.
You may encounter implementations that define iov_base to be a char *, and iov_len to
be an int.

There is some limit to the number of elements in the array of iovec structures that an
implementation allows. Linux, for example, allows up to 1,024, while HP-UX has a limit of
2,100. POSIX requires that the constant IOV_MAX be defined by including the <sys/uio.h>
header and that its value be at least 16.

The readv and writev functions can be used with any descriptor, not just sockets. Also,
writev is an atomic operation. For a record-based protocol such as UDP, one call to writev
generates a single UDP datagram.

We mentioned one use of writev with the TCP_NODELAY socket option in Section 7.9. We
said that a write of 4 bytes followed by a write of 396 bytes could invoke the Nagle
algorithm and a preferred solution is to call writev for the two buffers.

[ Team LiB ]

Page 468

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

14.5 recvmsg and sendmsg Functions
These two functions are the most general of all the I/O functions. Indeed, we could replace
all calls to read, readv, recv, and recvfrom with calls to recvmsg. Similarly all calls to the
various output functions could be replaced with calls to sendmsg.

#include <sys/socket.h>

ssize_t recvmsg(int sockfd, struct msghdr *msg, int flags);

ssize_t sendmsg(int sockfd, struct msghdr *msg, int flags);

Both return: number of bytes read or written if OK,  1 on error

Both functions package most arguments into a msghdr structure.

struct msghdr {

  void         *msg_name;        /* protocol address */

  socklen_t     msg_namelen;     /* size of protocol address */

  struct iovec *msg_iov;         /* scatter/gather array */

  int           msg_iovlen;      /* # elements in msg_iov */

  void         *msg_control;     /* ancillary data (cmsghdr struct) */

  socklen_t     msg_controllen;  /* length of ancillary data */

  int           msg_flags;       /* flags returned by recvmsg() */

};

The msghdr structure that we show is the one specified in POSIX. Some systems still use
an older msghdr structure that originated with 4.2BSD. This older structure does not have
the msg_flags member, and the msg_control and msg_controllen members are named
msg_accrights and msg_accrightslen. The newer form of the msghdr structure is often
available using conditional compilation flags. The only form of ancillary data supported by
the older structure is the passing of file descriptors (called access rights).

The msg_name and msg_namelen members are used when the socket is not connected (e.g.,
an unconnected UDP socket). They are similar to the fifth and sixth arguments to recvfrom
and sendto: msg_name points to a socket address structure in which the caller stores the
destination's protocol address for sendmsg, or in which recvmsg stores the sender's protocol
address. If a protocol address does not need to be specified (e.g., a TCP socket or a
connected UDP socket), msg_name should be set to a null pointer. msg_namelen is a value
for sendmsg, but a value-result for recvmsg.

The msg_iov and msg_iovlen members specify the array of input or output buffers (the
array of iovec structures), similar to the second and third arguments for readv or writev.
The msg_control and msg_controllen members specify the location and size of the
optional ancillary data. msg_controllen is a value-result argument for recvmsg. We will
describe ancillary data in Section 14.6.

With recvmsg and sendmsg, we must distinguish between two flag variables: the flags
argument, which is passed by value, and the msg_flags member of the msghdr structure,
which is passed by reference (since the address of the structure is passed to the function).

Page 469

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


 The msg_flags member is used only by recvmsg. When recvmsg is called, the flags
argument is copied into the msg_flags member (p. 502 of TCPv2) and this value is
used by the kernel to drive its receive processing. This value is then updated based
on the result of recvmsg.

 The msg_flags member is ignored by sendmsg because this function uses the flags
argument to drive its output processing. This means if we want to set the 
MSG_DONTWAIT flag in a call to sendmsg, we set the flags argument to this value;
setting the msg_flags member to this value has no effect.

Figure 14.7 summarizes the flags that are examined by the kernel for both the input and
output functions, as well as the msg_flags that might be returned by recvmsg. There is no
column for sendmsg msg_flags because, as we mentioned, it is not used.

Figure 14.7. Summary of input and output flags by various I/O
functions.

The first four flags are only examined and never returned; the next two are both examined
and returned; and the last four are only returned. The following comments apply to the six
flags returned by recvmsg:

MSG_BCAST This flag is relatively new, supported by at least BSD, and is returned
if the datagram was received as a link-layer broadcast or with a
destination IP address that is a broadcast address. This flag is a
better way of determining if a UDP datagram was sent to a broadcast
address, compared to the IP_RECVDSTADDR socket option.

MSG_MCAST This flag is also a fairly recent addition, supported by at least BSD,
and is returned if the datagram was received as a link-layer
multicast.

MSG_TRUNC This flag is returned if the datagram was truncated; in other words,
the kernel has more data to return than the process has allocated
room for (the sum of all the iov_len members). We will discuss this
more in Section 22.3.

MSG_CTRUNC This flag is returned if the ancillary data was truncated; in other
words, the kernel has more ancillary data to return than the process
has allocated room for (msg_controllen).

MSG_EOR This flag is cleared if the returned data does not end a logical record;
the flag is turned on if the returned data ends a logical record. TCP
does not use this flag since it is a byte-stream protocol.

Page 470

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


MSG_BCAST This flag is relatively new, supported by at least BSD, and is returned
if the datagram was received as a link-layer broadcast or with a
destination IP address that is a broadcast address. This flag is a
better way of determining if a UDP datagram was sent to a broadcast
address, compared to the IP_RECVDSTADDR socket option.

MSG_OOB This flag is never returned for TCP out-of-band data. This flag is
returned by other protocol suites (e.g., the OSI protocols).

MSG_NOTIFICATON This flag is returned for SCTP receivers to indicate that the message
read is an event notification, not a data message.

Implementations might return some of the input flags in the msg_flags member, so we
should examine only those flag values we are interested in (e.g., the last six in Figure 14.7
).

Figure 14.8 shows a msghdr structure and the various information it points to. We assume
in this figure that the process is about to call recvmsg for a UDP socket.

Figure 14.8. Data structures when recvmsg is called for a UDP socket.

Sixteen bytes are allocated for the protocol address and 20 bytes are allocated for the
ancillary data. An array of three iovec structures is initialized: The first specifies a
100-byte buffer, the second a 60-byte buffer, and the third an 80-byte buffer. We also
assume that the IP_RECVDSTADDR socket option has been set for the socket, to receive the
destination IP address from the UDP datagram.

We next assume that a 170-byte UDP datagram arrives from 192.6.38.100, port 2000,
destined for our UDP socket with a destination IP address of 206.168.112.96. Figure 14.9
shows all the information in the msghdr structure when recvmsg returns.

Figure 14.9. Update of Figure 14.8 when recvmsg returns.

Page 471

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


The shaded fields are modified by recvmsg. The following items have changed from Figure
14.8 to Figure 14.9:

 The buffer pointed to by msg_name has been filled in as an Internet socket address
structure, containing the source IP address and source UDP port from the received
datagram.

 msg_namelen, a value-result argument, is updated with the amount of data stored
in msg_name. Nothing changes since its value before the call was 16 and its value
when recvmsg returns is also 16.

 The first 100 bytes of data are stored in the first buffer; the next 60 bytes are
stored in the second buffer; and the final 10 bytes are stored in the third buffer. The
last 70 bytes of the final buffer are not modified. The return value of the recvmsg
function is the size of the datagram, 170.

 The buffer pointed to by msg_control is filled in as a cmsghdr structure. (We will say
more about ancillary data in Section 14.6 and more about this particular socket
option in Section 22.2.) The cmsg_len is 16; cmsg_level is IPPROTO_IP; cmsg_type
is IP_RECVDSTADDR; and the next 4 bytes contain the destination IP address from
the received UDP datagram. The final 4 bytes of the 20-byte buffer we supplied to
hold the ancillary data are not modified.

 The msg_controllen member is updated with the actual amount of ancillary data
that was stored. It is also a value-result argument and its result on return is 16.

 The msg_flags member is updated by recvmsg, but there are no flags to return to
the process.

Figure 14.10 summarizes the differences among the five groups of I/O functions we
described.

Figure 14.10. Comparison of the five groups of I/O functions.

[ Team LiB ]

Page 472

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

14.6 Ancillary Data
Ancillary data can be sent and received using the msg_control and msg_controllen
members of the msghdr structure with the sendmsg and recvmsg functions. Another term
for ancillary data is control information. In this section, we will describe the concept and
show the structure and macros used to build and process ancillary data, but we will save
the code examples for later chapters that describe the actual uses of ancillary data.

Figure 14.11 is a summary of the various uses of ancillary data we cover in this text.

Figure 14.11. Summary of uses for ancillary data.

The OSI protocol suite also uses ancillary data for various purposes we do not discuss in
this text.

Ancillary data consists of one or more ancillary data objects, each one beginning with a
cmsghdr structure, defined by including <sys/socket.h>.

struct cmsghdr {

  socklen_t  cmsg_len;   /* length in bytes, including this structure */

  int        cmsg_level; /* originating protocol */

  int        cmsg_type;  /* protocol-specific type */

      /* followed by unsigned char cmsg_data[] */

};

We have already seen this structure in Figure 14.9, when it was used with the
IP_RECVDSTADDR socket option to return the destination IP address of a received UDP
datagram. The ancillary data pointed to by msg_control must be suitably aligned for a
cmsghdr structure. We will show one way to do this in Figure 15.11.

Figure 14.12 shows an example of two ancillary data objects in the control buffer.
msg_control points to the first ancillary data object, and the total length of the ancillary
data is specified by msg_controllen. Each object is preceded by a cmsghdr structure that
describes the object. There can be padding between the cmsg_type member and the actual
data, and there can also be padding at the end of the data, before the next ancillary data
object. The five CMSG_xxx macros we describe shortly account for this possible padding.

Figure 14.12. Ancillary data containing two ancillary data objects.

Page 473

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


Not all implementations support multiple ancillary data objects in the control buffer.

Figure 14.13 shows the format of the cmsghdr structure when used with a Unix domain
socket for descriptor passing (Section 15.7) or credential passing (Section 15.8).

Figure 14.13. cmsghdr structure when used with Unix domain sockets.

In this figure, we assume each of the three members of the cmsghdr structure occupies
four bytes and there is no padding between the cmsghdr structure and the actual data.
When descriptors are passed, the contents of the cmsg_data array are the actual descriptor
values. In this figure, we show only one descriptor being passed, but in general, more than
one can be passed (in which case, the cmsg_len value will be 12 plus 4 times the number
of descriptors, assuming each descriptor occupies 4 bytes).

Since the ancillary data returned by recvmsg can contain any number of ancillary data
objects, and to hide the possible padding from the application, the following five macros
are defined by including the <sys/socket.h> header to simplify the processing of the
ancillary data:

#include <sys/socket.h>

#include <sys/param.h> /* for ALIGN macro on many implementations */

struct cmsghdr *CMSG_FIRSTHDR(struct msghdr *mhdrptr) ;

Returns: pointer to first cmsghdr structure or NULL if no ancillary data

Page 474

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


#include <sys/socket.h>

struct cmsghdr *CMSG_NXTHDR(struct msghdr *mhdrptr, struct cmsghdr *cmsgptr) ;

Returns: pointer to next cmsghdr structure or NULL if no more ancillary data objects

unsigned char *CMSG_DATA(struct cmsghdr *cmsgptr) ;

Returns: pointer to first byte of data associated with cmsghdr structure

unsigned int CMSG_LEN(unsigned int length) ;

Returns: value to store in cmsg_len given the amount of data

unsigned int CMSG_SPACE(unsigned int length) ;

Returns: total size of an ancillary data object given the amount of data

POSIX defines the first three macros; RFC 3542 [Stevens et al. 2003] defines the last two.

These macros would be used in the following pseudocode:

struct msghdr     msg;

struct cmsghdr    *cmsgptr;

/* fill in msg structure */

/* call recvmsg() */

for (cmsgptr = CMSG_FIRSTHDR(&msg); cmsgptr != NULL;

     cmsgptr = CMSG_NXTHDR(&msg, cmsgptr)) {

    if (cmsgptr->cmsg_level == ... &&

        cmsgptr->cmsg_type == ... ) {

        u_char *ptr;

        ptr = CMSG_DATA(cmsgptr);

        /* process data pointed to by ptr */

    }

}

CMSG_FIRSTHDR returns a pointer to the first ancillary data object, or a null pointer if there
is no ancillary data in the msghdr structure (either msg_control is a null pointer or
cmsg_len is less than the size of a cmsghdr structure). CMSG_NXTHDR returns a null pointer
when there is not another ancillary data object in the control buffer.

Many existing implementations of CMSG_FIRSTHDR never look at msg_controllen and just
return the value of cmsg_control. In Figure 22.2, we will test the value of msg_controllen
before calling this macro.

The difference between CMSG_LEN and CMSG_SPACE is that the former does not account for
any padding following the data portion of the ancillary data object and is therefore the
value to store in cmsg_len, while the latter accounts for the padding at the end and is
therefore the value to use if dynamically allocating space for the ancillary data object.

Page 475

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Page 476

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

14.7 How Much Data Is Queued?
There are times when we want to see how much data is queued to be read on a socket,
without reading the data. Three techniques are available:

1. If the goal is not to block in the kernel because we have something else to do when
nothing is ready to be read, nonblocking I/O can be used. We will describe this in 
Chapter 16.

2. If we want to examine the data but still leave it on the receive queue for some other
part of our process to read, we can use the MSG_PEEK flag (Figure 14.6). If we want
to do this, but we are not sure that something is ready to be read, we can use this
flag with a nonblocking socket or combine this flag with the MSG_DONTWAIT flag.

Be aware that the amount of data on the receive queue can change between two
successive calls to recv for a stream socket. For example, assume we call recv for a
TCP socket specifying a buffer length of 1,024 along with the MSG_PEEK flag, and the
return value is 100. If we then call recv again, it is possible for more than 100
bytes to be returned (assuming we specify a buffer length greater than 100),
because more data can be received by TCP between our two calls.

In the case of a UDP socket with a datagram on the receive queue, if we call 
recvfrom specifying MSG_PEEK, followed by another call without specifying MSG_PEEK,
the return values from both calls (the datagram size, its contents, and the sender's
address) will be the same, even if more datagrams are added to the socket receive
buffer between the two calls. (We are assuming, of course, that some other process
is not sharing the same descriptor and reading from this socket at the same time.)

3. Some implementations support the FIONREAD command of ioctl. The third
argument to ioctl is a pointer to an integer, and the value returned in that integer
is the current number of bytes on the socket's receive queue (p. 553 of TCPv2). This
value is the total number of bytes queued, which for a UDP socket includes all
queued datagrams. Also be aware that the count returned for a UDP socket by
Berkeley-derived implementations includes the space required for the socket
address structure containing the sender's IP address and port for each datagram
(16 bytes for IPv4; 24 bytes for IPv6).

[ Team LiB ]

Page 477

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

14.8 Sockets and Standard I/O
In all our examples so far, we have used what is sometimes called Unix I/O, the read and
write functions and their variants (recv, send, etc.). These functions work with descriptors
and are normally implemented as system calls within the Unix kernel.

Another method of performing I/O is the standard I/O library. It is specified by the ANSI C
standard and is intended to be portable to non-Unix systems that support ANSI C. The
standard I/O library handles some of the details that we must worry about ourselves when
using the Unix I/O functions, such as automatically buffering the input and output
streams. Unfortunately, its handling of a stream's buffering can present a new set of
problems we must worry about. Chapter 5 of APUE covers the standard I/O library in detail,
and [Plauger 1992] presents and discusses a complete implementation of the standard I/O
library.

The term stream is used with the standard I/O library, as in "we open an input stream" or
"we flush the output stream." Do not confuse this with the STREAMS subsystem, which we
will discuss in Chapter 31.

The standard I/O library can be used with sockets, but there are a few items to consider:

 A standard I/O stream can be created from any descriptor by calling the fdopen
function. Similarly, given a standard I/O stream, we can obtain the corresponding
descriptor by calling fileno. Our first encounter with fileno was in Figure 6.9 when
we wanted to call select on a standard I/O stream. select works only with
descriptors, so we had to obtain the descriptor for the standard I/O stream.

 TCP and UDP sockets are full-duplex. Standard I/O streams can also be full-duplex:
we just open the stream with a type of r+, which means read-write. But on such a
stream, an output function cannot be followed by an input function without an
intervening call to fflush, fseek, fsetpos, or rewind. Similarly, an input function
cannot be followed by an output function without an intervening call to fseek,
fsetpos, or rewind, unless the input function encounters an EOF. The problem with
these latter three functions is that they all call lseek, which fails on a socket.

 The easiest way to handle this read-write problem is to open two standard I/O
streams for a given socket: one for reading and one for writing.

Example: str_echo Function Using Standard I/O
We now show an alternate version of our TCP echo server (Figure 5.3), which uses standard
I/O instead of read and writen. Figure 14.14 is a version of our str_echo function that
uses standard I/O. (This version has a problem that we will describe shortly.)

Figure 14.14 str_echo function recoded to use standard I/O.

advio/str_echo_stdio02.c

 1 #include    "unp.h"

 2 void

 3 str_echo(int sockfd)

 4 {

 5     char     line[MAXLINE];

 6     FILE    *fpin,  *fpout;

 7     fpin = Fdopen(sockfd, "r");

Page 478

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


 8     fpout = Fdopen(sockfd, "w");

 9     while (Fgets(line, MAXLINE, fpin) != NULL)

10         Fputs(line, fpout);

11 }

Convert descriptor into input stream and output stream

7 10 Two standard I/O streams are created by fdopen: one for input and one for output.
The calls to read and writen are replaced with calls to fgets and fputs.

If we run our server with this version of str_echo and then run our client, we see the
following:

hpux % tcpcli02 206.168.112.96  

hello, world we type this line, but nothing is echoed

and hi and this one, still no echo

hello?? and this one, still no echo

^D and our EOF character

hello, world and then the three echoed lines are output

and hi  

hello??  

There is a buffering problem here because nothing is echoed by the server until we enter
our EOF character. The following steps take place:

 We type the first line of input and it is sent to the server.

 The server reads the line with fgets and echoes it with fputs.

 The server's standard I/O stream is fully buffered by the standard I/O library. This
means the library copies the echoed line into its standard I/O buffer for this stream,
but does not write the buffer to the descriptor, because the buffer is not full.

 We type the second line of input and it is sent to the server.

 The server reads the line with fgets and echoes it with fputs.

 Again, the server's standard I/O library just copies the line into its buffer, but does
not write the buffer because it is still not full.

 The same scenario happens with the third line of input that we enter.

 We type our EOF character, and our str_cli function (Figure 6.13) calls shutdown,
sending a FIN to the server.

 The server TCP receives the FIN, which fgets reads, causing fgets to return a null
pointer.

 The str_echo function returns to the server main function (Figure 5.12) and the
child terminates by calling exit.

 The C library function exit calls the standard I/O cleanup function (pp. 162 164 of

Page 479

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


APUE). The output buffer that was partially filled by our calls to fputs is now output.

 The server child process terminates, causing its connected socket to be closed,
sending a FIN to the client, completing the TCP four-packet termination sequence.

 The three echoed lines are received by our str_cli function and output.

 str_cli then receives an EOF on its socket, and the client terminates.

The problem here is the buffering performed automatically by the standard I/O library on
the server. There are three types of buffering performed by the standard I/O library:

1. Fully buffered means that I/O takes place only when the buffer is full, the process
explicitly calls fflush, or the process terminates by calling exit. A common size for
the standard I/O buffer is 8,192 bytes.

2. Line buffered means that I/O takes place when a newline is encountered, when the
process calls fflush, or when the process terminates by calling exit.

3. Unbuffered means that I/O takes place each time a standard I/O output function is
called.

Most Unix implementations of the standard I/O library use the following rules:

 Standard error is always unbuffered.

 Standard input and standard output are fully buffered, unless they refer to a
terminal device, in which case, they are line buffered.

 All other streams are fully buffered unless they refer to a terminal device, in which
case, they are line buffered.

Since a socket is not a terminal device, the problem seen with our str_echo function in
Figure 14.14 is that the output stream (fpout) is fully buffered. One way around this is to
force the output stream to be line buffered by calling setvbuf. Another is to force each
echoed line to be output by calling fflush after each call to fputs. But in practice, either of
these solutions is still error-prone and may interact badly with the Nagle algorithm
described in Section 7.9. In most cases, the best solution is to avoid using the standard
I/O library altogether for sockets and operate on buffers instead of lines, as described in 
Section 3.9. Using standard I/O on sockets may make sense when the convenience of
standard I/O streams outweighs the concerns about bugs due to buffering, but these are
rare cases.

Be aware that some implementations of the standard I/O library still have a problem with
descriptors greater than 255. This can be a problem with network servers that handle lots
of descriptors. Check the definition of the FILE structure in your <stdio.h> header to see
what type of variable holds the descriptor.

[ Team LiB ]

Page 480

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

14.9 Advanced Polling
Earlier in this chapter, we discussed several ways to set a time limit on a socket operation.
Many operating systems now offer another alternative, and provide the features of select
and poll we described in Chapter 6 as well. Since none of these methods have been
adopted by POSIX yet, and each implementation seems to be slightly different, code that
uses these mechanisms should be considered nonportable. We'll describe two mechanisms
here; other available mechanisms are similar.

/dev/poll Interface
Solaris provides a special file called /dev/poll, which provides a more scalable way to poll
large numbers of file descriptors. The problem with select and poll is that the file
descriptors of interest must be passed in with each call. The poll device maintains state
between calls so that a program can set up the list of descriptors to poll and then loop,
waiting for events, without setting up the list again each time around the loop.

After opening /dev/poll, the polling program must initialize an array of pollfd structures
(the same structure used by the poll function, but the revents field is unused in this
case). The array is then passed to the kernel by calling write to write the structured
directly to the /dev/poll device. The program then uses an ioctl call, DO_POLL, to block,
waiting for events. The following structure is passed into the ioctl call:

struct dvpoll {

    struct pollfd* dp_fds;

    int            dp_nfds;

    int            dp_timeout;

}

The field dp_fds points to a buffer that is used to hold an array of pollfd structures
returned from the ioctl call. The field dp_nfds field specifies the size of the buffer. The
ioctl call blocks until there are interesting events on any of the polled file descriptors, or
until dp_timeout milliseconds have passed. Using a value of zero for dp_timeout will cause
the ioctl to return immediately, which provides a nonblocking way to use this interface.
Passing in -1 for the timeout indicates that no timeout is desired.

We modify our str_cli function, which used select in Figure 6.13, to use /dev/poll in
Figure 14.15.

Figure 14.15 str_cli function using /dev/poll.

advio/str_cli_poll03.c

 1 #include    "unp.h"

 2 #include    <sys/devpoll.h>

 3 void

 4 str_cli(FILE *fp, int sockfd)

 5 {

 6     int     stdineof;

 7     char    buf[MAXLINE];

 8     int     n;

 9     int     wfd;

Page 481

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


10     struct pollfd pollfd[2];

11     struct dvpoll dopoll;

12     int     i;

13     int     result;

14     wfd = Open("/dev/poll", O_RDWR, 0);

15     pollfd[0].fd = fileno(fp);

16     pollfd[0].events = POLLIN;

17     pollfd[0].revents = 0;

18     pollfd[1].fd = sockfd;

19     pollfd[1].events = POLLIN;

20     pollfd[1].revents = 0;

21     Write(wfd, pollfd, sizeof(struct pollfd) * 2);

22     stdineof = 0;

23     for ( ; ; ) {

24         /* block until /dev/poll says something is ready */

25         dopoll.dp_timeout = -1;

26         dopoll.dp_nfds = 2;

27         dopoll.dp_fds = pollfd;

28         result = Ioctl(wfd, DP_POLL, &dopoll);

29         /* loop through ready file descriptors */

30         for (i = 0; i < result; i++) {

31             if (dopoll.dp_fds[i].fd == sockfd) {

32                 /* socket is readable */

33                 if ( (n = Read(sockfd, buf, MAXLINE)) == 0) {

34                     if (stdineof == 1)

35                         return; /* normal termination */

36                     else

37                         err_quit("str_cli: server terminated prematurely");

38                 }

39                 Write(fileno(stdout), buf, n);

40             } else {

41                 /* input is readable */

42                 if ( (n = Read(fileno(fp), buf, MAXLINE)) == 0) {

43                     stdineof = 1;

44                     Shutdown(sockfd, SHUT_WR); /* send FIN */

45                     continue;

46                 }

47                 Writen(sockfd, buf, n);

48             }

49         }

50     }

51 }

List descriptors for /dev/poll

14 21 After filling in an array of pollfd structures, we pass them to /dev/poll. Our
example only requires two file descriptors, so we use a static array of structures. In
practice, programs that use /dev/poll need to monitor hundreds or even thousands of file
descriptors, so the array would likely be allocated dynamically.

Wait for work

24 28 Rather than calling select, this program blocks, waiting for work, in the ioctl call.

Page 482

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


The return is the number of file descriptors that are ready.

Loop through descriptors

30 49 The code in our example is simplified since we know the ready file descriptors will
be sockfd, the input file descriptor, or both. In a large-scale program, this loop would be
more complex, perhaps even dispatching the work to threads.

kqueue Interface
FreeBSD introduced the kqueue interface in FreeBSD version 4.1. This interface allows a
process to register an "event filter" that describes the kqueue events it is interested in.
Events include file I/O and timeouts like select, but also adds asynchronous I/O, file
modification notification (e.g., notification when a file is removed or modified), process
tracking (e.g., notification when a given process exits or calls fork), and signal handling.
The kqueue interface includes the following two functions and macro:

#include <sys/types.h>

#include <sys/event.h>

#include <sys/time.h>

int kqueue(void);

int kevent(int kq, const struct kevent *changelist, int nchanges, struct kevent *
eventlist, int nevents, const struct timespec *timeout) ;

void EV_SET(struct kevent *kev, uintptr_t ident, short filter, u_short flags, u_int
fflags, intptr_t data, void *udata);

The kqueue function returns a new kqueue descriptor, which can be used with future calls
to kevent. The kevent function is used to both register events of interest and determine if
any events have occurred. The changelist and nchanges parameters describe the changes
to be made to the events of interest, or are NULL and 0, respectively, if no changes are to
be made. If nchanges is nonzero, each event filter change requested in the changelist
array is performed. Any filters whose conditions have triggered, including those that may
have just been added in the changelist, are returned through the eventlist parameter,
which points to an array of nevents struct kevents. The kevent function returns the
number of events that are returned, or zero if a timeout has occurred. The timeout
argument holds the timeout, which is handled just like select: NULL to block, a nonzero
timespec to specify an explicit timeout, and a zero timespec to perform a nonblocking
check for events. Note that the timeout parameter is a struct timespec, which is different
from select's struct timeval in that it has nanosecond instead of microsecond
resolution.

The kevent structure is defined by including the <sys/event.h> header.

struct kevent {

  uintptr_t  ident;      /* identifier (e.g., file descriptor) */

  short      filter;     /* filter type (e.g., EVFILT_READ) */

  u_short    flags;      /* action flags (e.g., EV_ADD) */

  u_int      fflags;     /* filter-specific flags */

  intptr_t   data;       /* filter-specific data */

Page 483

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


  void      *udata;      /* opaque user data */

};

The actions for changing a filter and the flag return values are shown in Figure 14.16.

Figure 14.16. flags for kevent operations.

Filter types are shown in Figure 14.17.

Figure 14.17. filters for kevent operations.

We modify our str_cli function, which used select in Figure 6.13, to use kqueue in Figure
14.18.

Determine if file pointer points to a file

10 11 The behavior of kqueue on EOF is different depending on whether the file descriptor
is associated with a file, a pipe, or a terminal, so we use the fstat call to determine if it is
a file. We will use this determination later.

Set up kevent structures for kqueue

12 13 We use the EV_SET macro to set up two kevent structures; both specify a read filter
(EVFILT_READ) and request to add this event to the filter (EV_ADD).

Create kqueue and add filters

14 16 We call kqueue to get a kqueue descriptor, set the timeout to zero to allow a
nonblocking call to kevent, and call kevent with our array of kevents as the change
request.

Loop forever, blocking in kevent

17 18 We loop forever, blocking in kevent. We pass a NULL change list, since we are only
interested in the events we have already registered, and a NULL timeout to block forever.

Loop through returned events

19 We check each event that was returned and process it individually.

Figure 14.18 str_cli function using kqueue.

advio/str_cli_kqueue04.c

Page 484

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


 1 #include    "unp.h"

 2 void

 3 str_cli(FILE *fp, int sockfd)

 4 {

 5     int     kq, i, n, nev, stdineof = 0, isfile;

 6     char    buf[MAXLINE];

 7     struct kevent kev[2];

 8     struct timespec ts;

 9     struct stat st;

10     isfile = ((fstat(fileno(fp), &st) == 0) &&

11               (st.st_mode & S_IFMT) == S_IFREG);

12     EV_SET(&kev[0], fileno(fp), EVFILT_READ, EV_ADD, 0, 0, NULL);

13     EV_SET(&kev[1], sockfd, EVFILT_READ, EV_ADD, 0, 0, NULL);

14     kq = Kqueue();

15     ts.tv_sec = ts.tv_nsec = 0;

16     Kevent(kq, kev, 2, NULL, 0, &ts);

17     for ( ; ; ) {

18         nev = Kevent(kq, NULL, 0, kev, 2, NULL);

19         for (i = 0; i < nev; i++) {

20             if (kev[i].ident == sockfd) {     /* socket is readable */

21                 if ( (n = Read(sockfd, buf, MAXLINE)) == 0) {

22                     if (stdineof == 1)

23                         return; /* normal termination */

24                     else

25                         err_quit("str_cli: server terminated prematurely");

26                 }

27                 Write(fileno(stdout), buf, n);

28             }

29             if (kev[i].ident == fileno(fp)) {  /* input is readable */

30                 n = Read(fileno(fp), buf, MAXLINE);

31                 if (n > 0)

32                     Writen(sockfd, buf, n);

33                 if (n == 0 || (isfile && n == kev[i].data)) {

34                     stdineof = 1;

35                     Shutdown(sockfd, SHUT_WR);  /* send FIN */

36                     kev[i].flags = EV_DELETE;

37                     Kevent(kq, &kev[i], 1, NULL, 0, &ts);    /* remove

kevent */

38                     continue;

39                 }

40             }

41         }

42     }

43 }

Socket is readable

20 28 This code is exactly the same as in Figure 6.13.

Input is readable

29 40 This code is similar to Figure 6.13, but is structured slightly differently to handle

Page 485

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


how kqueue reports an EOF. On pipes and terminals, kqueue returns a readable indication
that an EOF is pending, just like select. However, on files, kqueue simply returns the
number of bytes left in the file in the data member of the struct kevent and assumes
that the application will know when it reaches the end. Therefore, we restructure the loop
to write the data to the network if a nonzero number of bytes were read. Next, we check
our modified EOF condition: if we have read zero bytes or if it's a file and we've read as
many bytes as are left in the file. The other modification from Figure 6.13 is that instead of
using FD_CLR to remove the input descriptor from the file set, we set the flags to
EV_DELETE and call kevent to remove this event from the filter in the kernel.

Suggestions
Care should be taken with these newly evolved interfaces to read the documentation
specific to the OS release. These interfaces often change in subtle ways between releases
while the vendors work through the details of how they should work.

While writing nonportable code is, in general, something to avoid, it is quite common to
use any means possible to optimize a very heavily used network application for the specific
server it runs on.

[ Team LiB ]

Page 486

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

14.10 Summary
There are three main ways to set a time limit on a socket operation:

 Use the alarm function and the SIGALRM signal

 Use the time limit that is provided by select

 Use the newer SO_RCVTIMEO and SO_SNDTIMEO socket options

The first is easy to use, but involves signal handling, and as we will see in Section 20.5,
can lead to race conditions. Using select means that we block in this function with its
provided time limit instead of blocking in a call to read, write, or connect. The third
alternative, to use the new socket options, is also easy, but is not provided by all
implementations.

recvmsg and sendmsg are the most general of the five groups of I/O functions provided.
They combine the ability to specify an MSG_xxx flag (from recv and send), plus employ the
ability to return or specify the peer's protocol address (from recvfrom and sendto), with
the ability to use multiple buffers (from readv and writev), along with two new features:
returning flags to the application and receiving or sending ancillary data.

We describe ten different forms of ancillary data in the text, six of which are new with
IPv6. Ancillary data consists of one or more ancillary data objects, each object preceded by
a cmsghdr structure specifying its length, protocol level, and type of data. Five functions
beginning with CMSG_ are used to build and parse ancillary data.

Sockets can be used with the C standard I/O library, but doing this adds another level of
buffering to that already being performed by TCP. Indeed, a lack of understanding of the
buffering performed by the standard I/O library is the most common problem with the
library. Since a socket is not a terminal device, the common solution to this potential
problem is to set the standard I/O stream to unbuffered, or to simply avoid standard I/O
on sockets completely.

Many vendors provide advanced ways to poll for many events without the overhead
required by select and poll. While writing nonportable code should be avoided whenever
possible, sometimes the benefits of performance improvements outweigh the risk of
nonportability.

[ Team LiB ]

Page 487

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Exercises
14.1 What happens in Figure 14.1 when we reset the signal handler, and the

process has not established a handler for SIGALRM?

14.2 In Figure 14.1, we print a warning if the process already has an alarm
timer set. Modify the function to reset this alarm for the process after
the connect, before the function returns.

14.3 Modify Figure 11.11 as follows: Before calling read, call recv specifying
MSG_PEEK. When this returns, call ioctl with a command of FIONREAD
and print the number of bytes queued on the socket's receive buffer.
Then, call read to actually read the data.

14.4 What happens to the data in a standard I/O buffer that has not yet
been output if the process falls off the end of the main function instead
of calling exit?

14.5 Apply each of the two changes described following Figure 14.14 and
verify that each one corrects the buffering problem.

[ Team LiB ]

Page 488

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Chapter 15. Unix Domain Protocols
Section 15.1.?Introduction

Section 15.2.?Unix Domain Socket Address Structure

Section 15.3.?socketpair Function

Section 15.4.?Socket Functions

Section 15.5.?Unix Domain Stream Client/Server

Section 15.6.?Unix Domain Datagram Client/Server

Section 15.7.?Passing Descriptors

Section 15.8.?Receiving Sender Credentials

Section 15.9.?Summary

Exercises

[ Team LiB ]

Page 489

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

15.1 Introduction
The Unix domain protocols are not an actual protocol suite, but a way of performing
client/server communication on a single host using the same API that is used for clients
and servers on different hosts. The Unix domain protocols are an alternative to the
interprocess communication (IPC) methods described in Volume 2 of this series, when the
client and server are on the same host. Details on the actual implementation of Unix
domain sockets in a Berkeley-derived kernel are provided in part 3 of TCPv3.

Two types of sockets are provided in the Unix domain: stream sockets (similar to TCP) and
datagram sockets (similar to UDP). Even though a raw socket is also provided, its
semantics have never been documented, it is not used by any program that the authors
are aware of, and it is not defined by POSIX.

Unix domain sockets are used for three reasons:

1. On Berkeley-derived implementations, Unix domain sockets are often twice as fast
as a TCP socket when both peers are on the same host (pp. 223 224 of TCPv3).
One application takes advantage of this: the X Window System. When an X11 client
starts and opens a connection to the X11 server, the client checks the value of the 
DISPLAY environment variable, which specifies the server's hostname, window, and
screen. If the server is on the same host as the client, the client opens a Unix
domain stream connection to the server; otherwise the client opens a TCP
connection to the server.

2. Unix domain sockets are used when passing descriptors between processes on the
same host. We will provide a complete example of this in Section 15.7.

3. Newer implementations of Unix domain sockets provide the client's credentials (user
ID and group IDs) to the server, which can provide additional security checking. We
will describe this in Section 15.8.

The protocol addresses used to identify clients and servers in the Unix domain are
pathnames within the normal filesystem. Recall that IPv4 uses a combination of 32-bit
addresses and 16-bit port numbers for its protocol addresses, and IPv6 uses a combination
of 128-bit addresses and 16-bit port numbers for its protocol addresses. These pathnames
are not normal Unix files: We cannot read from or write to these files except from a
program that has associated the pathname with a Unix domain socket.

[ Team LiB ]

Page 490

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

15.2 Unix Domain Socket Address Structure
Figure 15.1 shows the Unix domain socket address structure, which is defined by including
the <sys/un.h> header.

Figure 15.1 Unix domain socket address structure: sockaddr_un.

struct sockaddr_un {

  sa_family_t sun_family;     /* AF_LOCAL */

  char        sun_path[104];  /* null-terminated pathname */

};

The POSIX specification does not define the length of the sun_path array and it specifically
warns that applications should not assume a particular length. Use the sizeof operator to
find the length at run-time and to verify that a pathname fits into the array. The length is
likely to be between 92 and 108 rather than a larger value big enough to hold any
pathname. The reason for these limits is an implementation artifact dating back to 4.2BSD
requiring that this structure fit in a 128-byte mbuf (a kernel memory buffer).

The pathname stored in the sun_path array must be null-terminated. The macro SUN_LEN is
provided and it takes a pointer to a sockaddr_un structure and returns the length of the
structure, including the number of non-null bytes in the pathname. The unspecified
address is indicated by a null string as the pathname, that is, a structure with sun_path[0]
equal to 0. This is the Unix domain equivalent of the IPv4 INADDR_ANY constant and the
IPv6 IN6ADDR_ANY_INIT constant.

POSIX renames the Unix domain protocols as "local IPC," to remove the dependence on the
Unix OS. The historical constant AF_UNIX becomes AF_LOCAL. Nevertheless, we still use the
term "Unix domain" as that has become its de facto name, regardless of the underlying OS.
Also, even with POSIX attempting to make these OS-independent, the socket address
structure still retains the _un suffix!

Example: bind of Unix Domain Socket
The program in Figure 15.2 creates a Unix domain socket, binds a pathname to it, and
then calls getsockname and prints the bound pathname.

Figure 15.2 bind of a pathname to a Unix domain socket.

unixdomain/unixbind.c

 1 #include     "unp.h"

 2 int

 3 main(int argc, char **argv)

 4 {

 5     int     sockfd;

 6     socklen_t len;

 7     struct sockaddr_un addr1, addr2;

 8     if (argc != 2)

 9         err_quit("usage: unixbind <pathname>");

10     sockfd = Socket(AF_LOCAL, SOCK_STREAM, 0);

11     unlink(argv[1]);            /* OK if this fails */

Page 491

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


12     bzero(&addr1, sizeof(addr1));

13     addr1.sun_family = AF_LOCAL;

14     strncpy(addr1.sun_path, argv[1], sizeof(addr1.sun_path) - 1);

15     Bind(sockfd, (SA *) &addr1, SUN_LEN(&addr1));

16     len = sizeof(addr2);

17     Getsockname(sockfd, (SA *) &addr2, &len);

18     printf("bound name = %s, returned len = %d\n", addr2.sun_path, len);

19     exit(0);

20 }

Remove pathname first

11 The pathname that we bind to the socket is the command-line argument. But the bind
will fail if the pathname already exists in the filesystem. Therefore, we call unlink to delete
the pathname, in case it already exists. If it does not exist, unlink returns an error, which
we ignore.

bind and then getsockname

12 18 We copy the command-line argument using strncpy, to avoid overflowing the
structure if the pathname is too long. Since we initialize the structure to zero and then
subtract one from the size of the sun_path array, we know the pathname is
null-terminated. bind is called and we use the macro SUN_LEN to calculate the length
argument for the function. We then call getsockname to fetch the name that was just
bound and print the result.

If we run this program under Solaris, we obtain the following results:

solaris % umask                           first print our umask value

022                                         shells print this value in octal

solaris % unixbind /tmp/moose

bound name = /tmp/moose, returned len = 13

solaris % unixbind /tmp/moose              run it again

bound name = /tmp/moose, returned len = 13

solaris % ls -l /tmp/moose

srwxr-xr-x 1 andy     staff       0 Aug 10 13:13 /tmp/moose

solaris %unixbind /tmp/moose

srwxr-xr-x 1 andy     staff       0 Aug 10 13:13 /tmp/moose

We first print our umask value because POSIX specifies that the file access permissions of
the resulting pathname should be modified by this value. Our value of 22 turns off the
group-write and other-write bits. We then run the program and see that the length
returned by getsockname is 13: 2 bytes for the sun_family member and 11 bytes for the
actual pathname (excluding the terminating null byte). This is an example of a value-result
argument whose result when the function returns differs from its value when the function
was called. We can output the pathname using the %s format of printf because the
pathname is null-terminated in the sun_path member. We then run the program again, to
verify that calling unlink removes the pathname.

We run ls -l to see the file permissions and file type. Under Solaris (and most Unix
variants), the file type is a socket, which is printed as s. We also notice that the permission
bits were modified as appropriate by the umask value. Finally, we run ls again, with the -F
option, which causes Solaris to append an equals sign to the pathname.

Page 492

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


Historically, the umask value did not apply to the creation of Unix domain sockets, but over
time, most Unix vendors have fixed this so the permissions fit expectations. Systems still
exist where the file permission bits may show either all permissions or no permissions
(regardless of the umask setting). In addition, some systems show the file as a FIFO, which
is printed as p, and not all systems show the equals sign with ls -F. The behavior we show
above is the most common.

[ Team LiB ]

Page 493

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

15.3 socketpair Function
The socketpair function creates two sockets that are then connected together. This
function applies only to Unix domain sockets.

#include <sys/socket.h>

int socketpair(int family, int type, int protocol, int sockfd[2]);

Returns: nonzero if OK, -1 on error

The family must be AF_LOCAL and the protocol must be 0. The type, however, can be
either SOCK_STREAM or SOCK_DGRAM. The two socket descriptors that are created are returned
as sockfd[0] and sockfd[1].

This function is similar to the Unix pipe function: Two descriptors are returned, and each
descriptor is connected to the other. Indeed, Berkeley-derived implementations employ 
pipe by performing the same internal operations as socketpair (pp. 253 254 of TCPv3).

The two created sockets are unnamed; that is, there is no implicit bind involved.

The result of socketpair with a type of SOCK_STREAM is called a stream pipe. It is similar to
a regular Unix pipe (created by the pipe function), but a stream pipe is full-duplex; that is,
both descriptors can be read and written. We show a picture of a stream pipe created by 
socketpair in Figure 15.7.

POSIX does not require full-duplex pipes. On SVR4, pipe returns two full-duplex
descriptors, while Berkeley-derived kernels traditionally return two half-duplex descriptors
(Figure 17.31 of TCPv3).

[ Team LiB ]

Page 494

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

15.4 Socket Functions
There are several differences and restrictions in the socket functions when using Unix
domain sockets. We list the POSIX requirements when applicable, and note that not all
implementations are currently at this level.

1. The default file access permissions for a pathname created by bind should be 0777
(read, write, and execute by user, group, and other), modified by the current umask
value.

2. The pathname associated with a Unix domain socket should be an absolute
pathname, not a relative pathname. The reason to avoid the latter is that its
resolution depends on the current working directory of the caller. That is, if the
server binds a relative pathname, then the client must be in the same directory as
the server (or must know this directory) for the client's call to either connect or
sendto to succeed.

POSIX says that binding a relative pathname to a Unix domain socket gives
unpredictable results.

3. The pathname specified in a call to connect must be a pathname that is currently
bound to an open Unix domain socket of the same type (stream or datagram).
Errors occur if: (i) the pathname exists but is not a socket; (ii) the pathname exists
and is a socket, but no open socket descriptor is associated with the pathname; or
(iii) the pathname exists and is an open socket, but is of the wrong type (that is, a
Unix domain stream socket cannot connect to a pathname associated with a Unix
domain datagram socket, and vice versa).

4. The permission testing associated with the connect of a Unix domain socket is the
same as if open had been called for write-only access to the pathname.

5. Unix domain stream sockets are similar to TCP sockets: They provide a byte stream
interface to the process with no record boundaries.

6. If a call to connect for a Unix domain stream socket finds that the listening socket's
queue is full (Section 4.5), ECONNREFUSED is returned immediately. This differs from
TCP: The TCP listener ignores an arriving SYN if the socket's queue is full, and the
TCP connector retries by sending the SYN several times.

7. Unix domain datagram sockets are similar to UDP sockets: They provide an
unreliable datagram service that preserves record boundaries.

8. Unlike UDP sockets, sending a datagram on an unbound Unix domain datagram
socket does not bind a pathname to the socket. (Recall that sending a UDP
datagram on an unbound UDP socket causes an ephemeral port to be bound to the
socket.) This means the receiver of the datagram will be unable to send a reply
unless the sender has bound a pathname to its socket. Similarly, unlike TCP and
UDP, calling connect for a Unix domain datagram socket does not bind a pathname
to the socket.

[ Team LiB ]

Page 495

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

15.5 Unix Domain Stream Client/Server
We now recode our TCP echo client/server from Chapter 5 to use Unix domain sockets.
Figure 15.3 shows the server, which is a modification of Figure 5.12 to use the Unix
domain stream protocol instead of TCP.

8 The datatype of the two socket address structures is now sockaddr_un.

10 The first argument to socket is AF_LOCAL, to create a Unix domain stream socket.

11 15 The constant UNIXSTR_PATH is defined in unp.h to be /tmp/unix.str. We first unlink
the pathname, in case it exists from an earlier run of the server, and then initialize the
socket address structure before calling bind. An error from unlink is acceptable.

Notice that this call to bind differs from the call in Figure 15.2. Here, we specify the size of
the socket address structure (the third argument) as the total size of the sockaddr_un
structure, not just the number of bytes occupied by the pathname. Both lengths are valid
since the pathname must be null-terminated.

The remainder of the function is the same as Figure 5.12. The same str_echo function is
used (Figure 5.3).

Figure 15.4 is the Unix domain stream protocol echo client. It is a modification of Figure
5.4.

6 The socket address structure to contain the server's address is now a sockaddr_un
structure.

7 The first argument to socket is AF_LOCAL.

8 10 The code to fill in the socket address structure is identical to the code shown for the
server: Initialize the structure to 0, set the family to AF_LOCAL, and copy the pathname
into the sun_path member.

12 The function str_cli is the same as earlier (Figure 6.13 was the last version we
developed).

Figure 15.3 Unix domain stream protocol echo server.

unixdomain/unixstrserv01.c

 1 #include    "unp.h"

 2 int

 3 main(int argc, char **argv)

 4 {

 5     int     listenfd, connfd;

 6     pid_t   childpid;

 7     socklen_t clilen;

 8     struct sockaddr_un cliaddr, servaddr;

 9     void    sig_chld(int);

10     listenfd = Socket(AF_LOCAL, SOCK_STREAM, 0);

11     unlink(UNIXSTR_PATH);

12     bzero(&servaddr, sizeof(servaddr));

13     servaddr.sun_family = AF_LOCAL;

14     strcpy(servaddr.sun_path, UNIXSTR_PATH);

Page 496

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


15     Bind(listenfd, (SA *) &servaddr, sizeof(servaddr));

16     Listen(listenfd, LISTENQ);

17     Signal(SIGCHLD, sig_chld);

18     for ( ; ; ) {

19         clilen = sizeof(cliaddr);

20         if ( (connfd = accept(listenfd, (SA *) &cliaddr, &clilen)) < 0) {

21             if (errno == EINTR)

22                 continue;       /* back to for() */

23             else

24                 err_sys("accept error");

25         } 

26         if ( (childpid = Fork()) == 0) { /* child process */

27             Close(listenfd);    /* close listening socket */

28             str_echo(connfd);   /* process request */

29             exit(0);

30         }

31         Close(connfd);          /* parent closes connected socket */

32     } 

33 }

[ Team LiB ]

Page 497

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

15.6 Unix Domain Datagram Client/Server
We now recode our UDP client/server from Sections 8.3 and 8.5 to use Unix domain
datagram sockets. Figure 15.5 shows the server, which is a modification of Figure 8.3.

Figure 15.4 Unix domain stream protocol echo client.

unixdomain/unixstrcli01.c

 1 #include    "unp.h"

 2 int

 3 main(int argc, char **argv)

 4 {

 5     int     sockfd;

 6     struct sockaddr_un servaddr;

 7     sockfd = Socket(AF_LOCAL, SOCK_STREAM, 0);

 8     bzero(&servaddr, sizeof(servaddr));

 9     servaddr.sun_family = AF_LOCAL;

10     strcpy(servaddr.sun_path, UNIXSTR_PATH);

11     Connect(sockfd, (SA *) &servaddr, sizeof(servaddr));

12     str_cli(stdin, sockfd);     /* do it all */

13     exit(0);

14 }

Figure 15.5 Unix domain datagram protocol echo server.

unixdomain/unixdgserv01.c

 1 #include    "unp.h"

 2 int

 3 main(int argc, char **argv)

 4 {

 5     int     sockfd;

 6     struct sockaddr_un servaddr, cliaddr;

 7     sockfd = Socket(AF_LOCAL, SOCK_DGRAM, 0);

 8     unlink(UNIXDG_PATH);

 9     bzero(&servaddr, sizeof(servaddr));

10     servaddr.sun_family = AF_LOCAL;

11     strcpy(servaddr.sun_path, UNIXDG_PATH);

12     Bind(sockfd, (SA *) &servaddr, sizeof(servaddr));

13     dg_echo(sockfd, (SA *) &cliaddr, sizeof(cliaddr));

14 }

6 The datatype of the two socket address structures is now sockaddr_un.

7 The first argument to socket is AF_LOCAL, to create a Unix domain datagram socket.

Page 498

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


8 12 The constant UNIXDG_PATH is defined in unp.h to be /tmp/unix.dg. We first unlink
the pathname, in case it exists from an earlier run of the server, and then initialize the
socket address structure before calling bind. An error from unlink is acceptable.

13 The same dg_echo function is used (Figure 8.4).

Figure 15.6 is the Unix domain datagram protocol echo client. It is a modification of Figure
8.7.

Figure 15.6 Unix domain datagram protocol echo client.

unixdomain/unixdgcli01.c

 1 #include    "unp.h"

 2 int

 3 main(int argc, char **argv)

 4 {

 5     int     sockfd;

 6     struct sockaddr_un cliaddr, servaddr;

 7     sockfd = Socket(AF_LOCAL, SOCK_DGRAM, 0);

 8     bzero(&cliaddr, sizeof(cliaddr));   /* bind an address for us */

 9     cliaddr.sun_family = AF_LOCAL;

10     strcpy(cliaddr.sun_path, tmpnam(NULL));

11     Bind(sockfd, (SA *) &cliaddr, sizeof(cliaddr));

12     bzero(&servaddr, sizeof(servaddr)); /* fill in server's address */

13     servaddr.sun_family = AF_LOCAL;

14     strcpy(servaddr.sun_path, UNIXDG_PATH);

15     dg_cli(stdin, sockfd, (SA *) &servaddr, sizeof(servaddr));

16     exit(0);

17 }

6 The socket address structure to contain the server's address is now a sockaddr_un
structure. We also allocate one of these structures to contain the client's address, which we
will talk about shortly.

7 The first argument to socket is AF_LOCAL.

8 11 Unlike our UDP client, when using the Unix domain datagram protocol, we must
explicitly bind a pathname to our socket so that the server has a pathname to which it can
send its reply. We call tmpnam to assign a unique pathname that we then bind to our
socket. Recall from Section 15.4 that sending a datagram on an unbound Unix domain
datagram socket does not implicitly bind a pathname to the socket. Therefore, if we omit
this step, the server's call to recvfrom in the dg_echo function returns a null pathname,
which then causes an error when the server calls sendto.

12 14 The code to fill in the socket address structure with the server's well-known
pathname is identical to the code shown earlier for the server.

15 The function dg_cli is the same as that shown in Figure 8.8.

[ Team LiB ]

Page 499

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

15.7 Passing Descriptors
When we think of passing an open descriptor from one process to another, we normally
think of either

 A child sharing all the open descriptors with the parent after a call to fork

 All descriptors normally remaining open when exec is called

In the first example, the process opens a descriptor, calls fork, and then the parent closes
the descriptor, letting the child handle the descriptor. This passes an open descriptor from
the parent to the child. But, we would also like the ability for the child to open a descriptor
and pass it back to the parent.

Current Unix systems provide a way to pass any open descriptor from one process to any
other process. That is, there is no need for the processes to be related, such as a parent
and its child. The technique requires us to first establish a Unix domain socket between the
two processes and then use sendmsg to send a special message across the Unix domain
socket. This message is handled specially by the kernel, passing the open descriptor from
the sender to the receiver.

The black magic performed by the 4.4BSD kernel in passing an open descriptor across a
Unix domain socket is described in detail in Chapter 18 of TCPv3.

SVR4 uses a different technique within the kernel to pass an open descriptor, the I_SENDFD
and I_RECVFD ioctl commands, described in Section 15.5.1 of APUE. But, the process can
still access this kernel feature using a Unix domain socket. In this text, we describe the use
of Unix domain sockets to pass open descriptors, since this is the most portable
programming technique: It works under both Berkeley-derived kernels and SVR4, whereas
using the I_SENDFD and I_RECVFD ioctls works only under SVR4.

The 4.4BSD technique allows multiple descriptors to be passed with a single sendmsg,
whereas the SVR4 technique passes only a single descriptor at a time. All our examples
pass one descriptor at a time.

The steps involved in passing a descriptor between two processes are then as follows:

1. Create a Unix domain socket, either a stream socket or a datagram socket.

If the goal is to fork a child and have the child open the descriptor and pass the
descriptor back to the parent, the parent can call socketpair to create a stream
pipe that can be used to exchange the descriptor.

If the processes are unrelated, the server must create a Unix domain stream socket
and bind a pathname to it, allowing the client to connect to that socket. The client
can then send a request to the server to open some descriptor and the server can
pass back the descriptor across the Unix domain socket. Alternately, a Unix domain
datagram socket can also be used between the client and server, but there is little
advantage in doing this, and the possibility exists for a datagram to be discarded.
We will use a stream socket between the client and server in an example presented
later in this section.

2. One process opens a descriptor by calling any of the Unix functions that returns a
descriptor: open, pipe, mkfifo, socket, or accept, for example. Any type of
descriptor can be passed from one process to another, which is why we call the
technique "descriptor passing" and not "file descriptor passing."

3. The sending process builds a msghdr structure (Section 14.5) containing the

Page 500

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


descriptor to be passed. POSIX specifies that the descriptor be sent as ancillary data
(the msg_control member of the msghdr structure, Section 14.6), but older
implementations use the msg_accrights member. The sending process calls
sendmsg to send the descriptor across the Unix domain socket from Step 1. At this
point, we say that the descriptor is "in flight." Even if the sending process closes the
descriptor after calling sendmsg, but before the receiving process calls recvmsg (in
the next step), the descriptor remains open for the receiving process. Sending a
descriptor increments the descriptor's reference count by one.

4. The receiving process calls recvmsg to receive the descriptor on the Unix domain
socket from Step 1. It is normal for the descriptor number in the receiving process
to differ from the descriptor number in the sending process. Passing a descriptor is
not passing a descriptor number, but involves creating a new descriptor in the
receiving process that refers to the same file table entry within the kernel as the
descriptor that was sent by the sending process.

The client and server must have some application protocol so that the receiver of the
descriptor knows when to expect it. If the receiver calls recvmsg without allocating room to
receive the descriptor, and a descriptor was passed and is ready to be read, the descriptor
that was being passed is closed (p. 518 of TCPv2). Also, the MSG_PEEK flag should be
avoided with recvmsg if a descriptor is expected, as the result is unpredictable.

Descriptor Passing Example
We now provide an example of descriptor passing. We will write a program named mycat
that takes a pathname as a command-line argument, opens the file, and copies it to
standard output. But instead of calling the normal Unix open function, we call our own
function named my_open. This function creates a stream pipe and calls fork and exec to
initiate another program that opens the desired file. This program must then pass the open
descriptor back to the parent across the stream pipe.

Figure 15.7 shows the first step: our mycat program after creating a stream pipe by calling
socketpair. We designate the two descriptors returned by socketpair as [0] and [1].

Figure 15.7. mycat program after creating stream pipe using socketpair.

The process then calls fork and the child calls exec to execute the openfile program. The
parent closes the [1] descriptor and the child closes the [0] descriptor. (There is no
difference in either end of the stream pipe; the child could close [1] and the parent could
close [0].) This gives us the arrangement shown in Figure 15.8.

Figure 15.8. mycat program after invoking openfile program.

Page 501

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


The parent must pass three pieces of information to the openfile program: (i) the
pathname of the file to open, (ii) the open mode (read-only, read write, or write-only),
and (iii) the descriptor number corresponding to its end of the stream pipe (what we show
as [1]). We choose to pass these three items as command-line arguments in the call to
exec. An alternative method is to send these three items as data across the stream pipe.
The openfile program sends back the open descriptor across the stream pipe and
terminates. The exit status of the program tells the parent whether the file could be
opened, and if not, what type of error occurred.

The advantage in executing another program to open the file is that the program could be
a "set-user-ID" binary, which executes with root privileges, allowing it to open files that we
normally do not have permission to open. This program could extend the concept of normal
Unix permissions (user, group, and other) to any form of access checking it desires.

We begin with the mycat program, shown in Figure 15.9.

Figure 15.9 mycat program: copies a file to standard output.

unixdomain/mycat.c

 1 #include     "unp.h"

 2 int      my_open(const char *, int);

 3 int

 4 main(int argc, char **argv)

 5 {

 6     int     fd, n;

 7     char    buff[BUFFSIZE];

 8     if (argc != 2)

 9         err_quit("usage: mycat <pathname>");

10     if ( (fd = my_open(argv[1], O_RDONLY)) < 0)

11         err_sys("cannot open %s", argv[1]);

12     while ( (n = Read(fd, buff, BUFFSIZE)) > 0)

13         Write(STDOUT_FILENO, buff, n);

14     exit(0);

15 }

If we replace the call to my_open with a call to open, this simple program just copies a file
to standard output.

The function my_open, shown in Figure 15.10, is intended to look like the normal Unix open
function to its caller. It takes two arguments, a pathname and an open mode (such as 
O_RDONLY to mean read-only), opens the file, and returns a descriptor.

Page 502

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


Create stream pipe

8 socketpair creates a stream pipe. Two descriptors are returned: sockfd[0] and
sockfd[1]. This is the state we show in Figure 15.7.

fork and exec

9 16 fork is called, and the child then closes one end of the stream pipe. The descriptor
number of the other end of the stream pipe is formatted into the argsockfd array and the
open mode is formatted into the argmode array. We call snprintf because the arguments
to exec must be character strings. The openfile program is executed. The execl function
should not return unless it encounters an error. On success, the main function of the
openfile program starts executing.

Parent waits for child

17 22 The parent closes the other end of the stream pipe and calls waitpid to wait for the
child to terminate. The termination status of the child is returned in the variable status,
and we first verify that the program terminated normally (i.e., it was not terminated by a
signal). The WEXITSTATUS macro then converts the termination status into the exit status,
whose value will be between 0 and 255. We will see shortly that if the openfile program
encounters an error opening the requested file, it terminates with the corresponding errno
value as its exit status.

Figure 15.10 my_open function: opens a file and returns a descriptor.

unixdomain/myopen.c

 1 #include     "unp.h"

 2 int

 3 my_open(const char *pathname, int mode)

 4 {

 5     int     fd, sockfd[2], status;

 6     pid_t   childpid;

 7     char    c, argsockfd[10], argmode[10];

 8     Socketpair(AF_LOCAL, SOCK_STREAM, 0, sockfd);

 9     if ( (childpid = Fork()) == 0) { /* child process */

10         Close(sockfd[0]);

11         snprintf(argsockfd, sizeof(argsockfd), "%d", sockfd[1]);

12         snprintf(argmode, sizeof(argmode), "%d", mode);

13         execl("./openfile", "openfile", argsockfd, pathname, argmode,

14               (char *) NULL);

15         err_sys("execl error");

16     }

17     /* parent process - wait for the child to terminate */

18     Close(sockfd[1]);           /* close the end we don't use */

19     Waitpid(childpid, &status, 0);

20     if (WIFEXITED(status) == 0)

21         err_quit("child did not terminate");

22     if ( (status = WEXITSTATUS(status)) == 0)

23         Read_fd(sockfd[0], &c, 1, &fd);

24     else {

25         errno = status;         /* set errno value from child's status */

26         fd = -1;

Page 503

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


27     }

28     Close(sockfd[0]);

29     return (fd);

30 }

Receive descriptor

23 Our function read_fd, shown next, receives the descriptor on the stream pipe. In
addition to the descriptor, we read one byte of data, but do nothing with it.

When sending and receiving a descriptor across a stream pipe, we always send at least one
byte of data, even if the receiver does nothing with the data. Otherwise, the receiver
cannot tell whether a return value of 0 from read_fd means "no data (but possibly a
descriptor)" or "end-of-file."

Figure 15.11 shows the read_fd function, which calls recvmsg to receive data and a
descriptor on a Unix domain socket. The first three arguments to this function are the same
as for the read function, with a fourth argument being a pointer to an integer that will
contain the received descriptor on return.

9 26 This function must deal with two versions of recvmsg: those with the msg_control
member and those with the msg_accrights member. Our config.h header (Figure D.2)
defines the constant HAVE_MSGHDR_MSG_CONTROL if the msg_control version is supported.

Make certain msg_control is suitably aligned

10 13 The msg_control buffer must be suitably aligned for a cmsghdr structure. Simply
allocating a char array is inadequate. Here we declare a union of a cmsghdr structure with
the character array, which guarantees that the array is suitably aligned. Another technique
is to call malloc, but that would require freeing the memory before the function returns.

27 45 recvmsg is called. If ancillary data is returned, the format is as shown in Figure
14.13. We verify that the length, level, and type are correct, then fetch the newly created
descriptor and return it through the caller's recvfd pointer. CMSG_DATA returns the pointer
to the cmsg_data member of the ancillary data object as an unsigned char pointer. We
cast this to an int pointer and fetch the integer descriptor that is pointed to.

Figure 15.11 read_fd function: receives data and a descriptor.

lib/read_fd.c

 1 #include     "unp.h"

 2 ssize_t

 3 read_fd(int fd, void *ptr, size_t nbytes, int *recvfd)

 4 {

 5     struct msghdr msg;

 6     struct iovec iov[1];

 7     ssize_t n;

 8 #ifdef HAVE_MSGHDR_MSG_CONTROL

 9     union {

10         struct cmsghdr cm;

11         char     control[CMSG_SPACE(sizeof (int))];

12     } control_un;

13     struct cmsghdr  *cmptr;

14     msg.msg_control  = control_un.control;

15     msg.msg_controllen = sizeof(control_un.control);

16 #else

Page 504

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


17     int     newfd;

18     msg.msg_accrights = (caddr_t) & newfd;

19     msg.msg_accrightslen = sizeof(int);

20 #endif

21     msg.msg_name = NULL;

22     msg.msg_namelen = 0;

23     iov[0].iov_base = ptr;

24     iov[0].iov_len = nbytes;

25     msg.msg_iov = iov;

26     msg.msg_iovlen = 1;

27     if ( (n = recvmsg(fd, &msg, 0)) <= 0)

28         return (n);

29 #ifdef  HAVE_MSGHDR_MSG_CONTROL

30     if ( (cmptr = CMSG_FIRSTHDR(&msg)) != NULL &&

31         cmptr->cmsg_len == CMSG_LEN(sizeof(int))) {

32         if (cmptr->cmsg_level != SOL_SOCKET)

33             err_quit("control level != SOL_SOCKET");

34         if (cmptr->cmsg_type != SCM_RIGHTS)

35             err_quit("control type != SCM_RIGHTS");

36         *recvfd = *((int *) CMSG_DATA(cmptr));

37     } else

38         *recvfd = -1;           /* descriptor was not passed */

39 #else

40     if (msg.msg_accrightslen == sizeof(int))

41         *recvfd = newfd;

42     else

43         *recvfd = -1;       /* descriptor was not passed */

44 #endif

45     return (n);

46 }

If the older msg_accrights member is supported, the length should be the size of an
integer and the newly created descriptor is returned through the caller's recvfd pointer.

Figure 15.12 shows the openfile program. It takes the three command-line arguments
that must be passed and calls the normal open function.

Figure 15.12 openfile function: opens a file and passes back the
descriptor.

unixdomain/openfile.c

 1 #include    "unp.h"

 2 int

 3 main(int argc, char **argv)

 4 {

 5     int     fd;

 6     if (argc != 4)

 7         err_quit("openfile <sockfd#> <filename> <mode>");

 8     if ( (fd = open(argv[2], atoi(argv[3]))) < 0)

 9         exit((errno > 0) ? errno : 255);

Page 505

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


10     if (write_fd(atoi(argv[1]), "", 1, fd) < 0)

11         exit((errno > 0) ? errno : 255);

12     exit(0);

13 }

Command-line arguments

7 12 Since two of the three command-line arguments were formatted into character strings
by my_open, two are converted back into integers using atoi.

open the file

9 10 The file is opened by calling open. If an error is encountered, the errno value
corresponding to the open error is returned as the exit status of the process.

Pass back descriptor

11 12 The descriptor is passed back by write_fd, which we show next. This process then
terminates. But, recall that earlier in the chapter, we said that it was acceptable for the
sending process to close the descriptor that was passed (which happens when we call exit
), because the kernel knows that the descriptor is in flight, and keeps it open for the
receiving process.

The exit status must be between 0 and 255. The highest errno value is around 150. An
alternate technique that doesn't require the errno values to be less than 256 would be to
pass back an error indication as normal data in the call to sendmsg.

Figure 15.13 shows the final function, write_fd, which calls sendmsg to send a descriptor
(and optional data, which we do not use) across a Unix domain socket.

Figure 15.13 write_fd function: passes a descriptor by calling sendmsg.

lib/write_fd.c

 1 #include    "unp.h"

 2 ssize_t

 3 write_fd(int fd, void *ptr, size_t nbytes, int sendfd)

 4 {

 5     struct msghdr msg;

 6     struct iovec iov[1];

 7 #ifdef  HAVE_MSGHDR_MSG_CONTROL

 8     union {

 9         struct cmsghdr cm;

10         char    control[CMSG_SPACE(sizeof(int))];

11     } control_un;

12     struct cmsghdr *cmptr;

13     msg.msg_control = control_un.control;

14     msg.msg_controllen = sizeof(control_un.control);

15     cmptr = CMSG_FIRSTHDR(&msg);

16     cmptr->cmsg_len = CMSG_LEN(sizeof(int));

17     cmptr->cmsg_level = SOL_SOCKET;

18     cmptr->cmsg_type = SCM_RIGHTS;

19     *((int *) CMSG_DATA(cmptr)) = sendfd;

20 #else

21     msg.msg_accrights = (caddr_t) & sendfd;

Page 506

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


22     msg.msg_accrightslen = sizeof(int);

23 #endif

24     msg.msg_name = NULL;

25     msg.msg_namelen = 0;

26     iov[0].iov_base = ptr;

27     iov[0].iov_len = nbytes;

28     msg.msg_iov = iov;

29     msg.msg_iovlen = 1;

30     return (sendmsg(fd, &msg, 0));

31 }

As with read_fd, this function must deal with either ancillary data or older access rights. In
either case, the msghdr structure is initialized and then sendmsg is called.

We will show an example of descriptor passing in Section 28.7 that involves unrelated
processes. Additionally, we will show an example in Section 30.9 that involves related
processes. We will use the read_fd and write_fd functions we just described.

[ Team LiB ]

Page 507

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

15.8 Receiving Sender Credentials
In Figure 14.13, we showed another type of data that can be passed along a Unix domain
socket as ancillary data: user credentials. Exactly how credentials are packaged up and
sent as ancillary data tends to be OS-specific. We describe FreeBSD here, and other Unix
variants are similar (usually the challenge is determining which structure to use for the
credentials). We describe this feature, even though it is not uniform across systems,
because it is an important, yet simple, addition to the Unix domain protocols. When a
client and server communicate using these protocols, the server often needs a way to know
exactly who the client is, to validate that the client has permission to ask for the service
being requested.

FreeBSD passes credentials in a cmsgcred structure, which is defined by including the
<sys/socket.h> header.

struct cmsgcred {

        pid_t    cmcred_pid;             /* PID of sending process */

        uid_t    cmcred_uid;             /* real UID of sending process */

        uid_t    cmcred_euid;            /* effective UID of sending process */

        gid_t    cmcred_gid;             /* real GID of sending process */

        short    cmcred_ngroups;         /* number of groups */

        gid_t    cmcred_groups[CMGROUP_MAX];     /* groups */

};

Normally, CMGROUP_MAX is 16. cmcred_ngroups is always at least 1, with the first element of
the array the effective group ID.

This information is always available on a Unix domain socket, although there are often
special arrangments the sender must make to have the information included when
sending, and there are often special arrangements (e.g., socket options) the receiver must
make to get the credentials. On our FreeBSD system, the receiver doesn't have to do
anything special other than call recvmsg with an ancillary buffer large enough to hold the
credentials, as we show in Figure 15.14. The sender, however, must include a cmsgcred
structure when sending data using sendmsg. It is important to note that although FreeBSD
requires the sender to include the structure, the contents are filled in by the kernel and
cannot be forged by the sender. This makes the passing of credentials over a Unix domain
socket a reliable way to verify the client's identity.

Example
As an example of credential passing, we modify our Unix domain stream server to ask for
the client's credentials. Figure 15.14 shows a new function, read_cred, that is similar to
read, but also returns a cmsgcred structure containing the sender's credentials.

3 4 The first three arguments are identical to read, with the fourth argument being a
pointer to an cmsgcred structure that will be filled in.

22 31 If credentials were returned, the length, level, and type of the ancillary data are
verified, and the resulting structure is copied back to the caller. If no credentials were
returned, we set the structure to 0. Since the number of groups (cmcred_ngroups) is
always 1 or more, the value of 0 indicates to the caller that no credentials were returned by
the kernel.

The main function for our echo server, Figure 15.3, is unchanged. Figure 15.15 shows the

Page 508

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


new version of the str_echo function, modified from Figure 5.3. This function is called by
the child after the parent has accepted a new client connection and called fork.

11 23 If credentials were returned, they are printed.

24 25 The remainder of the loop is unchanged. This code reads buffers from the client and
writes them back to the client.

Our client from Figure 15.4 is only changed minimally to pass an empty cmsgcred structure
that will be filled in when it calls sendmsg.

Figure 15.14 read_cred function: reads and returns sender's credentials.

unixdomain/readcred.c

 1 #include     "unp.h"

 2 #define CONTROL_LEN (sizeof(struct cmsghdr) + sizeof(struct cmsgcred))

 3 ssize_t

 4 read_cred(int fd, void *ptr, size_t nbytes, struct cmsgcred *cmsgcredptr)

 5 {

 6     struct msghdr msg;

 7     struct iovec iov[1];

 8     char    control[CONTROL_LEN];

 9     int     n;

10     msg.msg_name = NULL;

11     msg.msg_namelen = 0;

12     iov[0].iov_base = ptr;

13     iov[0].iov_len = nbytes;

14     msg.msg_iov = iov;

15     msg.msg_iovlen = 1;

16     msg.msg_control = control;

17     msg.msg_controllen = sizeof(control);

18     msg.msg_flags = 0;

19     if ( (n = recvmsg(fd, &msg, 0)) < 0)

20         return (n);

21     cmsgcredptr->cmcred_ngroups = 0;     /* indicates no credentials

returned */

22     if (cmsgcredptr && msg.msg_controllen > 0) {

23         struct cmsghdr *cmptr = (struct cmsghdr *) control;

24         if (cmptr->cmsg_len < CONTROL_LEN)

25             err_quit("control length = %d", cmptr->cmsg_len);

26         if (cmptr->cmsg_level != SOL_SOCKET)

27             err_quit("control level != SOL_SOCKET");

28         if (cmptr->cmsg_type != SCM_CREDS)

29             err_quit("control type != SCM_CREDS");

30         memcpy(cmsgcredptr, CMSG_DATA(cmptr), sizeof(struct cmsgcred));

31     }

32     return (n);

33 }

Figure 15.15 str_echo function: asks for client's credentials.

unixdomain/strecho.c

Page 509

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


 1 #include     "unp.h"

 2 ssize_t read_cred(int, void *, size_t, struct cmsgcred *);

 3 void

 4 str_echo(int sockfd)

 5 {

 6     ssize_t n;

 7     int     i;

 8     char     buf[MAXLINE];

 9     struct cmsgcred cred;

10   again:

11     while ( (n = read_cred(sockfd, buf, MAXLINE, &cred)) > 0) {

12         if (cred.cmcred_ngroups == 0) {

13             printf("(no credentials returned)\n");

14         } else {

15             printf("PID of sender = %d\n", cred.cmcred_pid);

16             printf("real user ID = %d\n", cred.cmcred_uid);

17             printf("real group ID = %d\n", cred.cmcred_gid);

18             printf("effective user ID = %d\n", cred.cmcred_euid);

19             printf("%d groups:", cred.cmcred_ngroups - 1);

20             for (i = 1; i < cred.cmcred_ngroups; i++)

21                 printf(" %d", cred.cmcred_groups[i]);

22             printf("\n");

23         }

24         Writen(sockfd, buf, n);

25     }

26     if (n < 0 && errno == EINTR)

27         goto again;

28     else if (n < 0)

29         err_sys("str_echo: read error");

30 }

Before running the client, we can see our current credentials using the id command.

freebsd % id

uid=1007(andy) gid=1007(andy) groups=1007(andy), 0(wheel)

Starting the server and then running the client one time in another window produces the
following output from the server:

freebsd % unixstrserv02

PID of sender = 26881

real user ID = 1007

real group ID = 1007

effective user ID = 1007

2 groups: 1007 0

This information is output only after the client has sent data to the server. We see that the
information matches what we saw with the id command.

[ Team LiB ]

Page 510

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


Page 511

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

15.9 Summary
Unix domain sockets are an alternative to IPC when the client and server are on the same
host. The advantage in using Unix domain sockets over some form of IPC is that the API is
nearly identical to a networked client/server. The advantage in using Unix domain sockets
over TCP, when the client and server are on the same host, is the increased performance of
Unix domain sockets over TCP on many implementations.

We modified our TCP and UDP echo clients and servers to use the Unix domain protocols
and the only major difference was having to bind a pathname to the UDP client's socket, so
that the UDP server had somewhere to send the replies.

Descriptor passing is a powerful technique between clients and servers on the same host
and it takes place across a Unix domain socket. We showed an example in Section 15.7
that passed a descriptor from a child back to the parent. In Section 28.7, we will show an
example in which the client and server are unrelated, and in Section 30.9, we will show
another example that passes a descriptor from a parent to a child.

[ Team LiB ]

Page 512

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Exercises
15.1 What happens if a Unix domain server calls unlink after calling bind?

15.2 What happens if a Unix domain server does not unlink its well-known
pathname when it terminates, and a client tries to connect to the
server sometime after the server terminates?

15.3 Start with Figure 11.11 and modify it to call sleep(5) after the peer's
protocol address is printed, and to also print the number of bytes
returned by read each time read returns a positive value.

Start with Figure 11.14 and modify it to call write for each byte of the
result that is sent to the client. (We discussed similar modifications in
the solution to Exercise 1.5.) Run the client and server on the same
host using TCP. How many bytes are read by the client?

Run the client and server on the same host using a Unix domain socket.
Does anything change?

Now call send instead of write in the server and specify the MSG_EOR
flag. (You need a Berkeley-derived implementation to finish this
exercise.) Run the client and server on the same host using a Unix
domain socket. Does anything change?

15.4 Write a program to determine the values shown in Figure 4.10. One
approach is to create a stream pipe and then fork into a parent and
child. The parent enters a for loop, incrementing the backlog from 0
through 14. Each time through the loop, the parent first writes the
value of the backlog to the stream pipe. The child reads this value,
creates a listening socket bound to the loopback address, and sets the
backlog to that value. The child then writes to the stream pipe, just to
tell the parent it is ready. The parent then attempts as many
connections as possible, detecting when it has hit the backlog limit
because the connect blocks. The parent may use an alarm set at two
seconds to detect the blocking connect. The child never calls accept to
let the kernel queue the connections from the parent. When the
parent's alarm expires, it knows from the loop counter which connect
hit the backlog limit. The parent then closes its sockets and writes the
next new backlog value to the stream pipe for the child. When the child
reads this next value, it closes its listening socket and creates a new
listening socket, starting the procedure again.

15.5 Verify that omitting the call to bind in Figure 15.6 causes an error in
the server.

[ Team LiB ]

Page 513

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Chapter 16. Nonblocking I/O
Section 16.1.?Introduction

Section 16.2.?Nonblocking Reads and Writes: str_cli Function (Revisited)

Section 16.3.?Nonblocking connect

Section 16.4.?Nonblocking connect: Daytime Client

Section 16.5.?Nonblocking connect: Web Client

Section 16.6.?Nonblocking accept

Section 16.7.?Summary

Exercises

[ Team LiB ]

Page 514

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

16.1 Introduction
By default, sockets are blocking. This means that when we issue a socket call that cannot
be completed immediately, our process is put to sleep, waiting for the condition to be true.
We can divide the socket calls that may block into four categories:

1. Input operations  These include the read, readv, recv, recvfrom, and recvmsg
functions. If we call one of these input functions for a blocking TCP socket (the
default), and there is no data available in the socket receive buffer, we are put to
sleep until some data arrives. Since TCP is a byte stream, we will be awakened
when "some" data arrives: It could be a single byte of data, or it could be a full TCP
segment of data. If we want to wait until some fixed amount of data is available, we
can call our own function readn (Figure 3.15) or specify the MSG_WAITALL flag (
Figure 14.6).

Since UDP is a datagram protocol, if the socket receive buffer is empty for a blocking
UDP socket, we are put to sleep until a UDP datagram arrives.

With a nonblocking socket, if the input operation cannot be satisfied (at least one
byte of data for a TCP socket or a complete datagram for a UDP socket), we see an
immediate return with an error of EWOULDBLOCK.

2. Output operations  These include the write, writev, send, sendto, and sendmsg
functions. For a TCP socket, we said in Section 2.11 that the kernel copies data from
the application's buffer into the socket send buffer. If there is no room in the socket
send buffer for a blocking socket, the process is put to sleep until there is room.

With a nonblocking TCP socket, if there is no room at all in the socket send buffer,
we return immediately with an error of EWOULDBLOCK. If there is some room in the
socket send buffer, the return value will be the number of bytes the kernel was able
to copy into the buffer. (This is called a short count.)

We also said in Section 2.11 that there is no actual UDP socket send buffer. The
kernel just copies the application data and moves it down the stack, prepending the
UDP and IP headers. Therefore, an output operation on a blocking UDP socket (the
default) will not block for the same reason as a TCP socket, but it is possible for
output operations to block on some systems due to the buffering and flow control
that happens within the networking code in the kernel.

3. Accepting incoming connections  This is the accept function. If accept is called for
a blocking socket and a new connection is not available, the process is put to sleep.

If accept is called for a nonblocking socket and a new connection is not available,
the error EWOULDBLOCK is returned instead.

4. Initiating outgoing connections  This is the connect function for TCP. (Recall that
connect can be used with UDP, but it does not cause a "real" connection to be
established; it just causes the kernel to store the peer's IP address and port
number.) We showed in Section 2.6 that the establishment of a TCP connection
involves a three-way handshake and the connect function does not return until the
client receives the ACK of its SYN. This means that a TCP connect always blocks the
calling process for at least the RTT to the server.

If connect is called for a nonblocking TCP socket and the connection cannot be
established immediately, the connection establishment is initiated (e.g., the first
packet of TCP's three-way handshake is sent), but the error EINPROGRESS is
returned. Notice that this error differs from the error returned in the previous three

Page 515

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


scenarios. Also notice that some connections can be established immediately,
normally when the server is on the same host as the client. So, even with a
nonblocking connect, we must be prepared for connect to return successfully. We
will show an example of a nonblocking connect in Section 16.3.

Traditionally, System V has returned the error EAGAIN for a nonblocking I/O
operation that cannot be satisfied, while Berkeley-derived implementations have
returned the error EWOULDBLOCK. Because of this history, the POSIX specification
says either may be returned for this case. Fortunately, most current systems define
these two error codes to be the same (check your system's <sys/errno.h> header),
so it doesn't matter which one we use. In this text, we use EWOULDBLOCK.

Section 6.2 summarized the different models available for I/O and compared nonblocking
I/O to other models. In this chapter, we will provide examples of all four types of
operations and develop a new type of client, similar to a Web client, that initiates multiple
TCP connections at the same time using a nonblocking connect.

[ Team LiB ]

Page 516

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

16.2 Nonblocking Reads and Writes: str_cli Function
(Revisited)
We return once again to our str_cli function, which we discussed in Sections 5.5 and 6.4.
The latter version, which uses select, still uses blocking I/O. For example, if a line is
available on standard input, we read it with read and then send it to the server with
writen. But the call to writen can block if the socket send buffer is full. While we are
blocked in the call to writen, data could be available for reading from the socket receive
buffer. Similarly, if a line of input is available from the socket, we can block in the
subsequent call to write, if standard output is slower than the network. Our goal in this
section is to develop a version of this function that uses nonblocking I/O. This prevents us
from blocking while we could be doing something productive.

Unfortunately, the addition of nonblocking I/O complicates the function's buffer
management noticeably, so we will present the function in pieces. As we discussed in 
Chapter 6, using standard I/O with sockets can be difficult, and that is very much the case
with nonblocking I/O. So we continue to avoid standard I/O in this example.

We maintain two buffers: to contains data going from standard input to the server, and fr
contains data arriving from the server going to standard output. Figure 16.1 shows the
arrangement of the to buffer and the pointers into the buffer.

Figure 16.1. Buffer containing data from standard input going to the
socket.

The pointer toiptr points to the next byte into which data can be read from standard
input. tooptr points to the next byte that must be written to the socket. There are toiptr
minus tooptr bytes to be written to the socket. The number of bytes that can be read from
standard input is &to [MAXLINE] minus toiptr. As soon as tooptr reaches toiptr, both
pointers are reset to the beginning of the buffer.

Figure 16.2 shows the corresponding arrangement of the fr buffer.

Figure 16.2. Buffer containing data from the socket going to standard
output.

Page 517

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


Figure 16.3 shows the first part of the function.

Figure 16.3 str_cli function, first part: initializes and calls select.

nonblock/strclinonb.c

 1 #include     "unp.h"

 2 void

 3 str_cli(FILE *fp, int sockfd)

 4 {

 5     int     maxfdp1, val, stdineof;

 6     ssize_t n, nwritten;

 7     fd_set  rset, wset;

 8     char    to[MAXLINE], fr[MAXLINE];

 9     char    *toiptr, *tooptr, *friptr, *froptr;

10     val = Fcntl(sockfd, F_GETFL, 0);

11     Fcntl(sockfd, F_SETFL, val | O_NONBLOCK);

12     val = Fcntl(STDIN_FILENO, F_GETFL, 0);

13     Fcntl(STDIN_FILENO, F_SETFL, val | O_NONBLOCK);

14     val = Fcntl(STDOUT_FILENO, F_GETFL, 0);

15     Fcntl(STDOUT_FILENO, F_SETFL, val | O_NONBLOCK);

16     toiptr = tooptr = to;       /* initialize buffer pointers */

17     friptr = froptr = fr;

18     stdineof = 0;

19     maxfdp1 = max(max(STDIN_FILENO, STDOUT_FILENO), sockfd) + 1;

20     for ( ; ; ) {

21         FD_ZERO(&rset);

22         FD_ZERO(&wset);

23         if (stdineof == 0 && toiptr < &to[MAXLINE])

24             FD_SET(STDIN_FILENO, &rset);     /* read from stdin */

25         if (friptr < &fr[MAXLINE])

26             FD_SET(sockfd, &rset);  /* read from socket */

27         if (tooptr != toiptr)

28             FD_SET(sockfd, &wset);  /* data to write to socket */

29         if (froptr != friptr)

30             FD_SET(STDOUT_FILENO, &wset);   /* data to write to stdout */

31         Select(maxfdp1, &rset, &wset, NULL, NULL);

Set descriptors to nonblocking
10 15 All three descriptors are set to nonblocking using fcntl: the socket to and from the
server, standard input, and standard output.

Initialize buffer pointers
16 19 The pointers into the two buffers are initialized and the maximum descriptor plus
one is calculated, which will be used as the first argument for select.

Main loop: prepare to call select
20 As with the previous version of this function, Figure 6.13, the main loop of the function
is a call to select followed by individual tests of the various conditions we are interested

Page 518

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


in.

Specify descriptors we are interested in
21 30 Both descriptor sets are set to 0 and then up to 2 bits are turned on in each set. If
we have not yet read an EOF on standard input, and there is room for at least one byte of
data in the to buffer, the bit corresponding to standard input is turned on in the read set.
If there is room for at least one byte of data in the fr buffer, the bit corresponding to the
socket is turned on in the read set. If there is data to write to the socket in the to buffer,
the bit corresponding to the socket is turned on in the write set. Finally, if there is data in
the fr buffer to send to standard output, the bit corresponding to standard output is
turned on in the write set.

Call select
31 select is called, waiting for any one of the four possible conditions to be true. We do
not specify a timeout for this function.

The next part of the function is shown in Figure 16.4. This code contains the first two tests
(of four) that are made after select returns.

read from standard input
32 33 If standard input is readable, we call read. The third argument is the amount of
available space in the to buffer.

Handle nonblocking error
34 35 If an error occurs and it is EWOULDBLOCK, nothing happens. Normally this condition
"should not happen," that is, select telling us that the descriptor is readable and read
returning EWOULDBLOCK, but we handle it nevertheless.

read returns EOF
36 40 If read returns 0, we are finished with the standard input. Our flag stdineof is set.
If there is no more data in the to buffer to send (tooptr equals toiptr), shutdown sends a
FIN to the server. If there is still data in the to buffer to send, the FIN cannot be sent until
the buffer is written to the socket.

We output a line to standard error noting the EOF, along with the current time, and we
show how we use this output after describing this function. Similar calls to fprintf are
found throughout this function.

Figure 16.4 str_cli function, second part: reads from standard input or
socket.

nonblock/strclinonb.c

32      if (FD_ISSET(STDIN_FILENO, &rset)) {

33          if ( (n = read(STDIN_FILENO, toiptr, &to[MAXLINE] - toiptr)) < 0) {

34              if (errno != EWOULDBLOCK)

35                  err_sys("read error on stdin");

36          } else if (n == 0) {

37              fprintf(stderr, "%s: EOF on stdin\n", gf_time());

38              stdineof = 1;   /* all done with stdin */

39              if (tooptr == toiptr)

40                  Shutdown(sockfd, SHUT_WR);   /* send FIN */

Page 519

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


41          } else {

42              fprintf(stderr, "%s: read %d bytes from stdin\n", gf_time(),

43                      n);

44              toiptr += n;     /* # just read */

45              FD_SET(sockfd, &wset); /* try and write to socket below */

46          }

47      }

48      if (FD_ISSET(sockfd, &rset)) {

49          if ( (n = read(sockfd, friptr, &fr[MAXLINE] - friptr)) < 0) {

50              if (errno != EWOULDBLOCK)

51                  err_sys("read error on socket");

52          } else if (n == 0) {

53              fprintf(stderr, "%s: EOF on socket\n", gf_time());

54              if (stdineof)

55                  return;     /* normal termination */

56              else

57                 err_quit("str_cli: server terminated prematurely");

58          } else {

59              fprintf(stderr, "%s: read %d bytes from socket\n",

60                      gf_time(), n);

61              friptr += n;     /* # just read */

62              FD_SET(STDOUT_FILENO, &wset);     /* try and write below */

63          }

64      }

read returns data
41 45 When read returns data, we increment toiptr accordingly. We also turn on the bit
corresponding to the socket in the write set, to cause the test for this bit to be true later in
the loop, thus causing a write to be attempted to the socket.

This is one of the hard design decisions when writing code. We have a few alternatives
here. Instead of setting the bit in the write set, we could do nothing, in which case, select
will test for writability of the socket the next time it is called. But this requires another loop
around and another call to select when we already know that we have data to write to the
socket. Another choice is to duplicate the code that writes to the socket here, but this
seems wasteful and a potential source for error (in case there is a bug in that piece of
duplicated code, and we fix it in one location but not the other). Lastly, we could create a
function that writes to the socket and call that function instead of duplicating the code, but
that function needs to share three of the local variables with str_cli, which would
necessitate making these variables global. The choice made is the authors' view on which
alternative is best.

read from socket
48 64 These lines of code are similar to the if statement we just described when standard
input is readable. If read returns EWOULDBLOCK, nothing happens. If we encounter an EOF
from the server, this is okay if we have already encountered an EOF on the standard input,
but it is not expected otherwise. If read returns some data, friptr is incremented and the
bit for standard output is turned on in the write descriptor set, to try to write the data in
the next part of the function.

Figure 16.5 shows the final portion of the function.

Figure 16.5 str_cli function, third part: writes to standard output or
socket.

Page 520

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


nonblock/strclinonb.c

65      if (FD_ISSET(STDOUT_FILENO, &wset) && ((n = friptr - froptr) > 0)) {

66          if ( (nwritten = write(STDOUT_FILENO, froptr, n)) < 0) {

67              if (errno != EWOULDBLOCK)

68                  err_sys("write error to stdout");

69          } else {

70              fprintf(stderr, "%s: wrote %d bytes to stdout\n",

71                      gf_time(), nwritten);

72              froptr += nwritten; /* # just written */

73              if (froptr == friptr)

74                  froptr = friptr = fr;   /* back to beginning of buffer */

75          }

76      }

77      if (FD_ISSET(sockfd, &wset) && ((n = toiptr - tooptr) > 0)) {

78          if ( (nwritten = write(sockfd, tooptr, n)) < 0) {

79              if (errno != EWOULDBLOCK)

80                  err_sys("write error to socket");

81          } else {

82              fprintf(stderr, "%s: wrote %d bytes to socket\n",

83                      gf_time(), nwritten);

84              tooptr += nwritten; /* # just written */

85              if (tooptr == toiptr) {

86                  toiptr = tooptr = to;   /* back to beginning of buffer */

87                  if (stdineof)

88                      Shutdown(sockfd, SHUT_WR);  /* send FIN */

89              }

90          }

91       }

92    }

93 }

write to standard output
65 68 If standard output is writable and the number of bytes to write is greater than 0,
write is called. If EWOULDBLOCK is returned, nothing happens. Notice that this condition is
entirely possible because the code at the end of the previous part of this function turns on
the bit for standard output in the write set, without knowing whether the write will
succeed or not.

write OK
69 75 If the write is successful, froptr is incremented by the number of bytes written. If
the output pointer has caught up with the input pointer, both pointers are reset to point to
the beginning of the buffer.

write to socket
77 91 This section of code is similar to the code we just described for writing to the
standard output. The one difference is that when the output pointer catches up with the
input pointer, not only are both pointers reset to the beginning of the buffer, but if we
encountered an EOF on standard input, the FIN can be sent to the server.

We now examine the operation of this function and the overlapping of the nonblocking
I/O. Figure 16.6 shows our gf_time function, which is called from our str_cli function.

Page 521

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


Figure 16.6 gf_time function: returns pointer to time string.

lib/gf_time.c

 1 #include     "unp.h"

 2 #include     <time.h>

 3 char *

 4 gf_time(void)

 5 {

 6     struct timeval tv;

 7     static char str[30];

 8     char  *ptr;

 9     if (gettimeofday(&tv, NULL) < 0)

10         err_sys("gettimeofday error");

11     ptr = ctime(&tv.tv_sec);

12     strcpy(str, &ptr[11]);

13     /* Fri Sep 13 00:00:00 1986\n\0 */

14     /* 0123456789012345678901234 5 */

15     snprintf(str + 8, sizeof(str) - 8, ".%06ld", tv.tv_usec);

16     return (str);

17 }

This function returns a string containing the current time, including microseconds, in the
following format:

12:34:56.123456

This is intentionally in the same format as the timestamps output by tcpdump. Also notice
that all the calls to fprintf in our str_cli function write to standard error, allowing us to
separate standard output (the lines echoed by the server) from our diagnostic output. We
can then run our client and tcpdump and take this diagnostic output along with the tcpdump
output and sort the two outputs together, ordered by the time. This lets us see what
happens in our program and correlate it with the corresponding TCP action.

For example, we first run tcpdump on our host solaris, capturing only TCP segments to or
from port 7 (the echo server), saving the output in the file named tcpd.

solaris % tcpdump -w tcpd tcp and port 7

We then run our TCP client on this host, specifying the server on the host linux.

solaris % tcpcli02 192.168.1.10 < 2000.lines > out 2> diag

Standard input is the file 2000.lines, the same file we used with Figure 6.13. Standard
output is sent to the file out, and standard error is sent to the file diag. On completion, we
run

Page 522

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


solaris % diff 2000.lines out

to verify that the echoed lines are identical to the input lines. Finally, we terminate 
tcpdump with our interrupt key and then print the tcpdump records, sorting these records
with the diagnostic output from the client. Figure 16.7 shows the first part of this result.

Figure 16.7 Sorted output from tcpdump and diagnostic output.

solaris % tcpdump -r tcpd -N | sort diag -

10:18:34.486392 solaris.33621 > linux.echo: S 1802738644:1802738644(0)

                                           win 8760 <mss 1460>

10:18:34.488278 linux.echo > solaris.33621: S 3212986316:3212986316(0)

                                           ack 1802738645 win 8760 <mss 1460>

10:18:34.488490 solaris.33621 > linux.echo: . ack 1 win 8760

10:18:34.491482: read 4096 bytes from stdin

10:18:34.518663 solaris.33621 > linux.echo: P 1:1461(1460) ack 1 win 8760

10:18:34.519016: wrote 4096 bytes to socket

10:18:34.528529 linux.echo > solaris.33621: P 1:1461(1460) ack 1461 win 8760

10:18:34.528785 solaris.33621 > linux.echo: . 1461:2921(1460) ack 1461 win 8760

10:18:34.528900 solaris.33621 > linux.echo: P 2921:4097(1176) ack 1461 win 8760

10:18:34.528958 solaris.33621 > linux.echo: . ack 1461 win 8760

10:18:34.536193 linux.echo > solaris.33621: . 1461:2921(1460) ack 4097 win 8760

10:18:34.536697 linux.echo > solaris.33621: P 2921:3509(588) ack 4097 win 8760

10:18:34.544636: read 4096 bytes from stdin

10:18:34.568505: read 3508 bytes from socket

10:18:34.580373 solaris.33621 > linux.echo: . ack 3509 win 8760

10:18:34.582244 linux.echo > solaris.33621: P 3509:4097(588) ack 4097 win 8760

10:18:34.593354: wrote 3508 bytes to stdout

10:18:34.617272 solaris.33621 > linux.echo: P 4097:5557(1460) ack 4097 win 8760

10:18:34.617610 solaris.33621 > linux.echo: P 5557:7017(1460) ack 4097 win 8760

10:18:34.617908 solaris.33621 > linux.echo: P 7017:8193(1176) ack 4097 win 8760

10:18:34.618062: wrote 4096 bytes to socket

10:18:34.623310 linux.echo > solaris.33621: . ack 8193 win 8760

10:18:34.626129 linux.echo > solaris.33621: . 4097:5557(1460) ack 8193 win 8760

10:18:34.626339 solaris.33621 > linux.echo: . ack 5557 win 8760

10:18:34.626611 linux.echo > solaris.33621: P 5557:6145(588) ack 8193 win 8760

10:18:34.628396 linux.echo > solaris.33621: . 6145:7605(1460) ack 8193 win 8760

10:18:34.643524: read 4096 bytes from stdin

10:18:34.667305: read 2636 bytes from socket

10:18:34.670324 solaris.33621 > linux.echo: . ack 7605 win 8760

10:18:34.672221 linux.echo > solaris.33621: P 7605:8193(588) ack 8193 win 8760

10:18:34.691039: wrote 2636 bytes to stdout

We wrapped the long lines containing the SYNs and we also removed the don't fragment 
(DF) notations from the Solaris segments, denoting that the DF bit is set (path MTU
discovery).

Using this output, we can draw a timeline of what's happening. We show this in Figure
16.8, with time increasing down the page.

Figure 16.8. Timeline of nonblocking example.

Page 523

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


In this figure, we do not show the ACK segments. Also realize that when the program
outputs "wrote N bytes to stdout," the write has returned, possibly causing TCP to send
one or more segments of data.

What we can see from this timeline are the dynamics of a client/server exchange. Using
nonblocking I/O lets the program take advantage of these dynamics, reading or writing
when the operation can take place. We let the kernel tell us when an I/O operation can
occur by using the select function.

We can time our nonblocking version using the same 2,000-line file and the same server (a
175-ms RTT from the client) as in Section 6.7. The clock time is now 6.9 seconds,
compared to 12.3 seconds for the version in Section 6.7. Therefore, nonblocking I/O
reduces the overall time for this example that sends a file to the server.

A Simpler Version of str_cli

The nonblocking version of str_cli that we just showed is nontrivial: about 135 lines of
code, compared to 40 lines for the version using select with blocking I/O in Figure 6.13,
and 20 lines for our original stop-and-wait version (Figure 5.5). We know that doubling the
size of the code from 20 to 40 lines was worth the effort, because the speed increased by
almost a factor of 30 in a batch mode and using select with blocking descriptors was not
overly complicated. But, is it worth the effort to code an application using nonblocking I/O,
given the complexity of the resulting code? The answer is no. Whenever we find the need
to use nonblocking I/O, it will usually be simpler to split the application into either
processes (using fork) or threads (Chapter 26).

Figure 16.10 is yet another version of our str_cli function, with the function dividing itself
into two processes using fork.

The function immediately calls fork to split into a parent and child. The child copies lines
from the server to standard output and the parent copies lines from standard input to the
server, as shown in Figure 16.9.

Figure 16.9. str_cli function using two processes.

Page 524

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


We explicitly note that the TCP connection is full-duplex and that the parent and child are
sharing the same socket descriptor: The parent writes to the socket and the child reads
from the socket. There is only one socket, one socket receive buffer, and one socket send
buffer, but this socket is referenced by two descriptors: one in the parent and one in the
child.

We again need to worry about the termination sequence. Normal termination occurs when
the EOF on standard input is encountered. The parent reads this EOF and calls shutdown to
send a FIN. (The parent cannot call close. See Exercise 16.1.) But when this happens, the
child needs to continue copying from the server to the standard output, until it reads an
EOF on the socket.

It is also possible for the server process to terminate prematurely (Section 5.12); if this
occurs, the child will read an EOF on the socket. If this happens, the child must tell the
parent to stop copying from the standard input to the socket (see Exercise 16.2). In Figure
16.10, the child sends the SIGTERM signal to the parent, in case the parent is still running
(see Exercise 16.3). Another way to handle this would be for the child to terminate and
have the parent catch SIGCHLD, if the parent is still running.

Figure 16.10 Version of str_cli function that uses fork.

nonblock/strclifork.c

 1 #include     "unp.h"

 2 void

 3 str_cli(FILE *fp, int sockfd)

 4 {

 5     pid_t     pid;

 6     char     sendline[MAXLINE], recvline[MAXLINE];

 7     if ( (pid = Fork()) == 0) {   /* child: server -> stdout */

 8        while (Readline(sockfd, recvline, MAXLINE) > 0)

 9            Fputs(recvline, stdout);

10        kill(getppid(), SIGTERM);    /* in case parent still running */

11        exit(0);

12     }

13     /* parent: stdin -> server */

14     while (Fgets(sendline, MAXLINE, fp) != NULL)

15         Writen(sockfd, sendline, strlen(sendline));

16     Shutdown(sockfd, SHUT_WR);  /* EOF on stdin, send FIN */

17     pause();

18     return;

19 }

The parent calls pause when it has finished copying, which puts it to sleep until a signal is
caught. Even though our parent does not catch any signals, this puts the parent to sleep
until it receives the SIGTERM signal from the child. The default action of this signal is to
terminate the process, which is fine for this example. The reason we make the parent wait

Page 525

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


for the child is to measure an accurate clock time for this version of str_cli. Normally, the
child finishes after the parent, but since we measure the clock time using the shell's time
command, the measurement ends when the parent terminates.

Notice the simplicity of this version compared to the nonblocking I/O version shown earlier
in this section. Our nonblocking version managed four different I/O streams at the same
time, and since all four were nonblocking, we had to concern ourselves with partial reads
and writes for all four streams. But in the fork version, each process handles only two I/O
streams, copying from one to the other. There is no need for nonblocking I/O because if
there is no data to read from the input stream, there is nothing to write to the
corresponding output stream.

Timing of str_cli

We have now shown four different versions of the str_cli function. We summarize the
clock time required for these versions, along with a version using threads (Figure 26.2),
when copying 2,000 lines from a Solaris client to a server with an RTT of 175 ms:

 354.0 sec, stop-and-wait (Figure 5.5)

 12.3 sec, select and blocking I/O (Figure 6.13)

 6.9 sec, nonblocking I/O (Figure 16.3)

 8.7 sec, fork (Figure 16.10)

 8.5 sec, threaded version (Figure 26.2)

Our nonblocking I/O version is almost twice as fast as our version using blocking I/O with 
select. Our simple version using fork is slower than our nonblocking I/O version.
Nevertheless, given the complexity of the nonblocking I/O code versus the fork code, we
recommend the simple approach.

[ Team LiB ]

Page 526

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

16.3 Nonblocking connect
When a TCP socket is set to nonblocking and then connect is called, connect returns
immediately with an error of EINPROGRESS but the TCP three-way handshake continues. We
then check for either a successful or unsuccessful completion of the connection's
establishment using select. There are three uses for a nonblocking connect:

1. We can overlap other processing with the three-way handshake. A connect takes
one RTT to complete (Section 2.6) and this can be anywhere from a few
milliseconds on a LAN to hundreds of milliseconds or a few seconds on a WAN. There
might be other processing we wish to perform during this time.

2. We can establish multiple connections at the same time using this technique. This
has become popular with Web browsers, and we will show an example of this in 
Section 16.5.

3. Since we wait for the connection to be established using select, we can specify a
time limit for select, allowing us to shorten the timeout for the connect. Many
implementations have a timeout for connect that is between 75 seconds and several
minutes. There are times when an application wants a shorter timeout, and using a
nonblocking connect is one way to accomplish this. Section 14.2 talks about other
ways to place timeouts on socket operations.

As simple as the nonblocking connect sounds, there are other details we must handle:

 Even though the socket is nonblocking, if the server to which we are connecting is
on the same host, the connection is normally established immediately when we call 
connect. We must handle this scenario.

 Berkeley-derived implementations (and POSIX) have the following two rules
regarding select and nonblocking connects:

1. When the connection completes successfully, the descriptor becomes writable (p.
531 of TCPv2).

2. When the connection establishment encounters an error, the descriptor becomes
both readable and writable (p. 530 of TCPv2).

These two rules regarding select fall out from our rules in Section 6.3 about the
conditions that make a descriptor ready. A TCP socket is writable if there is available
space in the send buffer (which will always be the case for a connecting socket since
we have not yet written anything to the socket) and the socket is connected (which
occurs only when the three-way handshake completes). A pending error causes a
socket to be both readable and writable.

There are many portability problems with nonblocking connects that we mention in the
examples that follow.

[ Team LiB ]

Page 527

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

16.4 Nonblocking connect: Daytime Client
Figure 16.11 shows our function connect_nonb, which performs a nonblocking connect. We
replace the call to connect in Figure 1.5 with

if (connect_nonb(sockfd, (SA *) &servaddr, sizeof(servaddr), 0) < 0)

    err_sys("connect error");

The first three arguments are the normal arguments to connect, and the fourth argument
is the number of seconds to wait for the connection to complete. A value of 0 implies no
timeout on the select; hence, the kernel will use its normal TCP connection establishment
timeout.

Set socket nonblocking
9 10 We call fcntl to set the socket to nonblocking.

11 14 We initiate the nonblocking connect. The error we expect is EINPROGRESS, indicating
that the connection has started, but is not yet complete (p. 466 of TCPv2). Any other error
is returned to the caller.

Overlap processing with connection establishment
15 At this point, we can do whatever we want while we wait for the connection to complete.

Check for immediate completion
16 17 If the nonblocking connect returns 0, the connection is complete. As we have said,
this can occur when the server is on the same host as the client.

Call select
18 24 We call select and wait for the socket to be ready for either reading or writing. We
zero out rset, turn on the bit corresponding to sockfd in this descriptor set, and then
copy rset into wset. This assignment is probably a structure assignment since descriptor
sets are normally represented as structures. We also initialize the timeval structure and
then call select. If the caller specifies a fourth argument of 0 (uses the default timeout),
we must specify a null pointer as the final argument to select and not a timeval structure
with a value of 0 (which means do not wait at all).

Handle timeouts
25 28 If select returns 0, the timer expired, and we return ETIMEDOUT to the caller. We
also close the socket, to prevent the three-way handshake from proceeding any further.

Figure 16.11 Issue a nonblocking connect.

lib/connect_nonb.c

 1 #include     "unp.h"

 2 int

 3 connect_nonb(int sockfd, const SA *saptr, socklen_t salen, int nsec)

Page 528

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


 4 {

 5     int     flags, n, error;

 6     socklen_t len;

 7     fd_set rset, wset;

 8     struct timeval tval;

 9     flags = Fcntl(sockfd, F_GETFL, 0);

10     Fcntl(sockfd, F_SETFL, flags | O_NONBLOCK);

11     error = 0;

12     if ( (n = connect(sockfd, saptr, salen)) < 0)

13         if (errno != EINPROGRESS)

14             return (-1);

15     /* Do whatever we want while the connect is taking place. */

16     if (n == 0)

17         goto done;               /* connect completed immediately */

18     FD_ZERO(&rset);

19     FD_SET(sockfd, &rset);

20     wset = rset;

21     tval.tv_sec = nsec;

22     tval.tv_usec = 0;

23     if ( (n = Select(sockfd + 1, &rset, &wset, NULL,

24                     nsec ? &tval : NULL)) == 0) {

25         close(sockfd);          /* timeout */

26         errno = ETIMEDOUT;

27         return (-1);

28     }

29     if (FD_ISSET(sockfd, &rset) || FD_ISSET(sockfd, &wset)) {

30         len = sizeof(error);

31         if (getsockopt(sockfd, SOL_SOCKET, SO_ERROR, &error, &len) < 0)

32             return (-1);     /* Solaris pending error */

33     } else

34         err_quit("select error: sockfd not set");

35   done:

36     Fcntl(sockfd, F_SETFL, flags);  /* restore file status flags */

37     if (error) {

38         close(sockfd);           /* just in case */

39         errno = error;

40         return (-1);

41     }

42     return (0);

43 }

Check for readability or writability
29 34 If the descriptor is readable or writable, we call getsockopt to fetch the socket's
pending error (SO_ERROR). If the connection completed successfully, this value will be 0. If
the connection encountered an error, this value is the errno value corresponding to the
connection error (e.g., ECONNREFUSED, ETIMEDOUT, etc.). We also encounter our first
portability problem. If an error occurred, Berkeley-derived implementations of getsockopt
return 0 with the pending error returned in our variable error. But Solaris causes
getsockopt itself to return  1 with errno set to the pending error. Our code handles both
scenarios.

Page 529

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


Turn off nonblocking and return
36 42 We restore the file status flags and return. If our error variable is nonzero from
getsockopt, that value is stored in errno and the function returns  1.

As we said earlier, there are portability problems with various socket implementations and
nonblocking connects. First, it is possible for a connection to complete and for data to
arrive from a peer before select is called. In this case, the socket will be both readable
and writable on success, the same as if the connection had failed. Our code in Figure 16.11
handles this scenario by calling getsockopt and checking the pending error for the socket.

Next is determining whether the connection completed successfully or not, if we cannot
assume that writability is the only way success is returned. Various solutions have been
posted to Usenet. These would replace our call to getsockopt in Figure 16.11.

1. Call getpeername instead of getsockopt. If this fails with ENOTCONN, the connection
failed and we must then call getsockopt with SO_ERROR to fetch the pending error
for the socket.

2. Call read with a length of 0. If the read fails, the connect failed and the errno from
read indicates the reason for the connection failure. When a connection succeeds,
read should return 0.

3. Call connect again. It should fail, and if the error is EISCONN, the socket is already
connected and the first connection succeeded.

Unfortunately, nonblocking connects are one of the most nonportable areas of network
programming. Be prepared for portability problems, especially with older implementations.
A simpler technique is to create a thread (Chapter 26) to handle a connection.

Interrupted connect

What happens if our call to connect on a normal blocking socket is interrupted, say, by a
caught signal, before TCP's three-way handshake completes? Assuming the connect is not
automatically restarted, it returns EINTR. But, we cannot call connect again to wait for the
connection to complete. Doing so will return EADDRINUSE.

What we must do in this scenario is call select, just as we have done in this section for a
nonblocking connect. select returns when the connection completes successfully (making
the socket writable) or when the connection fails (making the socket readable and
writable).

[ Team LiB ]

Page 530

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

16.5 Nonblocking connect: Web Client
A real-world example of nonblocking connects started with the Netscape Web client
(Section 13.4 of TCPv3). The client establishes an HTTP connection with a Web server and
fetches a home page. Often, that page will have numerous references to other Web pages.
Instead of fetching these other pages serially, one at a time, the client can fetch more than
one at the same time using nonblocking connects. Figure 16.12 shows an example of
establishing multiple connections in parallel. The leftmost scenario shows all three
connections performed serially. We assume that the first connection takes 10 units of time,
the second 15, and the third 4, for a total of 29 units of time.

Figure 16.12. Establishing multiple connections in parallel.

In the middle scenario, we perform two connections in parallel. At time 0, the first two
connections are started, and when the first of these finishes, we start the third. The total
time is almost halved, from 29 to 15, but realize that this is the ideal case. If the parallel
connections are sharing a common link (say the client is behind a dialup modem link to the
Internet), each can compete against each other for the limited resources and all the
individual connection times might get longer. For example, the time of 10 might be 15, the
time of 15 might be 20, and the time of 4 might be 6. Nevertheless, the total time would
be 21, still shorter than the serial scenario.

In the third scenario, we perform three connections in parallel, and we again assume there
is no interference between the three connections (the ideal case). But, the total time is the
same (15 units) as the second scenario given the example times that we choose.

When dealing with Web clients, the first connection is done by itself, followed by multiple
connections for the references found in the data from that first connection. We show this
in Figure 16.13.

Figure 16.13. Complete first connection, then multiple connections in
parallel.

Page 531

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


To further optimize this sequence, the client can start parsing the data that is returned for
the first connection before the first connection completes and initiate additional
connections as soon as it knows that additional connections are needed.

Since we are doing multiple nonblocking connects at the same time, we cannot use our
connect_nonb function from Figure 16.11 because it does not return until the connection is
established. Instead, we must keep track of multiple connections ourself.

Our program will read up to 20 files from a Web server. We specify as command-line
arguments the maximum number of parallel connections, the server's hostname, and each
of the filenames to fetch from the server. A typical execution of our program is

solaris % web  3  www.foobar.com  /  image1.gif image2.gif  \

image3.gif image4.gif image5.gif  \

image6.gif image7.gif

The command-line arguments specify three simultaneous connections: the server's
hostname, the filename for the home page (/, the server's root page), and seven files to
then read (which in this example are all GIF images). These seven files would normally be
referenced on the home page, and a Web client would read the home page and parse the
HTML to obtain these filenames. We do not want to complicate this example with HTML
parsing, so we just specify the filenames on the command line.

This is a larger example, so we will show it in pieces. Figure 16.14 is our web.h header that
each file includes.

Figure 16.14 web.h header.

nonblock/web.h

 1 #include     "unp.h"

 2 #define MAXFILES     20

 3 #define SERV         "80"         /* port number or service name */

 4 struct file {

 5     char   *f_name;               /* filename */

 6     char   *f_host;               /* hostname or IPv4/IPv6 address */

 7     int     f_fd;                 /* descriptor */

 8     int     f_flags;              /* F_xxx below */

Page 532

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


 9 } file[MAXFILES];

10 #define F_CONNECTING     1        /* connect() in progress */

11 #define F_READING        2        /* connect() complete; now reading */

12 #define F_DONE           4        /* all done */

13 #define GET_CMD      "GET %s HTTP/1.0\r\n\r\n"

14             /* globals */

15 int     nconn,  nfiles, nlefttoconn, nlefttoread, maxfd;

16 fd_set  rset, wset;

17            /* function prototypes */

18 void   home_page(const char *, const char *);

19 void   start_connect(struct file *);

20 void   write_get_cmd(struct file *);

Define file structure
2 13 The program reads up to MAXFILES files from the Web server. We maintain a file
structure with information about each file: its name (copied from the command-line
argument), the hostname or IP address of the server to read the file from, the socket
descriptor being used for the file, and a set of flags to specify what we are doing with this
file (connecting, reading, or done).

Define globals and function prototypes
14 20 We define the global variables and function prototypes for the functions that we will
describe shortly.

Figure 16.15 shows the first part of the main program.

Figure 16.15 First part of simultaneous connect: globals and start of
main.

nonblock/web.c

 1 #include     "web.h"

 2 int

 3 main(int argc, char **argv)

 4 {

 5     int     i, fd, n, maxnconn, flags, error;

 6     char    buf[MAXLINE];

 7     fd_set  rs, ws;

 8     if (argc < 5)

 9         err_quit("usage: web <#conns> <hostname> <homepage> <file1> ...");

10     maxnconn = atoi(argv[1]);

11     nfiles = min(argc - 4, MAXFILES);

12     for (i = 0; i < nfiles; i++) {

13         file[i].f_name = argv[i + 4];

14         file[i].f_host = argv[2];

15         file[i].f_flags = 0;

16     }

17     printf("nfiles = %d\n", nfiles);

18     home_page(argv[2], argv[3]);

Page 533

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


19     FD_ZERO(&rset);

20     FD_ZERO(&wset);

21     maxfd = -1;

22     nlefttoread = nlefttoconn = nfiles;

23     nconn = 0;

Process command-line arguments
11 17 The file structures are filled in with the relevant information from the
command-line arguments.

Read home page
18 The function home_page, which we will show next, creates a TCP connection, sends a
command to the server, and then reads the home page. This is the first connection, which
is done by itself, before we start establishing multiple connections in parallel.

Initialize globals
19 23 Two descriptor sets, one for reading and one for writing, are initialized. maxfd is the
maximum descriptor for select (which we initialize to  1 since descriptors are
non-negative), nlefttoread is the number of files remaining to be read (when this reaches
0, we are finished), nlefttoconn is the number of files that still need a TCP connection,
and nconn is the number of connections currently open (which can never exceed the first
command-line argument).

Figure 16.16 shows the home_page function that is called once when the main function
begins.

Figure 16.16 home_page function.

nonblock/home_page.c

 1 #include     "web.h"

 2 void

 3 home_page(const char *host, const char *fname)

 4 {

 5     int     fd, n;

 6     char    line[MAXLINE];

 7     fd = Tcp_connect(host, SERV);   /* blocking connect() */

 8     n = snprintf(line, sizeof(line), GET_CMD, fname);

 9     Writen(fd, line, n);

10     for ( ; ; ) {

11         if ( (n = Read(fd, line, MAXLINE)) == 0)

12             break;               /* server closed connection */

13         printf("read %d bytes of home page\n", n);

14         /* do whatever with data */

15     }

16     printf("end-of-file on home page\n");

17     Close(fd);

18 }

Establish connection with server
7 Our tcp_connect establishes a connection with the server.

Page 534

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


Send HTTP command to server, read reply
8 17 An HTTP GET command is issued for the home page (often named /). The reply is read
(we do not do anything with the reply) and the connection is closed.

The next function, start_connect, shown in Figure 16.17, initiates a nonblocking connect.

Figure 16.17 Initiate nonblocking connect.

nonblock/start_connect.c

 1 #include     "web.h"

 2 void

 3 start_connect(struct file *fptr)

 4 {

 5     int     fd, flags, n;

 6     struct addrinfo *ai;

 7     ai = Host_serv(fptr->f_host, SERV, 0, SOCK_STREAM);

 8     fd = Socket(ai->ai_family, ai->ai_socktype, ai->ai_protocol);

 9     fptr->f_fd = fd;

10     printf("start_connect for %s, fd %d\n", fptr->f_name, fd);

11         /* Set socket nonblocking */

12     flags = Fcntl(fd, F_GETFL, 0);

13     Fcntl(fd, F_SETFL, flags | O_NONBLOCK);

14         /* Initiate nonblocking connect to the server. */

15     if ( (n = connect(fd, ai->ai_addr, ai->ai_addrlen)) < 0) {

16         if (errno != EINPROGRESS)

17             err_sys("nonblocking connect error");

18         fptr->f_flags = F_CONNECTING;

19         FD_SET(fd, &rset);     /* select for reading and writing */

20         FD_SET(fd, &wset);

21         if (fd > maxfd)

22             maxfd = fd;

23      } else if (n >= 0)            /* connect is already done */

24          write_get_cmd(fptr);      /* write() the GET command */

25 }

Create socket, set to nonblocking
7 13 We call our host_serv function (Figure 11.9) to look up and convert the hostname
and service name, returning a pointer to an array of addrinfo structures. We use only the
first structure. A TCP socket is created and the socket is set to nonblocking.

Initiate nonblocking connect
14 22 The nonblocking connect is initiated and the file's flag is set to F_CONNECTING. The
socket descriptor is turned on in both the read set and the write set since select will wait
for either condition as an indication that the connection has finished. We also update maxfd
, if necessary.

Handle connection complete
23 24 If connect returns successfully, the connection is already complete and the function

Page 535

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


write_get_cmd (shown next) sends a command to the server.

We set the socket to nonblocking for the connect, but never reset it to its default blocking
mode. This is fine because we write only a small amount of data to the socket (the GET
command in the next function) and we assume that this command is much smaller than
the socket send buffer. Even if write returns a short count because of the nonblocking flag,
our writen function handles this. Leaving the socket as nonblocking has no effect on the
subsequent reads that are performed because we always call select to wait for the socket
to become readable.

Figure 16.18 shows the function write_get_cmd, which sends an HTTP GET command to the
server.

Figure 16.18 Send an HTTP GET command to the server.

nonblock/write_get_cmd.c

 1 #include     "web.h"

 2 void

 3 write_get_cmd(struct file *fptr)

 4 {

 5     int     n;

 6     char    line[MAXLINE];

 7     n = snprintf(line, sizeof(line), GET_CMD, fptr->f_name);

 8     Writen(fptr->f_fd, line, n);

 9     printf("wrote %d bytes for %s\n", n, fptr->f_name);

10     fptr->f_flags = F_READING;  /* clears F_CONNECTING */

11     FD_SET(fptr->f_fd, &rset);  /* will read server's reply */

12     if (fptr->f_fd > maxfd)

13         maxfd = fptr->f_fd;

14 }

Build command and send it
7 9 The command is built and written to the socket.

Set flags
10 13 The file's F_READING flag is set, which also clears the F_CONNECTING flag (if set). This
indicates to the main loop that this descriptor is ready for input. The descriptor is also
turned on in the read set and maxfd is updated, if necessary.

We now return to the main function in Figure 16.19, picking up where we left off in Figure
16.15. This is the main loop of the program: As long as there are more files to process (
nlefttoread is greater than 0), start another connection if possible and then use select
on all active descriptors, handling both nonblocking connection completions and the arrival
of data.

Initiate another connection, if possible
24 35 If we are not at the specified limit of simultaneous connections, and there are
additional connections to establish, find a file that we have not yet processed (indicated by
a f_flags of 0) and call start_connect to initiate the connection. The number of active
connections is incremented (nconn) and the number of connections remaining to be
established is decremented (nlefttoconn).

Page 536

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


select: wait for something to happen
36 37 select waits for either readability or writability. Descriptors that have a nonblocking
connect in progress will be enabled in both sets, while descriptors with a completed
connection that are waiting for data from the server will be enabled in just the read set.

Handle all ready descriptors
39 55 We now process each element in the array of file structures to determine which
descriptors need processing. If the F_CONNECTING flag is set and the descriptor is on in
either the read set or the write set, the nonblocking connect is finished. As we described
with Figure 16.11, we call getsockopt to fetch the pending error for the socket. If this
value is 0, the connection completed successfully. In that case, we turn off the descriptor
in the write set and call write_get_cmd to send the HTTP request to the server.

See if descriptor has data
56 67 If the F_READING flag is set and the descriptor is ready for reading, we call read. If
the connection was closed by the other end, we close the socket, set the F_DONE flag, turn
off the descriptor in the read set, and decrement the number of active connections and the
total number of connections to be processed.

There are two optimizations that we do not perform in this example (to avoid complicating
it even more). First, we could terminate the for loop in Figure 16.19 when we finish
processing the number of descriptors that select said were ready. Next, we could decrease
the value of maxfd when possible, to save select from examining descriptor bits that are
no longer set. Since the number of descriptors this code deals with at any one time is
probably less than 10, and not in the thousands, it is doubtful that either of these
optimizations is worth the additional complications.

Figure 16.19 Main loop of main function.

nonblock/web.c

24      while (nlefttoread > 0) {

25          while (nconn < maxnconn && nlefttoconn > 0) {

26                  /* find a file to read */

27              for (i = 0; i < nfiles; i++)

28                   if (file[i].f_flags == 0)

29                       break;

30              if  (i == nfiles)

31                  err_quit("nlefttoconn = %d but nothing found",

nlefttoconn);

32              start_connect(&file[i]);

33              nconn++;

34              nlefttoconn--;

35         }

36         rs = rset;

37         ws = wset;

38         n = Select(maxfd + 1, &rs, &ws, NULL, NULL);

39         for (i = 0; i < nfiles; i++) {

40             flags = file[i].f_flags;

41             if (flags == 0 || flags & F_DONE)

42                 continue;

43             fd = file[i].f_fd;

44             if (flags & F_CONNECTING &&

45                 (FD_ISSET(fd, &rs) || FD_ISSET(fd, &ws))) {

Page 537

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


46                 n = sizeof(error);

47                 if (getsockopt(fd, SOL_SOCKET, SO_ERROR, &error, &n) < 0 ||

48                 error != 0) {

49                 err_ret("nonblocking connect failed for %s",

50                         file[i].f_name);

51             }

52                 /* connection established */

53             printf("connection established for %s\n", file[i].f_name);

54             FD_CLR(fd, &wset); /* no more writeability test */

55             write_get_cmd(&file[i]);   /* write() the GET command */

56        } else if (flags & F_READING && FD_ISSET(fd, &rs)) {

57            if ( (n = Read(fd, buf, sizeof(buf))) == 0) {

58                printf("end-of-file on %s\n", file[i].f_name);

59                Close(fd);

60                file[i].f_flags = F_DONE;    /* clears F_READING */

61                FD_CLR(fd, &rset);

62                nconn--;

63                nlefttoread--;

64            } else {

65                printf("read %d bytes from %s\n", n, file[i].f_name);

66            }

67         }

68      }

69   }

70   exit(0);

71 }

Performance of Simultaneous Connections
What is the performance gain in establishing multiple connections at the same time? 
Figure 16.20 shows the clock time required to fetch a Web server's home page, followed by
nine image files from that server. The RTT to the server is about 150 ms. The home page
size was 4,017 bytes and the average size of the 9 image files was 1,621 bytes. TCP's
segment size was 512 bytes. We also include in this figure, for comparison, values for a
version of this program that we will develop in Section 26.9 using threads.

Figure 16.20. Clock time for various numbers of simultaneous
connections.

Most of the improvement is obtained with three simultaneous connections (the clock time
is halved), and the performance increase is much less with four or more simultaneous
connections.

We provide this example using simultaneous connects because it is a nice example using
nonblocking I/O and one whose performance impact can be measured. It is also a feature
used by a popular Web application, the Netscape browser. There are pitfalls in this
technique if there is any congestion in the network. Chapter 21 of TCPv1 describes TCP's
slow-start and congestion avoidance algorithms in detail. When multiple connections are

Page 538

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


established from a client to a server, there is no communication between the connections
at the TCP layer. That is, if one connection encounters a packet loss, the other connections
to the same server are not notified, and it is highly probable that the other connections will
soon encounter packet loss unless they slow down. These additional connections are
sending more packets into an already congested network. This technique also increases the
load at any given time on the server.

[ Team LiB ]

Page 539

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

16.6 Nonblocking accept
We stated in Chapter 6 that a listening socket is returned as readable by select when a
completed connection is ready to be accepted. Therefore, if we are using select to wait for
incoming connections, we should not need to set the listening socket to nonblocking
because if select tells us that the connection is ready, accept should not block.

Unfortunately, there is a timing problem that can trip us up here [Gierth 1996]. To see this
problem, we modify our TCP echo client (Figure 5.4) to establish the connection and then
send an RST to the server. Figure 16.21 shows this new version.

Figure 16.21 TCP echo client that creates connection and sends an
RST.

nonblock/tcpcli03.c

 1 #include     "unp.h"

 2 int

 3 main(int argc, char **argv)

 4 {

 5     int     sockfd;

 6     struct linger ling;

 7     struct sockaddr_in servaddr;

 8     if (argc != 2)

 9         err_quit("usage: tcpcli <IPaddress>");

10     sockfd = Socket(AF_INET, SOCK_STREAM, 0);

11     bzero(&servaddr, sizeof(servaddr));

12     servaddr.sin_family = AF_INET;

13     servaddr.sin_port = htons(SERV_PORT);

14     Inet_pton(AF_INET, argv[1], &servaddr.sin_addr);

15     Connect(sockfd, (SA *) &servaddr, sizeof(servaddr));

16     ling.l_onoff = 1;          /* cause RST to be sent on close() */

17     ling.l_linger = 0;

18     Setsockopt(sockfd, SOL_SOCKET, SO_LINGER, &ling, sizeof(ling));

19     Close(sockfd);

20     exit(0);

21 }

Set SO_LINGER socket option
16 19 Once the connection is established, we set the SO_LINGER socket option, setting the
l_onoff flag to 1 and the l_linger time to 0. As stated in Section 7.5, this causes an RST
to be sent on a TCP socket when the connection is closed. We then close the socket.

Next, we modify our TCP server from Figures 6.21 and 6.22 to pause after select returns
that the listening socket is readable, but before calling accept. In the following code from
the beginning of Figure 6.22, the two lines preceded by a plus sign are new:

Page 540

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


     if (FD_ISSET(listenfd, &rset)) {    /* new client connection */

+        printf("listening socket readable\n");

+        sleep(5);

         clilen = sizeof(cliaddr);

         connfd = Accept(listenfd, (SA *) &cliaddr, &clilen);

What we are simulating here is a busy server that cannot call accept as soon as select
returns that the listening socket is readable. Normally, this slowness on the part of the
server is not a problem (indeed, this is why a queue of completed connections is
maintained), but when combined with the RST from the client, after the connection is
established, we can have a problem.

In Section 5.11, we noted that when the client aborts the connection before the server
calls accept, Berkeley-derived implementations do not return the aborted connection to
the server, while other implementations should return ECONNABORTED but often return
EPROTO instead. Consider the following example of a Berkeley-derived implementation:

 The client establishes the connection and then aborts it as in Figure 16.21.

 select returns readable to the server process, but it takes the server a short time to
call accept.

 Between the server's return from select and its calling accept, the RST is received
from the client.

 The completed connection is removed from the queue and we assume that no other
completed connections exist.

 The server calls accept, but since there are no completed connections, it blocks.

The server will remain blocked in the call to accept until some other client establishes a
connection. But in the meantime, assuming a server like Figure 6.22, the server is blocked
in the call to accept and will not handle any other ready descriptors.

This problem is somewhat similar to the denial-of-service attack described in Section 6.8,
but with this new bug, the server breaks out of the blocked accept as soon as another
client establishes a connection.

The fix for this problem is as follows:

1. Always set a listening socket to nonblocking when you use select to indicate when
a connection is ready to be accepted.

2. Ignore the following errors on the subsequent call to accept: EWOULDBLOCK (for
Berkeley-derived implementations, when the client aborts the connection), 
ECONNABORTED (for POSIX implementations, when the client aborts the connection),
EPROTO (for SVR4 implementations, when the client aborts the connection), and
EINTR (if signals are being caught).

[ Team LiB ]

Page 541

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

16.7 Summary
Our example of nonblocking reads and writes in Section 16.2 took our str_cli echo client
and modified it to use nonblocking I/O on the TCP connection to the server. select is
normally used with nonblocking I/O to determine when a descriptor is readable or writable.
This version of our client is the fastest version that we show, although the code
modifications are nontrivial. We then showed that it is simpler to divide the client into two
pieces using fork; we will employ the same technique using threads in Figure 26.2.

Nonblocking connects let us do other processing while TCP's three-way handshake takes
place, instead of being blocked in the call to connect. Unfortunately, these are also
nonportable, with different implementations having different ways of indicating that the
connection completed successfully or encountered an error. We used nonblocking connects
to develop a new client, which is similar to a Web client that opens multiple TCP
connections at the same time to reduce the clock time required to fetch numerous files
from a server. Initiating multiple connections like this can reduce the clock time, but is
also "network-unfriendly" with regard to TCP's congestion avoidance.

[ Team LiB ]

Page 542

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Exercises
16.1 In our discussion of Figure 16.10, we mentioned that the parent must

call shutdown, not close. Why?

16.2 What happens in Figure 16.10 if the server process terminates
prematurely, plus the child receives the EOF and terminates, but the
child does not notify the parent?

16.3 What happens in Figure 16.10 if the parent dies unexpectedly before
the child, and the child then reads an EOF on the socket?

16.4 What happens in Figure 16.11 if we remove the two lines

if (n == 0)

    goto done;     /* connect completed immediately */

16.5 In Section 16.3 we said that it is possible for data to arrive for a socket
before connect returns. How can this happen?

[ Team LiB ]

Page 543

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Chapter 17. ioctl Operations
Section 17.1.?Introduction

Section 17.2.?ioctl Function

Section 17.3.?Socket Operations

Section 17.4.?File Operations

Section 17.5.?Interface Configuration

Section 17.6.?get_ifi_info Function

Section 17.7.?Interface Operations

Section 17.8.?ARP Cache Operations

Section 17.9.?Routing Table Operations

Section 17.10.?Summary

Exercises

[ Team LiB ]

Page 544

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

17.1 Introduction
The ioctl function has traditionally been the system interface used for everything that
didn't fit into some other nicely defined category. POSIX is getting rid of ioctl for certain
functionality by creating specific wrapper functions to replace ioctls whose functionality is
being standardized by POSIX. For example, the Unix terminal interface was traditionally
accessed using ioctl, but POSIX created 12 new functions for terminals: tcgetattr to get
the terminal attributes, tcflush to flush pending input or output, and so on. In a similar
vein, POSIX has replaced one network ioctl: the new sockatmark function (Section 24.3)
replaces the SIOCATMARK ioctl. Nevertheless, numerous ioctls remain for
implementation-dependent features related to network programming: obtaining interface
information and accessing the routing table and ARP cache, for example.

This chapter provides an overview of the ioctl requests related to network programming,
but many of these are implementation-dependent. Additionally, some implementations,
including 4.4BSD-derived systems and Solaris 2.6 and later, use sockets in the AF_ROUTE
domain (routing sockets) to accomplish many of these operations. We will cover routing
sockets in Chapter 18.

A common use of ioctl by network programs (typically servers) is to obtain information on
all the host's interfaces when the program starts: the interface addresses, whether the
interface supports broadcasting, whether the interface supports multicasting, and so on.
We will develop our own function to return this information and provide an implementation
using ioctl in this chapter, and examine another implementation using routing sockets in
Chapter 18.

[ Team LiB ]

Page 545

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

17.2 ioctl Function
This function affects an open file referenced by the fd argument.

#include <unistd.h>

int ioctl(int fd, int request, ... /* void *arg */ );

Returns:0 if OK, -1 on error

The third argument is always a pointer, but the type of pointer depends on the request.

4.4BSD defines the second argument to be an unsigned long instead of an int, but that is
not a problem since header files define the constants that are used for this argument. As
long as the prototype is in scope (i.e., the program using ioctl has included <unistd.h>),
the correct type for the system will be used.

Some implementations specify the third argument as a void * pointer instead of the ANSI
C ellipsis notation.

There is no standard for the header to include to define the function prototype for ioctl
since it is not standardized by POSIX. Many systems define it in <unistd.h>, as we show,
but traditional BSD systems define it in <sys/ioctl.h>.

We can divide the requests related to networking into six categories:

 Socket operations

 File operations

 Interface operations

 ARP cache operations

 Routing table operations

 STREAMS system (Chapter 31)

Recall from Figure 7.20 that not only do some of the ioctl operations overlap some of the
fcntl operations (e.g., setting a socket to nonblocking), but there are also some
operations that can be specified more than one way using ioctl (e.g., setting the process
group ownership of a socket).

Figure 17.1 lists the requests, along with the datatype of what the arg address must point
to. The following sections describe these requests in more detail.

Figure 17.1. Summary of networking ioctl requests.

Page 546

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Page 547

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

17.3 Socket Operations
Three ioctl requests are explicitly used for sockets (pp. 551 553 of TCPv2). All three
require that the third argument to ioctl be a pointer to an integer.

SIOCATMARK Return through the integer pointed to by the third argument a nonzero
value if the socket's read pointer is currently at the out-of-band mark, or a
zero value if the read pointer is not at the out-of-band mark. We will
describe out-of-band data in more detail in Chapter 24. POSIX replaces this
request with the sockatmark function, and we will show an implementation
of this new function using ioctl in Section 24.3.

SIOCGPGRP Return through the integer pointed to by the third argument either the
process ID or the process group ID that is set to receive the SIGIO or
SIGURG signal for this socket. This request is identical to an fcntl of
F_GETOWN, and we note in Figure 7.20 that POSIX standardizes the fcntl.

SIOCSPGRP Set either the process ID or process group ID to receive the SIGIO or
SIGURG signal for this socket from the integer pointed to by the third
argument. This request is identical to an fcntl of F_SETOWN, and we note
in Figure 7.20 that POSIX standardizes the fcntl.

[ Team LiB ]

Page 548

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

17.4 File Operations
The next group of requests begin with FIO and may apply to certain types of files, in
addition to sockets. We cover only the requests that apply to sockets (p. 553 of TCPv2).
The following five requests all require that the third argument to ioctl point to an integer:

FIONBIO The nonblocking flag for the socket is cleared or turned on, depending on
whether the third argument to ioctl points to a zero or nonzero value,
respectively. This request has the same effect as the O_NONBLOCK file status
flag, which can be set and cleared with the F_SETFL command to the fcntl
function.

FIOASYNC The flag that governs the receipt of asynchronous I/O signals (SIGIO) for the
socket is cleared or turned on, depending on whether the third argument to 
ioctl points to a zero or nonzero value, respectively. This flag has the same
effect as the O_ASYNC file status flag, which can be set and cleared with the
F_SETFL command to the fcntl function.

FIONREAD Return in the integer pointed to by the third argument to ioctl the number
of bytes currently in the socket receive buffer. This feature also works for
files, pipes, and terminals. We said more about this request in Section 14.7.

FIOSETOWN Equivalent to SIOCSPGRP for a socket.

FIOGETOWN Equivalent to SIOCGPGRP for a socket.

[ Team LiB ]

Page 549

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

17.5 Interface Configuration
One of the first steps employed by many programs that deal with the network interfaces on
a system is to obtain from the kernel all the interfaces configured on the system. This is
done with the SIOCGIFCONF request, which uses the ifconf structure, which in turn uses
the ifreq structure, both of which are shown in Figure 17.2.

Figure 17.2 ifconf and ifreq structures used with various interface ioctl
requests.

<net/if.h>

struct ifconf {

    int  ifc_len;                 /* size of buffer, value-result */

    union {

        caddr_t ifcu_buf;         /* input from user -> kernel */

        struct ifreq *ifcu_req;   /* return from kernel -> user */

    } ifc_ifcu;

};

#define ifc_buf ifc_ifcu.ifcu_buf /* buffer address */

#define ifc_req ifc_ifcu.ifcu_req /* array of structures returned */

#define IFNAMSIZ     16

struct ifreq {

    char    ifr_name[IFNAMSIZ];  /* interface name, e.g., "le0" */

    union {

        struct  sockaddr ifru_addr;

        struct  sockaddr ifru_dstaddr;

        struct  sockaddr ifru_broadaddr;

        short   ifru_flags;

        int     ifru_metric;

        caddr_t ifru_data;

    } ifr_ifru;

};

#define ifr_addr         ifr_ifru.ifru_addr         /* address */

#define ifr_dstaddr      ifr_ifru.ifru_dstaddr      /* other end of

point-to-point link */

#define ifr_broadaddr    ifr_ifru.ifru_broadaddr    /* broadcast address */

#define ifr_flags        ifr_ifru.ifru_flags        /* flags */

#define ifr_metric       ifr_ifru.ifru_metric       /* metric */

#define ifr_data         ifr_ifru.ifru_data         /* for use by interface */

Before calling ioctl, we allocate a buffer and an ifconf structure and then initialize the
latter. We show a picture of this in Figure 17.3 (p. 470), assuming our buffer size is 1,024
bytes. The third argument to ioctl is a pointer to our ifconf structure.

Figure 17.3. Initialization of ifconf structure before SIOCGIFCONF.

Page 550

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


If we assume that the kernel returns two ifreq structures, we could have the arrangement
shown in Figure 17.4 (p. 470) when the ioctl returns. The shaded regions have been
modified by ioctl. The buffer has been filled in with the two structures and the ifc_len
member of the ifconf structure has been updated to reflect the amount of information
stored in the buffer. We assume in this figure that each ifreq structure occupies 32 bytes.

Figure 17.4. Values returned by SIOCGIFCONF.

A pointer to an ifreq structure is also used as an argument to the remaining interface
ioctls shown in Figure 17.1, which we will describe in Section 17.7. Notice that each
ifreq structure contains a union and there are numerous #defines to hide the fact that
these fields are members of a union. All references to individual members are made using
defined names. Be aware that some systems have added many implementation-dependent
members to the ifr_ifru union.

Page 551

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Page 552

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

17.6 get_ifi_info Function
Since many programs need to know all the interfaces on a system, we will develop a
function of our own named get_ifi_info that returns a linked list of structures, one for
each interface that is currently "up." In this section, we will implement this function using
the SIOCGIFCONF ioctl, and in Chapter 18, we will develop a version using routing
sockets.

FreeBSD provides a function named getifaddrs with similar functionality.

Searching the entire FreeBSD 4.8 source tree shows that 12 programs issue the 
SIOCGIFCONF ioctl to determine the interfaces present.

We first define the ifi_info structure in a new header named unpifi.h, shown in Figure
17.5.

Figure 17.5 unpifi.h header.

lib/unpifi.h

 1 /* Our own header for the programs that need interface configuration info.

 2    Include this file, instead of "unp.h". */

 3 #ifndef __unp_ifi_h

 4 #define __unp_ifi_h

 5 #include     "unp.h"

 6 #include     <net/if.h>

 7 #define IFI_NAME     16            /* same as IFNAMSIZ in <net/if.h> */

 8 #define IFI_HADDR     8            /* allow for 64-bit EUI-64 in future */

 9 struct  ifi_info {

10     char     ifi_name[IFI_NAME];   /* interface name, null-terminated */

11     short    ifi_index;            /* interface index */

12     short    ifi_mtu;              /* interface MTU */

13     u_char   ifi_haddr[IFI_HADDR];     /* hardware address */

14     u_short  ifi_hlen;             /* # bytes in hardware address: 0, 6, 8

*/

15     short    ifi_flags;            /* IFF_xxx constants from <net/if.h> */

16     short    ifi_myflags;          /* our own IFI_xxx flags */

17     struct  sockaddr *ifi_addr;    /* primary address */

18     struct  sockaddr *ifi_brdaddr;     /* broadcast address */

19     struct  sockaddr *ifi_dstaddr;     /* destination address */

20     struct  ifi_info *ifi_next;    /* next of these structures */

21 };

22 #define IFI_ALIAS    1             /* ifi_addr is an alias */

23                      /* function prototypes */

24 struct ifi_info *get_ifi_info(int, int);

25 struct ifi_info *Get_ifi_info(int, int);

26 void    free_ifi_info(struct ifi_info *);

27 #endif  /* __unp_ifi_h */

9 21 A linked list of these structures is returned by our function, each structure's ifi_next

Page 553

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


member pointing to the next one. We return in this structure just the information that a
typical application is probably interested in: the interface name, the interface index, the
MTU, the hardware address (e.g., an Ethernet address), the interface flags (to let the
application determine if the interface supports broadcasting or multicasting, or is a
point-to-point interface), the interface address, the broadcast address, and the destination
address for a point-to-point link. All the memory used to hold the ifi_info structures,
along with the socket address structures contained within, are obtained dynamically.
Therefore, we also provide a free_ifi_info function to free all this memory.

Before showing the implementation of our get_ifi_info function, we show a simple
program that calls this function and then outputs all the information. This program is a
miniature version of the ifconfig program and is shown in Figure 17.6.

Figure 17.6 prifinfo program that calls our get_ifi_info function.

ioctl/prifinfo.c

 1 #include     "unpifi.h"

 2 int

 3 main(int argc, char **argv)

 4 {

 5     struct ifi_info *ifi, *ifihead;

 6     struct sockaddr *sa;

 7     u_char *ptr;

 8     int     i, family, doaliases;

 9     if (argc != 3)

10         err_quit("usage: prifinfo <inet4|inet6> <doaliases>");

11     if (strcmp(argv[1], "inet4") == 0)

12         family = AF_INET;

13     else if (strcmp (argv[1], "inet6") == 0)

14         family = AF_INET6;

15     else

16         err_quit("invalid <address-family>");

17     doaliases = atoi(argv[2]);

18     for (ifihead = ifi = Get_ifi_info(family, doaliases);

19          ifi != NULL; ifi = ifi->ifi_next) {

20         printf("%s: ", ifi->ifi_name);

21         if (ifi->ifi_index != 0)

22             printf("(%d) ", ifi->ifi_index);

23         printf("<");

24         if (ifi->ifi_flags & IFF_UP)            printf("UP ");

25         if (ifi->ifi_flags & IFF_BROADCAST)     printf("BCAST ");

26         if (ifi->ifi_flags & IFF_MULTICAST)     printf("MCAST ");

27         if (ifi->ifi_flags & IFF_LOOPBACK)      printf("LOOP ");

28         if (ifi->ifi_flags & IFF_POINTOPOINT)   printf("P2P ");

29         printf(">\n");

30         if ( (i = ifi->ifi_hlen) > 0) {

31             ptr = ifi->ifi_haddr;

32             do {

33                 printf("%s%x", (i == ifi->ifi_hlen) ? "  " : ":", *ptr++);

34             } while (--i > 0);

35             printf("\n");

36         }

37         if (ifi->ifi_mtu != 0)

38             printf("  MTU: %d\n", ifi->ifi_mtu);

39         if ( (sa = ifi->ifi_addr) != NULL)

40             printf("  IP addr: %s\n", Sock_ntop_host (sa, sizeof (*sa)));

41         if ( (sa = ifi->ifi_brdaddr) != NULL)

Page 554

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


42             printf("  broadcast addr: %s\n",

43                    Sock_ntop_host (sa, sizeof(*sa)));

44         if ( (sa = ifi->ifi_dstaddr) != NULL)

45             printf("  destination addr: %s\n",

46                    Sock_ntop_host(sa, sizeof(*sa)));

47     }

48     free_ifi_info(ifihead);

49     exit(0);

50 }

18 47 The program is a for loop that calls get_ifi_info once and then steps through all
the ifi_info structures that are returned.

20 36 The interface name, index, and flags are all printed. If the length of the hardware
address is greater than 0, it is printed as hexadecimal numbers. (Our get_ifi_info
function returns an ifi_hlen of 0 if it is not available.)

37 46 The MTU and three IP addresses are printed, if returned.

If we run this program on our host macosx (Figure 1.16), we have the following output:

macosx % prifinfo inet4 0

lo0: <UP MCAST LOOP >

  MTU: 16384

  IP addr: 127.0.0.1

en1: <UP BCAST MCAST >

  MTU: 1500

  IP addr: 172.24.37.78

  broadcast addr: 172.24.37.95

The first command-line argument of inet4 specifies IPv4 addresses, and the second
argument of 0 specifies that no address aliases are to be returned (we will describe IP
address aliases in Section A.4). Note that under MacOS X, the hardware address of the
Ethernet interface is not available using this method.

If we add three alias addresses to the Ethernet interface (en1) with host IDs of 79, 80, and
81, and if we change the second command-line argument to 1, we have the following:

macosx % prifinfo inet4 1

lo0: <UP MCAST LOOP >

  MTU: 16384

  IP addr: 127.0.0.1

 

en1: <UP BCAST MCAST >

  MTU: 1500

  IP addr: 172.24.37.78

  broadcast addr: 172.24.37.95

primary IP address

en1: <UP BCAST MCAST >

  MTU: 1500

  IP addr: 172.24.37.79

  broadcast addr: 172.24.37.95

first alias

en1: <UP BCAST MCAST >

  MTU: 1500

  IP addr: 172.24.37.80

  broadcast addr: 172.24.37.95

second alias

en1: <UP BCAST MCAST >

  MTU: 1500

  IP addr: 172.24.37.81

third alias

Page 555

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


macosx % prifinfo inet4 1

lo0: <UP MCAST LOOP >

  MTU: 16384

  IP addr: 127.0.0.1

 

  broadcast addr: 172.24.37.95

If we run the same program under FreeBSD using the implementation of get_ifi_info
from Figure 18.16 (which can easily obtain the hardware address), we have the following:

freebsd4 % prifinfo inet4 1

de0: <UP BCAST MCAST >

  0:80:c8:2b:d9:28

  IP addr: 135.197.17.100

  broadcast addr: 135.197.17.255

 

de1: <UP BCAST MCAST >

  0:40:5:42:d6:de

  IP addr: 172.24.37.94

  broadcast addr: 172.24.37.95

primary address

de1: <UP BCAST MCAST >

  0:40:5:42:d6:de

  IP addr: 172.24.37.93

  broadcast addr: 172.24.37.93

alias

lo0: <UP MCAST LOOP >

  IP addr: 127.0.0.1

For this example, we directed the program to print the aliases and we see that one alias is
defined for the second Ethernet interface (de1) with a host ID of 93.

We now show our implementation of get_ifi_info that uses the SIOCGIFCONF ioctl.
Figure 17.7 shows the first part of the function, which obtains the interface configuration
from the kernel.

Figure 17.7 Issue SIOCGIFCONF request to obtain interface configuration.

lib/get_ifi_info.c

 1 #include     "unpifi.h"

 2 struct ifi_info *

 3 get_ifi_info(int family, int doaliases)

 4 {

 5     struct ifi_info *ifi, *ifihead, **ifipnext;

 6     int     sockfd, len, lastlen, flags, myflags, idx = 0, hlen = 0;

 7     char    *ptr, *buf, lastname[IFNAMSIZ], *cptr, *haddr, *sdlname;

 8     struct ifconf ifc;

 9     struct ifreq *ifr, ifrcopy;

10     struct sockaddr_in *sinptr;

11     struct sockaddr_in6 *sin6ptr;

12     sockfd = Socket(AF_INET, SOCK_DGRAM, 0);

13     lastlen = 0;

14     len = 100 * sizeof(struct ifreq);     /* initial buffer size guess */

15     for ( ; ; ) {

16         buf = Malloc(len);

17         ifc.ifc_len = len;

18         ifc.ifc_buf = buf;

19         if (ioctl(sockfd, SIOCGIFCONF, &ifc) < 0) {

20             if (errno != EINVAL || lastlen != 0)

Page 556

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


21                 err_sys("ioctl error");

22         } else {

23             if (ifc.ifc_len == lastlen)

24                 break;          /* success, len has not changed */

25             lastlen = ifc.ifc_len;

26         }

27         len += 10 * sizeof(struct ifreq);     /* increment */

28         free(buf);

29     }

30     ifihead = NULL;

31     ifipnext = &ifihead;

32     lastname[0] = 0;

33     sdlname = NULL;

Create Internet Socket
11 We create a UDP socket that will be used with ioctls. Either a TCP or a UDP socket can
be used (p. 163 of TCPv2).

Issue SIOCGIFCONF Request in a Loop
12 28 A fundamental problem with the SIOCGIFCONF request is that some implementations
do not return an error if the buffer is not large enough to hold the result. Instead, the
result is truncated and success is returned (a return value of 0 from ioctl). This means
the only way we know that our buffer is large enough is to issue the request, save the
return length, issue the request again with a larger buffer, and compare the length with
the saved value. Only if the two lengths are the same is our buffer large enough.

Berkeley-derived implementations do not return an error if the buffer is too small (pp. 118
 119 of TCPv2); the result is just truncated to fit the available buffer. Solaris 2.5, on the
other hand, returns EINVAL if the returned length would be greater than or equal to the
buffer length. But, we cannot assume success if the returned length is less than the buffer
size because Berkeley-derived implementations can return less than the buffer size if
another structure does not fit.

Some implementations provide a SIOCGIFNUM request that returns the number of
interfaces. This allows the application to then allocate a buffer of sufficient size before
issuing the SIOCGIFCONF request, but this new request is not widespread.

Allocating a fixed-sized buffer for the result from the SIOCGIFCONF request has become a
problem with the growth of the Web, because large Web servers are allocating many alias
addresses to a single interface. Solaris 2.5, for example, had a limit of 256 aliases per
interface, but this limit increases to 8,192 with 2.6. Sites with numerous aliases discovered
that programs with fixed-size buffers for interface information started failing. Even though
Solaris returns an error if a buffer is too small, these programs allocate their fixed-size
buffer, issue the ioctl, but then die if an error is returned.

12 15 We dynamically allocate a buffer, starting with room for 100 ifreq structures. We
also keep track of the length returned by the last SIOCGIFCONF request in lastlen and
initialize this to 0.

19 20 If an error of EINVAL is returned by ioctl, and we have not yet had a successful
return (i.e., lastlen is still 0), we have not yet allocated a buffer large enough and
continue through the loop.

22 23 If ioctl returns success, and if the returned length equals lastlen, the length has
not changed (our buffer is large enough) and we break out of the loop since we have all
the information.

26 27 Each time around the loop, we increase the buffer size to hold 10 more ifreq

Page 557

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


structures.

Initialize Linked List Pointers
29 31 Since we will be returning a pointer to the head of a linked list of ifi_info
structures, we use the two variables ifihead and ifipnext to hold pointers to the list as
we build it.

The next part of our get_ifi_info function, the beginning of the main loop, is shown in
Figure 17.8.

Figure 17.8 Process interface configuration.

lib/get_ifi_info.c

34     for (ptr = buf; ptr < buf + ifc.ifc_len;) {

35          ifr = (struct ifreq *) ptr;

36 #ifdef   HAVE_SOCKADDR_SA_LEN

37          len = max(sizeof(struct sockaddr), ifr->ifr_addr.sa_len);

38 #else

39          switch (ifr->ifr_addr.sa_family) {

40 #ifdef   IPV6

41          case AF_INET6:

42              len = sizeof(struct sockaddr_in6);

43              break;

44 #endif

45          case AF_INET:

46          default:

47              len = sizeof(struct sockaddr);

48              break;

49          }

50 #endif   /* HAVE_SOCKADDR_SA_LEN */

51          ptr += sizeof(ifr->ifr_name) + len; /* for next one in buffer */

52 #ifdef   HAVE_SOCKADDR_DL_STRUCT

53          /* assumes that AF_LINK precedes AF_INET or AF_INET6 */

54          if (ifr->ifr_addr.sa_family == AF_LINK) {

55              struct sockaddr_dl *sdl = (struct sockaddr_dl *)

&ifr->ifr_addr;

56              sdlname = ifr->ifr_name;

57              idx = sdl->sdl_index;

58              haddr = sdl->sdl_data + sdl->sdl_nlen;

59              hlen = sdl->sdl_alen;

60          }

61 #endif

62          if (ifr->ifr_addr.sa_family != family)

63              continue;              /* ignore if not desired address family

*/

64          myflags = 0;

65          if ( (cptr = strchr(ifr->ifr_name, ':')) != NULL)

66              *cptr = 0;          /* replace colon with null */

67          if (strncmp(lastname, ifr->ifr_name, IFNAMSIZ) == 0) {

68              if (doaliases == 0)

69                  continue;       /* already processed this interface */

70              myflags = IFI_ALIAS;

71          }

72          memcpy(lastname, ifr->ifr_name, IFNAMSIZ);

Page 558

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


73          ifrcopy = *ifr;

74          Ioctl(sockfd, SIOCGIFFLAGS, &ifrcopy);

75          flags = ifrcopy.ifr_flags;

76          if ((flags & IFF_UP) == 0)

77              continue;               /* ignore if interface not up */

Step to Next Socket Address Structure
35 51 As we loop through all the ifreq structures, ifr points to each structure and we
then increment ptr to point to the next one. But, we must deal with newer systems that
provide a length field for socket address structures and older systems that do not provide
this length. Even though the declaration in Figure 17.2 declares the socket address
structure contained within the ifreq structure as a generic socket address structure, on
newer systems, this can be any type of socket address structure. Indeed, on 4.4BSD, a
datalink socket address structure is also returned for each interface (p. 118 of TCPv2).
Therefore, if the length member is supported, we must use its value to update our pointer
to the next socket address structure. Otherwise, we use a length based on the address
family, using the size of the generic socket address structure (16 bytes) as the default.

We put in a case for IPv6, for newer systems, just in case. The problem is that the union in
the ifreq structure defines the returned addresses as generic 16-byte sockaddr
structures, which are adequate for 16-byte IPv4 sockaddr_in structures, but too small for
28-byte IPv6 sockaddr_in6 structures. This is not a problem on systems that have the
sa_len field in the sockaddr since they can indicate variable-sized sockaddr structures
easily.

Handle AF_LINK
52 60 If the system is one that returns AF_LINK sockaddrs in SIOCGIFCONF, copy the
interface index and the hardware address information from the AF_LINK sockaddr.

62 63 We ignore any addresses from families except those desired by the caller.

Handle Aliases
64 72 We must detect any aliases that may exist for the interface, that is, additional
addresses that have been assigned to the interface. Note from our examples following 
Figure 17.6 that under Solaris, the interface name for an alias contains a colon, while under
4.4BSD, the interface name does not change for an alias. To handle both cases, we save
the last interface name in lastname and only compare up to a colon, if present. If a colon is
not present, we still ignore this interface if the name is equivalent to the last interface we
processed.

Fetch Interface Flags
73 77 We issue an ioctl of SIOCGIFFLAGS (Section 17.5) to fetch the interface flags. The
third argument to ioctl is a pointer to an ifreq structure that must contain the name of
the interface for which we want the flags. We make a copy of the ifreq structure before
issuing the ioctl, because if we didn't, this request would overwrite the IP address of the
interface since both are members of the same union in Figure 17.2. If the interface is not
up, we ignore it.

Figure 17.9 contains the third part of our function.

Figure 17.9 Allocate and initialize ifi_info structure.

lib/get_ifi_info.c

Page 559

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


78         ifi = Calloc(1, sizeof(struct ifi_info));

79         *ifipnext = ifi;        /* prev points to this new one */

80         ifipnext = &ifi->ifi_next;  /* pointer to next one goes here */

81         ifi->ifi_flags = flags; /* IFF_xxx values */

82         ifi->ifi_myflags = myflags; /* IFI_xxx values */

83 #if defined(SIOCGIFMTU) && defined(HAVE_STRUCT_IFREQ_IFR_MTU)

84         Ioctl(sockfd, SIOCGIFMTU, &ifrcopy);

85         ifi->ifi_mtu = ifrcopy.ifr_mtu;

86 #else

87         ifi->ifi_mtu = 0;

88 #endif

89         memcpy(ifi->ifi_name, ifr->ifr_name, IFI_NAME);

90         ifi->ifi_name [IFI_NAME - 1] = '\0';

91         /* If the sockaddr_dl is from a different interface, ignore it */

92         if (sdlname == NULL || strcmp (sdlname, ifr->ifr_name) != 0)

93             idx = hlen = 0;

94         ifi->ifi_index = idx;

95         ifi->ifi_hlen = hlen;

96         if (ifi->ifi_hlen > IFI_HADDR)

97             ifi->ifi_hlen = IFI_HADDR;

98         if (hlen)

99             memcpy(ifi->ifi_haddr, haddr, ifi->ifi_hlen);

Allocate and Initialize ifi_info Structure
78 99 At this point, we know that we will return this interface to the caller. We allocate
memory for our ifi_info structure and add it to the end of the linked list we are building.
We copy the interface flags, MTU, and name into the structure. We make certain that the
interface name is null-terminated, and since calloc initializes the allocated region to all
zero bits, we know that ifi_hlen is initialized to 0 and that ifi_next is initialized to a null
pointer. We copy the saved interface index and hardware length; if the length is nonzero,
we also copy the saved hardware address.

Figure 17.10 contains the last part of our function.

102 104 We copy the IP address that was returned from our original SIOCGIFCONF request
in the structure we are building.

106 119 If the interface supports broadcasting, we fetch the broadcast address with an
ioctl of SIOCGIFBRDADDR. We allocate memory for the socket address structure containing
this address and add it to the ifi_info structure we are building. Similarly, if the interface
is a point-to-point interface, the SIOCGIFDSTADDR returns the IP address of the other end of
the link.

123 133 This is the IPv6 case; it is exactly the same as for IPv4 except that there is no call
to SIOCGIFBRDADDR because IPv6 does not support broadcasting.

Figure 17.11 shows the free_ifi_info function, which takes a pointer that was returned
by get_ifi_info and frees all the dynamic memory.

Figure 17.10 Fetch and return interface addresses.

lib/get_ifi_info.c

100        switch (ifr->ifr_addr.sa_family) {

101        case AF_INET:

102            sinptr = (struct sockaddr_in *) &ifr->ifr_addr;

103            ifi->ifi_addr = Calloc(1, sizeof(struct sockaddr_in));

104            memcpy(ifi->ifi_addr, sinptr, sizeof(struct sockaddr_in));

Page 560

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


105 #ifdef SIOCGIFBRDADDR

106            if (flags & IFF_BROADCAST) {

107                Ioctl(sockfd, SIOCGIFBRDADDR, &ifrcopy);

108                sinptr = (struct sockaddr_in *) &ifrcopy.ifr_broadaddr;

109                ifi->ifi_brdaddr = Calloc(1, sizeof(struct sockaddr_in));

110                memcpy(ifi->ifi_brdaddr, sinptr, sizeof(struct

sockaddr_in));

111            }

112 #endif

113 #ifdef SIOCGIFDSTADDR

114            if (flags & IFF_POINTOPOINT) {

115                Ioctl(sockfd, SIOCGIFDSTADDR, &ifrcopy);

116                sinptr = (struct sockaddr_in *) &ifrcopy.ifr_dstaddr;

117                ifi->ifi_dstaddr = Calloc(1, sizeof(struct sockaddr_in));

118                memcpy(ifi->ifi_dstaddr, sinptr, sizeof(struct

sockaddr_in));

119            }

120 #endif

121            break;

122        case AF_INET6:

123            sin6ptr = (struct sockaddr_in6 *) &ifr->ifr_addr;

124            ifi->ifi_addr = Calloc(1, sizeof(struct sockaddr_in6));

125            memcpy(ifi->ifi_addr, sin6ptr, sizeof(struct sockaddr_in6));

126 #ifdef SIOCGIFDSTADDR

127            if (flags & IFF_POINTOPOINT) {

128                Ioctl(sockfd, SIOCGIFDSTADDR, &ifrcopy);

129                sin6ptr = (struct sockaddr_in6 *) &ifrcopy.ifr_dstaddr;

130                ifi->ifi_dstaddr = Calloc(1, sizeof(struct sockaddr_in6));

131                memcpy(ifi->ifi_dstaddr, sin6ptr,

132                       sizeof(struct sockaddr_in6));

133            }

134 #endif

135            break;

136        default:

137            break;

138        }

139    }

140    free(buf);

141    return (ifihead);           /* pointer to first structure in linked list

*/

142 }

Figure 17.11 free_ifi_info function: frees dynamic memory allocated
by get_ifi_info.

lib/get_ifi_info.c

143 void

144 free_ifi_info(struct ifi_info *ifihead)

145 {

146     struct ifi_info *ifi, *ifinext;

147     for (ifi = ifihead; ifi != NULL; ifi = ifinext) {

148         if (ifi->ifi_addr != NULL)

149             free(ifi->ifi_addr);

Page 561

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


150         if (ifi->ifi_brdaddr != NULL)

151             free(ifi->ifi_brdaddr);

152         if (ifi->ifi_dstaddr != NULL)

153             free(ifi->ifi_dstaddr);

154         ifinext = ifi->ifi_next;     /* can't fetch ifi_next after free()

*/

155         free(ifi);               /* the ifi_info{} itself */

156     }

157 }

[ Team LiB ]

Page 562

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

17.7 Interface Operations
As we showed in the previous section, the SIOCGIFCONF request returns the name and a
socket address structure for each interface that is configured. There are a multitude of
other requests that we can then issue to set or get all the other characteristics of the
interface. The get version of these requests (SIOCGxxx) is often issued by the netstat
program, and the set version (SIOCSxxx) is often issued by the ifconfig program. Any
user can get the interface information, while it takes superuser privileges to set the
information.

These requests take or return an ifreq structure whose address is specified as the third
argument to ioctl. The interface is always identified by its name: le0, lo0, ppp0, etc. in
the ifr_name member.

Many of these requests use a socket address structure to specify or return an IP address or
address mask with the application. For IPv4, the address or mask is contained in the 
sin_addr member of an Internet socket address structure; for IPv6, it is in the sin6_addr
member of an IPv6 socket address structure.

SIOCGIFADDR Return the unicast address in the ifr_addr member.

SIOCSIFADDR Set the interface address from the ifr_addr member. The
initialization function for the interface is also called.

SIOCGIFFLAGS Return the interface flags in the ifr_flags member. The names of the
various flags are IFF_xxx and are defined by including the <net/if.h>
header. The flags indicate, for example, if the interface is up (IFF_UP),
if the interface is a point-to-point interface (IFF_POINTOPOINT), if the
interface supports broadcasting (IFF_BROADCAST), and so on.

SIOCSIFFLAGS Set the interface flags from the ifr_flags member.

SIOCGIFDSTADDR Return the point-to-point address in the ifr_dstaddr member.

SIOCSIFDSTADDR Set the point-to-point address from the ifr_dstaddr member.

SIOCGIFBRDADDR Return the broadcast address in the ifr_broadaddr member. The
application must first fetch the interface flags and then issue the
correct request: SIOCGIFBRDADDR for a broadcast interface or
SIOCGIFDSTADDR for a point-to-point interface.

SIOCSIFBRDADDR Set the broadcast address from the ifr_broadaddr member.

SIOCGIFNETMASK Return the subnet mask in the ifr_addr member.

SIOCSIFNETMASK Set the subnet mask from the ifr_addr member.

SIOCGIFMETRIC Return the interface metric in the ifr_metric member. The interface
metric is maintained by the kernel for each interface but is used by
the routing daemon routed. The interface metric is added to the hop
count (to make an interface less favorable).

Page 563

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


SIOCGIFADDR Return the unicast address in the ifr_addr member.

SIOCSIFMETRIC Set the interface routing metric from the ifr_metric member.

In this section, we described the generic interface requests. Many implementations have
additional requests as well.

[ Team LiB ]

Page 564

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

17.8 ARP Cache Operations
On some systems, the ARP cache is also manipulated with the ioctl function. Systems
that use routing sockets (Chapter 18) usually use routing sockets instead of ioctl to
access the ARP cache. These requests use an arpreq structure, shown in Figure 17.12 and
defined by including the <net/if_arp.h> header.

Figure 17.12 arpreq structure used with ioctl requests for ARP cache.

<net/if_arp.h>

struct arpreq {

    struct sockaddr arp_pa;     /* protocol address */

    struct sockaddr arp_ha;     /* hardware address */

    int             arp_flags;  /* flags */

};

#define ATF_INUSE     0x01 /* entry in use */

#define ATF_COM       0x02 /* completed entry (hardware addr valid) */

#define ATF_PERM      0x04 /* permanent entry */

#define ATF_PUBL      0x08 /* published entry (respond for other host) */

The third argument to ioctl must point to one of these structures. The following three
requests are supported:

SIOCSARP Add a new entry to the ARP cache or modify an existing entry. arp_pa is an
Internet socket address structure containing the IP address, and arp_ha is a
generic socket address structure with sa_family set to AF_UNSPEC and
sa_data containing the hardware address (e.g., the 6-byte Ethernet address).
The two flags, ATF_PERM and ATF_PUBL, can be specified by the application.
The other two flags, ATF_INUSE and ATF_COM, are set by the kernel.

SIOCDARP Delete an entry from the ARP cache. The caller specifies the Internet address
for the entry to be deleted.

SIOCGARP Get an entry from the ARP cache. The caller specifies the Internet address,
and the corresponding Ethernet address is returned along with the flags.

Only the superuser can add or delete an entry. These three requests are normally issued by
the arp program.

These ARP-related ioctl requests are not supported on some newer systems, which use
routing sockets for these ARP operations.

Notice that there is no way with ioctl to list all the entries in the ARP cache. On many
systems, the arp command, when invoked with the -a flag (list all entries in the ARP
cache), reads the kernel's memory (/dev/kmem) to obtain the current contents of the ARP
cache. We will see an easier (and better) way to do this using sysctl, which only works on
some systems (Section 18.4).

Example: Print Hardware Addresses of Host
We now use our get_ifi_info function to return all of a host's IP addresses, followed by
an ioctl of SIOCGARP for each IP address to obtain and print the hardware addresses. We
show our program in Figure 17.13.

Page 565

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


Get List of Addresses and Loop Through Each One

12 We call get_ifi_info to obtain the host's IP addresses and then loop through each
address.

Print IP Address

13 We print the IP address using sock_ntop. We asked get_ifi_info to only return IPv4
addresses, since ARP is not used with IPv6.

Issue ioctl and Check for Error

14 19 We fill in the arp_pa structure as an IPv4 socket address structure containing the
IPv4 address. ioctl is called, and if it returns an error (e.g., because the address supplied
isn't on an interface that supports ARP), we print the error and loop to the next address.

Print Hardware Address

20 22 The hardware address returned from the ioctl is printed.

Figure 17.13 Print a host's hardware addresses.

ioctl/prmac.c

 1 #include     "unpifi.h"

 2 #include     <net/if_arp.h>

 3 int

 4 main(int argc, char **argv)

 5 {

 6     int     sockfd;

 7     struct ifi_info *ifi;

 8     unsigned char *ptr;

 9     struct arpreq arpreq;

10     struct sockaddr_in *sin;

11     sockfd = Socket(AF_INET, SOCK_DGRAM, 0);

12     for (ifi = get_ifi_info(AF_INET, 0); ifi != NULL; ifi = ifi->ifi_next) {

13         printf("%s: ", Sock_ntop(ifi->ifi_addr, sizeof(struct

sockaddr_in)));

14         sin = (struct sockaddr_in *) &arpreq.arp_pa;

15         memcpy(sin, ifi->ifi_addr, sizeof(struct sockaddr_in));

16         if (ioctl(sockfd, SIOCGARP, &arpreq) < 0) {

17             err_ret("ioctl SIOCGARP");

18             continue;

19         }

20         ptr = &arpreq.arp_ha.sa_data[0];

21         printf("%x:%x:%x:%x:%x:%x\n", *ptr, *(ptr + 1),

22                *(ptr + 2), *(ptr + 3), *(ptr + 4), *(ptr + 5));

23     }

24     exit(0);

25 }

Running this program on our hpux host gives

hpux % prmac

Page 566

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


192.6.38.100: 0:60:b0:c2:68:9b

192.168.1.1: 0:60:b0:b2:28:2b

127.0.0.1: ioctl SIOCGARP: Invalid argument

[ Team LiB ]

Page 567

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

17.9 Routing Table Operations
On some systems, two ioctl requests are provided to operate on the routing table. These
two requests require that the third argument to ioctl be a pointer to an rtentry
structure, which is defined by including the <net/route.h> header. These requests are
normally issued by the route program. Only the superuser can issue these requests. On
systems with routing sockets (Chapter 18), these requests use routing sockets instead of
ioctl.

SIOCADDRT Add an entry to the routing table.

SIOCDELRT Delete an entry from the routing table.

There is no way with ioctl to list all the entries in the routing table. This operation is
usually performed by the netstat program when invoked with the -r flag. This program
obtains the routing table by reading the kernel's memory (/dev/kmem). As with listing the
ARP cache, we will see an easier (and better) way to do this using sysctl in Section 18.4.

[ Team LiB ]

Page 568

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

17.10 Summary
The ioctl commands that are used in network programs can be divided into six
categories:

 Socket operations (Are we at the out-of-band mark?)

 File operations (set or clear the nonblocking flag)

 Interface operations (return interface list, obtain broadcast address)

 ARP table operations (create, modify, get, delete)

 Routing table operations (add or delete)

 STREAMS system (Chapter 31)

We will use the socket and file operations, and obtaining the interface list is such a
common operation that we developed our own function to do this. We will use this function
numerous times in the remainder of the text. Only a few specialized programs use the 
ioctl operations with the ARP cache and routing table.

[ Team LiB ]

Page 569

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Exercises
17.1 In Section 17.7, we said that the broadcast address returned by the

SIOCGIFBRDADDR request is returned in the ifr_broadaddr member. But
on p. 173 of TCPv2, notice that it is returned in the ifr_dstaddr
member. Does this matter?

17.2 Modify the get_ifi_info program to issue its first SIOCGIFCONF request
for one ifreq structure and then increment the length each time
around the loop by the size of one of these structures. Next, put some
statements in the loop to print the buffer size each time the request is
issued, whether or not ioctl returns an error, and upon success print
the returned buffer length. Run the prifinfo program and see how
your system handles this request when the buffer size is too small. Also
print the address family for any returned structures whose address
family is not the desired value to see what other structures are returned
by your system.

17.3 Modify the get_ifi_info function to return information about an alias
address if the additional address is on a different subnet from the
previous address for this interface. That is, our version in Section 17.6
ignored the aliases 206.62.226.44 through 206.62.226.46, which is
acceptable since they are on the same subnet as the primary address
for the interface, 206.62.226.33. But if, in this example, an alias is on a
different subnet, say 192.3.4.5, return an ifi_info structure with the
information about the additional address.

17.4 If your system supports the SIOCGIFNUM ioctl, then modify Figure
17.7 to issue this request and use the return value as the initial buffer
size guess.

[ Team LiB ]

Page 570

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Chapter 18. Routing Sockets
Section 18.1.?Introduction

Section 18.2.?Datalink Socket Address Structure

Section 18.3.?Reading and Writing

Section 18.4.?sysctl Operations

Section 18.5.?get_ifi_info Function (Revisited)

Section 18.6.?Interface Name and Index Functions

Section 18.7.?Summary

Exercises

[ Team LiB ]

Page 571

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

18.1 Introduction
Traditionally, the Unix routing table within the kernel has been accessed using ioctl
commands. In Section 17.9, we described the two commands that are provided, SIOCADDRT
and SIOCDELRT, to add or delete a route. We also mentioned that no command exists to
dump the entire routing table, and instead programs such as netstat read the kernel
memory to obtain the contents of the routing table. One additional piece to this
hodgepodge is that routing daemons such as gated need to monitor ICMP redirect
messages that are received by the kernel, and they often do this by creating a raw ICMP
socket (Chapter 28) and listening on this socket to all received ICMP messages.

4.3BSD Reno cleaned up the interface to the kernel's routing subsystem by creating the 
AF_ROUTE domain. The only type of socket supported in the route domain is a raw socket.
Three types of operations are supported on a routing socket:

1. A process can send a message to the kernel by writing to a routing socket. For
example, this is how routes are added and deleted.

2. A process can read a message from the kernel on a routing socket. This is how the
kernel notifies a process that an ICMP redirect has been received and processed, or
how it requests a route resolution from an external routing process.

Some operations involve both steps. For example, the process sends a message to
the kernel on a routing socket asking for all the information on a given route, and
the process reads back the response from the kernel on the routing socket.

3. A process can use the sysctl function (Section 18.4) to either dump the routing
table or list all configured interfaces.

The first two operations require superuser privileges on most systems, while the last
operation can be performed by any process.

Some newer releases have relaxed the superuser requirement for opening a routing socket
and instead restrict only routing socket messages that change the table. This allows any
process to use, for instance, RTM_GET to look up a route without being the superuser.

Technically, the third operation is not performed using a routing socket but invokes the
generic sysctl function. We will see that one of the input parameters is the address
family, which is AF_ROUTE for the operations we describe in this chapter, and the
information returned is in the same format as the information returned by the kernel on a
routing socket. Indeed, the sysctl processing for the AF_ROUTE family is part of the routing
socket code in a 4.4BSD kernel (pp.632 643 of TCPv2).

The sysctl utility appeared in 4.4BSD. Unfortunately, not all implementations that support
routing sockets provide sysctl. For example, AIX 5.1 and Solaris 9 support routing
sockets, but neither supports sysctl.

[ Team LiB ]

Page 572

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

18.2 Datalink Socket Address Structure
We will encounter datalink socket address structures as return values contained in some of
the messages returned on a routing socket. Figure 18.1 shows the definition of the
structure, which is defined by including <net/if_dl.h>.

Figure 18.1 Datalink socket address structure.

struct sockaddr_dl {

  uint8_t      sdl_len;

  sa_family_t  sdl_family;   /* AF_LINK */

  uint16_t     sdl_index;    /* system assigned index, if > 0 */

  uint8_t      sdl_type;     /* IFT_ETHER, etc. from <net/if_types.h> */

  uint8_t      sdl_nlen;     /* name length, starting in sdl_data[0] */

  uint8_t      sdl_alen;     /* link-layer address length */

  uint8_t      sdl_slen;     /* link-layer selector length */

  char         sdl_data[12]; /* minimum work area, can be larger;

                                contains i/f name and link-layer address */

};

Each interface has a unique positive index, and we will see this returned by the 
if_nametoindex and if_nameindex functions later in this chapter, along with the IPv6
multicasting socket options in Chapter 21 and some advanced IPv4 and IPv6 socket
options in Chapter 27.

The sdl_data member contains both the name and link-layer address (e.g., the 48-bit MAC
address for an Ethernet interface). The name begins at sdl_data[0] and is not
null-terminated. The link-layer address begins sdl_nlen bytes after the name. This header
defines the following macro to return the pointer to the link-layer address:

#define LLADDR(s)     ((caddr_t)((s)->sdl_data + (s)->sdl_nlen))

These socket address structures are variable-length (p. 89 of TCPv2). If the link-layer
address and name exceed 12 bytes, the structure will be larger than 20 bytes. The size is
normally rounded up to the next multiple of 4 bytes on 32-bit systems. We will also see in 
Figure 22.3 that when one of these structures is returned by the IP_RECVIF socket option,
all three lengths are 0 and there is no sdl_data member at all.

[ Team LiB ]

Page 573

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

18.3 Reading and Writing
After a process creates a routing socket, it can send commands to the kernel by writing to
the socket and read information from the kernel by reading from the socket. There are 12
different routing commands, 5 of which can be issued by the process. These commands are
defined by including the <net/route.h> header and are shown in Figure 18.2.

Figure 18.2. Types of messages exchanged across a routing socket.

Five different structures are exchanged across a routing socket, as shown in the final
column of this figure: rt_msghdr, if_announcemsghdr, if_msghdr, ifa_msghdr, and
ifma_msghdr, which we show in Figure 18.3.

Figure 18.3 The five structures returned with routing messages.

struct rt_msghdr {    /* from <net/route.h> */

  u_short  rtm_msglen;   /* to skip over non-understood messages */

  u_char   rtm_version;  /* future binary compatibility */

  u_char   rtm_type;     /* message type */

  u_short  rtm_index;    /* index for associated ifp */

  int      rtm_flags;    /* flags, incl. kern & message, e.g., DONE */

  int      rtm_addrs;    /* bitmask identifying sockaddrs in msg */

  pid_t    rtm_pid;      /* identify sender */

  int      rtm_seq;      /* for sender to identify action */

  int      rtm_errno;    /* why failed */

  int      rtm_use;      /* from rtentry */

  u_long   rtm_inits;    /* which metrics we are initializing */

  struct rt_metrics  rtm_rmx;  /* metrics themselves */

};

struct if_msghdr {    /* from <net/if.h> */

  u_short  ifm_msglen;   /* to skip over non-understood messages */

  u_char   ifm_version;  /* future binary compatibility */

  u_char   ifm_type;     /* message type */

  int      ifm_addrs;    /* like rtm_addrs */

  int      ifm_flags;    /* value of if_flags */

  u_short  ifm_index;    /* index for associated ifp */

  struct if_data  ifm_data;/* statistics and other data about if */

};

struct ifa_msghdr {   /* from <net/if.h> */

  u_short  ifam_msglen;   /* to skip over non-understood messages */

  u_char   ifam_version;  /* future binary compatibility */

  u_char   ifam_type;     /* message type */

Page 574

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


  int      ifam_addrs;    /* like rtm_addrs */

  int      ifam_flags;    /* value of ifa_flags */

  u_short  ifam_index;    /* index for associated ifp */

  int      ifam_metric;   /* value of ifa_metric */

};

struct ifma_msghdr {  /* from <net/if.h> */

  u_short ifmam_msglen;   /* to skip over non-understood messages */

  u_char  ifmam_version;  /* future binary compatibility */

  u_char  ifmam_type;     /* message type */

  int     ifmam_addrs;    /* like rtm_addrs */

  int     ifmam_flags;    /* value of ifa_flags */

  u_short ifmam_index;    /* index for associated ifp */

};

struct if_announcemsghdr {  /* from <net/if.h> */

  u_short ifan_msglen;    /* to skip over non-understood messages */

  u_char  ifan_version;   /* future binary compatibility */

  u_char  ifan_type;      /* message type */

  u_short ifan_index;     /* index for associated ifp */

  char    ifan_name[IFNAMSIZ]; /* if name, e.g. "en0" */

  u_short ifan_what;      /* what type of announcement */

};

The first three members of each structure are the same: length, version, and type of
message. The type is one of the constants from the first column in Figure 18.2. The length
member allows an application to skip over message types it does not understand.

The members rtm_addrs, ifm_addrs, ifam_addrs, and ifmam_addrs are bitmasks that
specify which of eight possible socket address structures follow the message. Figure 18.4
shows the constants and values for each bitmask, which are defined by including the 
<net/route.h> header.

Figure 18.4. Constants used to refer to socket address structures in
routing messages.

When multiple socket address structures are present, they are always in the order shown in
the table.

Example: Fetch and Print a Routing Table Entry
We now show an example using routing sockets. Our program takes a command-line
argument consisting of an IPv4 dotted-decimal address and sends an RTM_GET message to
the kernel for this address. The kernel looks up the address in its IPv4 routing table and
returns an RTM_GET message with information about the routing table entry. For example, if
we execute

freebsd % getrt 206.168.112.219

dest: 0.0.0.0

Page 575

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


gateway: 12.106.32.1

netmask: 0.0.0.0

on our host freebsd, we see that this destination address uses the default route (which is
stored in the routing table with a destination IP address of 0.0.0.0 and a mask of 0.0.0.0).
The next-hop router is this system's gateway to the Internet. If we execute

freebsd % getrt 192.168.42.0

dest: 192.168.42.0

gateway: AF_LINK, index=2

netmask: 255.255.255.0

specifying the secondary Ethernet as the destination, the destination is the network itself.
The gateway is now the outgoing interface, returned as a sockaddr_dl structure with an
interface index of 2.

Before showing the source code, we show what we write to the routing socket in Figure
18.5 along with what is returned by the kernel.

Figure 18.5. Data exchanged with kernel across routing socket for 
RTM_GET command.

We build a buffer containing an rt_msghdr structure, followed by a socket address
structure containing the destination address for the kernel to look up. The rtm_type is
RTM_GET and the rtm_addrs is RTA_DST (recall Figure 18.4), indicating that the only socket
address structure following the rt_msghdr structure is one containing the destination
address. This command can be used with any protocol family (that provides a routing
table), because the family of the address to look up is contained in the socket address
structure.

After sending the message to the kernel, we read back the reply, and it has the format
shown at the right of Figure 18.5: an rt_msghdr structure followed by up to four socket
address structures. Which of the four socket address structures gets returned depends on

Page 576

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


the routing table entry; we are told which of the four by the value in the rtm_addrs
member of the returned rt_msghdr structure. The family of each socket address structure
is contained in the sa_family member, and as we saw in our examples earlier, one time
the returned gateway was an IPv4 socket address structure and the next time it was a
datalink socket address structure.

Figure 18.6 shows the first part of our program.

Figure 18.6 First half of program to issue RTM_GET command on routing
socket.

route/getrt.c

 1 #include     "unproute.h"

 2 #define BUFLEN   (sizeof(struct rt_msghdr) + 512)

 3                      /* sizeof(struct sockaddr_in6) * 8 = 192 */

 4 #define SEQ      9999

 5 int

 6 main(int argc, char **argv)

 7 {

 8     int     sockfd;

 9     char   *buf;

10     pid_t   pid;

11     ssize_t n;

12     struct rt_msghdr *rtm;

13     struct sockaddr *sa, *rti_info[RTAX_MAX];

14     struct sockaddr_in *sin;

15     if (argc != 2)

16         err_quit("usage: getrt <IPaddress>");

17     sockfd = Socket(AF_ROUTE, SOCK_RAW, 0); /* need superuser privileges */

18     buf = Calloc(1, BUFLEN);     /* and initialized to 0 */

19     rtm = (struct rt_msghdr *) buf;

20     rtm->rtm_msglen = sizeof(struct rt_msghdr) + sizeof(struct sockaddr_in);

21     rtm->rtm_version = RTM_VERSION;

22     rtm->rtm_type = RTM_GET;

23     rtm->rtm_addrs = RTA_DST;

24     rtm->rtm_pid = pid = getpid();

25     rtm->rtm_seq = SEQ;

26     sin = (struct sockaddr_in *) (rtm + 1);

27     sin->sin_len = sizeof(struct sockaddr_in);

28     sin->sin_family = AF_INET;

29     Inet_pton(AF_INET, argv[1], &sin->sin_addr);

30     Write(sockfd, rtm, rtm->rtm_msglen);

31     do {

32         n = Read(sockfd, rtm, BUFLEN);

33     } while (rtm->rtm_type != RTM_GET || rtm->rtm_seq != SEQ ||

34              rtm->rtm_pid != pid);

1 3 Our unproute.h header includes some files that are needed and then includes our
unp.h file. The constant BUFLEN is the size of the buffer that we allocate to hold our

Page 577

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


message to the kernel, along with the kernel's reply. We need room for one rt_msghdr
structure and possibly eight socket address structures (the maximum number that is ever
returned on a routing socket). Since an IPv6 socket address structure is 28 bytes in size,
the value of 512 is more than adequate.

Create routing socket

17 We create a raw socket in the AF_ROUTE domain, and as we said earlier, this may require
superuser privileges. A buffer is allocated and initialized to 0.

Fill in rt_msghdr structure

18 25 We fill in the structure with our request. We store our process ID and a sequence
number of our choosing in the structure. We will compare these values in the responses
that we read, looking for the correct reply.

Fill in Internet socket address structure with destination

26 29 Following the rt_msghdr structure, we build a sockaddr_in structure containing the
destination IPv4 address for the kernel to look up in its routing table. All we set are the
address length, the address family, and the address.

write message to kernel and read reply

30 34 We write the message to the kernel and read back the reply. Since other processes
may have routing sockets open, and since the kernel passes a copy of all routing messages
to all routing sockets, we must check the message type, sequence number, and process ID
to verify that the message received is the one we are waiting for.

The last half of this program is shown in Figure 18.7. This half processes the reply.

Figure 18.7 Last half of program to issue RTM_GET command on routing
socket.

route/getrt.c

35     rtm = (struct rt_msghdr *) buf;

36     sa = (struct sockaddr *) (rtm + 1);

37     get_rtaddrs(rtm->rtm_addrs, sa, rti_info);

38     if ( (sa = rti_info[RTAX_DST]) != NULL)

39         printf("dest: %s\n", Sock_ntop_host(sa, sa->sa_len));

40     if ( (sa = rti_info[RTAX_GATEWAY]) != NULL)

41         printf("gateway: %s\n", Sock_ntop_host(sa, sa->sa_len));

42     if ( (sa = rti_info[RTAX_NETMASK]) != NULL)

43         printf("netmask: %s\n", Sock_masktop(sa, sa->sa_len));

44     if ( (sa = rti_info[RTAX_GENMASK]) != NULL)

45         printf("genmask: %s\n", Sock_masktop(sa, sa->sa_len));

46     exit(0);

47 }

35 36 rtm points to the rt_msghdr structure and sa points to the first socket address
structure that follows.

37 rtm_addrs is a bitmask of which of the eight possible socket address structures follow
the rt_msghdr structure. Our get_rtaddrs function (which we will show next) takes this
mask plus the pointer to the first socket address structure (sa) and fills in the array

Page 578

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


rti_info with pointers to the corresponding socket address structures. Assuming that all
four socket address structures shown in Figure 18.5 are returned by the kernel, the
resulting rti_info array will be as shown in Figure 18.8.

Figure 18.8. rti_info structure filled in by our get_rtaddrs function.

Our program then goes through the rti_info array, doing what it wants with all the
non-null pointers in the array.

38 45 Each of the four possible addresses are printed, if present. We call our
sock_ntop_host function to print the destination address and the gateway address, but we
call our sock_masktop to print the two masks. We will show this new function shortly.

Figure 18.9 shows our get_rtaddrs function that we called from Figure 18.7.

Loop through eight possible pointers

17 23 RTAX_MAX is 8 in Figure 18.4, the maximum number of socket address structures
returned in a routing message from the kernel. The loop in this function looks at each of
the eight RTA_xxx bitmask constants from Figure 18.4 that can be set in the rtm_addrs,
ifm_addrs, or ifam_addrs members of the structures in Figure 18.3. If the bit is set, the
corresponding element in the rti_info array is set to the pointer to the socket address
structure; otherwise, the array element is set to a null pointer.

Step to next socket address structure

2 12 The socket address structures are variable-length, but this code assumes that each
has an sa_len field specifying its length. There are two complications that must be
handled. First, the two masks, the network mask and the cloning mask, can be returned in
a socket address structure with an sa_len of 0, but this really occupies the size of an
unsigned long. (Chapter 19 of TCPv2 discusses the cloning feature of the 4.4BSD routing
table). This value represents a mask of all zero bits, which we printed as 0.0.0.0 for the
network mask of the default route in our earlier example. Second, each socket address
structure can be padded at the end so that the next one begins on a specific boundary,
which in this case is the size of an unsigned long (e.g., a 4-byte boundary for a 32-bit
architecture). Although sockaddr_in structures occupy 16 bytes, which requires no
padding, the masks often have padding at the end.

Page 579

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


Figure 18.9 Build array of pointers to socket address structures in
routing message.

libroute/get_rtaddrs.c

 1 #include    "unproute.h"

 2 /*

 3  * Round up 'a' to next multiple of 'size', which must be a power of 2

 4  */

 5 #define ROUNDUP(a, size) (((a) & ((size)-1)) ? (1 + ((a) | ((size)-1))) :

(a))

 6 /*

 7  * Step to next socket address structure;

 8  * if sa_len is 0, assume it is sizeof(u_long).

 9  */

10 #define NEXT_SA(ap) ap = (SA *) \

11     ((caddr_t) ap + (ap->sa_len ? ROUNDUP(ap->sa_len, sizeof (u_long)) : \

12                                        sizeof(u_long)))

13 void

14 get_rtaddrs(int addrs, SA *sa, SA **rti_info)

15 {

16     int     i;

17     for (i = 0; i < RTAX_MAX; i++) {

18         if (addrs & (1 << i)) {

19             rti_info[i] = sa;

20             NEXT_SA(sa);

21         } else

22             rti_info[i] = NULL;

23     }

24 }

The last function that we must show for our example program is sock_masktop in Figure
18.10, which returns the presentation string for one of the two mask values that can be
returned. Masks are stored in socket address structures. The sa_family member is
undefined, but the mask socket address structures do contain an sa_len of 0, 5, 6, 7, or 8
for 32-bit IPv4 masks. When the length is greater than 0, the actual mask starts at the
same offset from the beginning as does the IPv4 address in a sockaddr_in structure: 4
bytes from the beginning of the structure (as shown in Figure 18.21, p. 577 of TCPv2),
which is the sa_data[2] member of the generic socket address structure.

Figure 18.10 Convert a mask value to its presentation format.

libroute/sock_masktop.c

 1 #include    "unproute.h"

 2 const char *

 3 sock_masktop(SA *sa, socklen_t salen)

 4 {

 5     static char str[INET6_ADDRSTRLEN];

 6     unsigned char *ptr = &sa->sa_data[2];

 7     if (sa->sa_len == 0)

 8         return ("0.0.0.0");

 9     else if (sa->sa_len == 5)

10         snprintf(str, sizeof(str), "%d.0.0.0", *ptr);

11     else if (sa->sa_len == 6)

Page 580

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


12         snprintf(str, sizeof(str), "%d.%d.0.0", *ptr, *(ptr + 1));

13     else if (sa->sa_len == 7)

14         snprintf(str, sizeof(str), "%d.%d.%d.0", *ptr, *(ptr + 1),

15                  *(ptr + 2));

16     else if (sa->sa_len == 8)

17         snprintf(str, sizeof(str), "%d.%d.%d.%d",

18                  *ptr, *(ptr + 1), *(ptr + 2), *(ptr + 3));

19     else

20         snprintf(str, sizeof(str), "(unknown mask, len = %d, family = %d)",

21                  sa->sa_len, sa->sa_family);

22     return (str);

23 }

7 21 If the length is 0, the implied mask is 0.0.0.0. If the length is 5, only the first byte of
the 32-bit mask is stored, with an implied value of 0 for the remaining 3 bytes. When the
length is 8, all 4 bytes of the mask are stored.

In this example, we want to read the kernel's reply because the reply contains the
information we are looking for. But in general, the return value from our write to the
routing socket tells us if the command succeeded or not. If that is all the information we
need, we can call shutdown with a second argument of SHUT_RD immediately after opening
the socket to prevent a reply from being sent. For example, if we are deleting a route, a
return of 0 from write means success, while an error return of ESRCH means the route
could not be found (p. 608 of TCPv2). Similarly, an error return of EEXIST from write when
adding a route means the entry already exists. In our example in Figure 18.6, if the
routing table entry does not exist (say our host does not have a default route), then write
returns an error of ESRCH.

[ Team LiB ]

Page 581

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

18.4 sysctl Operations
Our main interest in routing sockets is the use of the sysctl function to examine both the
routing table and interface list. Whereas the creation of a routing socket (a raw socket in
the AF_ROUTE domain) requires superuser privileges, any process can examine the routing
table and interface list using sysctl.

#include <sys/param.h>

#include <sys/sysctl.h>

int sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp, void *newp,
size_t newlen);

Returns: 0 if OK, -1 on error

This function uses names that look like SNMP management information base (MIB) names.
Chapter 25 of TCPv1 talks about SNMP and its MIB in detail. These names are hierarchical.

The name argument is an array of integers specifying the name, and namelen specifies the
number of elements in the array. The first element in the array specifies which subsystem
of the kernel the request is directed to. The second element specifies some part of that
subsystem, and so on. Figure 18.11 shows the hierarchical arrangement, with some of the
constants used at the first three levels.

Figure 18.11. Hierarchical arrangement of sysctl names.

To fetch a value, oldp points to a buffer into which the kernel stores the value. oldlenp is a
value-result argument: When the function is called, the value pointed to by oldlenp
specifies the size of this buffer, and on return, the value contains the amount of data
stored in the buffer by the kernel. If the buffer is not large enough, ENOMEM is returned. As
a special case, oldp can be a null pointer and oldlenp a non-null pointer, and the kernel can
determine how much data the call would have returned and returns this size through 
oldlenp.

To set a new value, newp points to a buffer of size newlen. If a new value is not being
specified, newp should be a null pointer and newlen should be 0.

The sysctl man page details all the various system information that can be obtained with
this function: information on the filesystems, virtual memory, kernel limits, hardware, and
so on. Our interest is in the networking subsystem, designated by the first element of the 
name array being set to CTL_NET. (The CTL_xxx constants are defined by including the
<sys/sysctl.h> header.) The second element can then be as follows:

 AF_INET Get or set variables affecting the Internet protocols. The next level
specifies the protocol using one of the IPPROTO_xxx constants. FreeBSD 5.0 provides

Page 582

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


about 75 variables at this level, controlling features such as whether the kernel
should generate an ICMP redirect, whether TCP should use the RFC 1323 options,
whether UDP checksums should be sent, and so on. We will show an example of this
use of sysctl at the end of this section.

 AF_LINK Get or set link-layer information such as the number of PPP interfaces.

 AF_ROUTE Return information on either the routing table or interface list. We will
describe this information shortly.

 AF_UNSPEC Get or set some socket-layer variables such as the maximum size of a
socket send or receive buffer.

When the second element of the name array is AF_ROUTE, the third element (a protocol
number) is always 0 (since there are no protocols within the AF_ROUTE family, as there are
within the AF_INET family, for example), the fourth element is an address family, and the
fifth and sixth levels specify what to do. We will summarize this in Figure 18.12.

Figure 18.12. sysctl information returned for route domain.

Three operations are supported, specified by name [4]. (The NET_RT_xxx constants are
defined by including the <sys/socket.h> header.) The information returned by these four
operations is returned through the oldp pointer in the call to sysctl. This buffer contains a
variable number of RTM_xxx messages (Figure 18.2).

1. NET_RT_DUMP returns the routing table for the address family specified by name [3].
If this address family is 0, the routing tables for all address families are returned.

The routing table is returned as a variable number of RTM_GET messages, with each
message followed by up to four socket address structures: the destination, gateway,
network mask, and cloning mask of the routing table entry. We showed one of these
messages on the right side of Figure 18.5 and our code in Figure 18.7 parsed one of
these messages. All that changes with this sysctl operation is that one or more of
these messages are returned by the kernel.

2. NET_RT_FLAGS returns the routing table for the address family specified by name [3]
, but only the routing table entries with an RTF_xxx flag value that contains the flag
specified by name [5]. All ARP cache entries in the routing table have the
RTF_LLINFO flag bit set.

The information is returned in the same format as the previous item.

3. NET_RT_IFLIST returns information on all configured interfaces. If name [5] is
nonzero, it is an interface index number, and only information on that interface is
returned. (We will say more about interface indexes in Section 18.6.) All the
addresses assigned to each interface are also returned, and if name [3] is nonzero,
only addresses for that address family are returned.

For each interface, one RTM_IFINFO message is returned, followed by one
RTM_NEWADDR message for each address assigned to the interface. The RTM_IFINFO
message is followed by one datalink socket address structure, and each 
RTM_NEWADDR message is followed by up to three socket address structures: the

Page 583

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


interface address, the network mask, and the broadcast address. These two
messages are shown in Figure 18.14.

Example: Determine if UDP Checksums Are Enabled
We now provide a simple example of sysctl with the Internet protocols to check whether
UDP checksums are enabled. Some UDP applications (e.g., BIND) check whether UDP
checksums are enabled when they start, and if not, they try to enable them. Naturally, it
takes superuser privileges to enable a feature such as this, but all we do now is check
whether the feature is enabled or not. Figure 18.13 is our program.

Figure 18.13 Check whether UDP checksums are enabled.

route/checkudpsum.c

 1 #include     "unproute.h"

 2 #include     <netinet/udp.h>

 3 #include     <netinet/ip_var.h>

 4 #include     <netinet/udp_var.h> /* for UDPCTL_xxx constants */

 5 int

 6 main(int argc, char **argv)

 7 {

 8     int     mib[4], val;

 9     size_t  len;

10    mib[0] = CTL_NET;

11    mib[1] = AF_INET;

12    mib[2] = IPPROTO_UDP;

13    mib[3] = UDPCTL_CHECKSUM;

14    len = sizeof(val);

15    Sysctl(mib, 4, &val, &len, NULL, 0);

16    printf("udp checksum flag: %d\n", val);

17    exit(0) ;

18 }

Figure 18.14. Information returned for sysctl, CTL_NET, NET_RT_IFLIST
command.

Page 584

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


Include system headers

2 4 We must include the <netinet/udp_var.h> header to obtain the definition of the UDP
sysctl constants. The two other headers are required for this header.

Call sysctl

10 16 We allocate an integer array with four elements and store the constants that
correspond to the hierarchy shown in Figure 18.11. Since we are only fetching a variable
and not setting a new value, we specify a null pointer for the newp argument to sysctl
and a value of 0 for the newlen argument. oldp points to an integer variable of ours into
which the result is stored and oldlenp points to a value-result variable for the size of this
integer. The flag that we print will be either 0 (disabled) or 1 (enabled).

[ Team LiB ]

Page 585

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

18.5 get_ifi_info Function (Revisited)
We now return to the example from Section 17.6: returning all the interfaces that are up
as a linked list of ifi_info structures (Figure 17.5). The prifinfo program remains the
same (Figure 17.6), but we now show a version of the get_ifi_info function that uses
sysctl instead of the SIOCGIFCONF ioctl that was used in Figure 17.7.

We first show the function net_rt_iflist in Figure 18.15. This function calls sysctl with
the NET_RT_IFLIST command to return the interface list for a specified address family.

Figure 18.15 Call sysctl to return interface list.

libroute/net_rt_iflist.c

 1 #include    "unproute.h"

 2 char *

 3 net_rt_iflist(int family, int flags, size_t *lenp)

 4 {

 5     int     mib[6];

 6     char   *buf;

 7     mib[0] = CTL_NET;

 8     mib[1] = AF_ROUTE;

 9     mib[2] = 0;

10     mib[3] = family;             /* only addresses of this family */

11     mib[4] = NET_RT_IFLIST;

12     mib[5] = flags;              /* interface index or 0 */

13     if (sysctl (mib, 6, NULL, lenp, NULL, 0) < 0)

14         return (NULL);

15     if ( (buf = malloc(*lenp)) == NULL)

16         return (NULL);

17     if (sysctl (mib, 6, buf, lenp, NULL, 0) < 0) {

18         free(buf);

19         return (NULL);

20     }

21     return (buf);

22 }

7 14 The array mib is initialized as shown in Figure 18.12 to return the interface list and all
configured addresses of the specified family. sysctl is then called twice. In the first call,
the third argument is null, which returns the buffer size required to hold all the interface
information in the variable pointed to by lenp.

15 21 Space is then allocated for the buffer and sysctl is called again, this time with a
non-null third argument. This time, the variable pointed to by lenp will return with the
amount of information stored in the buffer, and this variable is allocated by the caller. A
pointer to the buffer is also returned to the caller.

Since the size of the routing table or the number of interfaces can change between the two
calls to sysctl, the value returned by the first call contains a 10% fudge factor (pp. 639 
640 of TCPv2).

Figure 18.16 shows the first half of the get_ifi_info function.

Page 586

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


Figure 18.16 get_ifi_info function, first half.

route/get_ifi_info.c

 3 struct ifi_info *

 4 get_ifi_info(int family, int doaliases)

 5 {

 6     int     flags;

 7     char   *buf, *next, *lim;

 8     size_t  len;

 9     struct if_msghdr *ifm;

10     struct ifa_msghdr *ifam;

11     struct sockaddr *sa, *rti_info [RTAX_MAX];

12     struct sockaddr_dl *sdl;

13     struct ifi_info *ifi, *ifisave, *ifihead, **ifipnext;

14     buf = Net_rt_iflist(family, 0, &len);

15     ifihead = NULL;

16     ifipnext = &ifihead;

17     lim = buf + len;

18     for (next = buf; next < lim; next += ifm->ifm_msglen) {

19         ifm = (struct if_msghdr *) next;

20         if (ifm->ifm_type == RTM_IFINFO) {

21             if (((flags = ifm->ifm_flags) & IFF_UP) == 0)

22                 continue;  /* ignore if interface not up */

 

23             sa = (struct sockaddr *) (ifm + 1);

24             get_rtaddrs (ifm->ifm_addrs, sa, rti_info);

25             if ( (sa = rti_info [RTAX_IFP]) != NULL) {

26                 ifi = Calloc (1, sizeof (struct ifi_info));

27                 *ifipnext = ifi;     /* prev points to this new one */

28                 ifipnext = &ifi->ifi_next;     /* ptr to next one goes here

*/

29                 ifi->ifi_flags = flags;

30                 if (sa->sa_family == AF_LINK) {

31                     sdl = (struct sockaddr_dl *) sa;

32                     ifi->ifi_index = sdl->sdl_index;

33                     if (sdl->sdl_nlen > 0)

34                         snprintf (ifi->ifi_name, IFI_NAME, "%*s",

35                                   sdl->sdl_nlen, &sdl->sdl_data[0]);

36                     else

37                         snprintf(ifi->ifi_name, IFI_NAME, "index %d",

38                                  sdl->sdl_index);

 

3 9                    if ( (ifi->ifi_hlen = sdl->sdl_alen) > 0)

40                         memcpy (ifi->ifi_haddr, LLADDR (sdl),

41                                 min (IFI_HADDR, sdl->sdl_alen));

42                 }

43         }

6 14 We declare the local variables and then call our net_rt_iflist function.

17 19 The for loop steps through each routing message in the buffer filled in by sysctl.
We assume that the message is an if_msghdr structure and look at the ifm_type field.
(Recall that the first three members of all three structures are identical, so it doesn't
matter which of the three structures we use to look at the type member.)

Page 587

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


Check if interface is up
20 22 An RTM_IFINFO structure is returned for each interface. If the interface is not up, it is
ignored.

Determine which socket address structures are present
23 24 sa points to the first socket address structure following the if_msghdr structure.
Our get_rtaddrs function initializes the rti_info array, depending on which socket
address structures are present.

Handle interface name
25 43 If the socket address structure with the interface name is present, an ifi_info
structure is allocated and the interface flags are stored. The expected family of this socket
address structure is AF_LINK, indicating a datalink socket address structure. We store the
interface index into the ifi_index member. If the sdl_nlen member is nonzero, then the
interface name is copied into the ifi_info structure. Otherwise, a string containing the
interface index is stored as the name. If the sdl_alen member is nonzero, then the
hardware address (e.g., the Ethernet address) is copied into the ifi_info structure and its
length is also returned as ifi_hlen.

Figure 18.17 shows the second half of our get_ifi_info function, which returns the IP
addresses for the interface.

Return IP addresses
44 65 An RTM_NEWADDR message is returned by sysctl for each address associated with the
interface: the primary address and all aliases. If we have already filled in the IP address for
this interface, then we are dealing with an alias. In that case, if the caller wants the alias
address, we must allocate memory for another ifi_info structure, copy the fields that
have been filled in, and then fill in the addresses that have been returned.

Return broadcast and destination addresses
66 75 If the interface supports broadcasting, the broadcast address is returned, and if the
interface is a point-to-point interface, the destination address is returned.

Figure 18.17 get_ifi_info function, second half.

route/get_ifi_info.c

44     } else if (ifm->ifm_type == RTM_NEWADDR) {

45         if (ifi->ifi_addr) {     /* already have an IP addr for i/f */

46             if (doaliases == 0)

47                 continue;

48                 /* we have a new IP addr for existing interface */

49             ifisave = ifi;

50             ifi = Calloc(1, sizeof (struct ifi_info));

51             *ifipnext = ifi;     /* prev points to this new one */

52             ifipnext = &ifi->ifi_next;     /* ptr to next one goes here */

53             ifi->ifi_flags = ifisave->ifi_flags;

54             ifi->ifi_index = ifisave->ifi_index;

55             ifi->ifi_hlen = ifisave->ifi_hlen;

56             memcpy(ifi->ifi_name, ifisave->ifi_name, IFI_NAME);

57             memcpy(ifi->ifi_haddr, ifisave->ifi_haddr, IFI_HADDR);

58        }

Page 588

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


59        ifam = (struct ifa_msghdr *) next;

60        sa = (struct sockaddr *) (ifam + 1);

61        get_rtaddrs(ifam->ifam_addrs, sa, rti_info);

62        if ( (sa = rti_info[RTAX_IFA]) != NULL) {

63            ifi->ifi_addr = Calloc(1, sa->sa_len);

64            memcpy(ifi->ifi_addr, sa, sa->sa_len);

65        }

66        if ((flags & IFF_BROADCAST) && (sa = rti_info[RTAX_BRD]) != NULL) {

67            ifi->ifi_brdaddr = Calloc (1, sa->sa_len);

68            memcpy(ifi->ifi_brdaddr, sa, sa->sa_len);

69        }

70       if ((flags & IFF_POINTOPOINT) &&

71           (sa = rti_info[RTAX_BRD]) != NULL) {

72           ifi->ifi_dstaddr = Calloc (1, sa->sa_len);

73           memcpy(ifi->ifi_dstaddr, sa, sa->sa_len);

74       }

75   } else

76       err_quit("unexpected message type %d", ifm->ifm_type);

77  }

78  /* "ifihead" points to the first structure in the linked list */

79  return (ifihead);     /* ptr to first structure in linked list */

80 }

[ Team LiB ]

Page 589

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

18.6 Interface Name and Index Functions
RFC 3493 [Gilligan et al. 2003] defines four functions that deal with interface names and
indexes. These four functions are used in many places where it is necessary to describe an
interface. They were introduced for use with the IPv6 API, as we will describe in Chapters
21 and 27, but we find interface indexes in the IPv4 API as well (e.g., in the IP_RECVIF
call, or in AF_LINK sockaddrs seen on the routing socket). The basic concept is that each
interface has a unique name and a unique positive index (0 is never used as an index).

#include <net/if.h>

unsigned int if_nametoindex (const char *ifname);

Returns: positive interface index if OK, 0 on error

char *if_indextoname (unsigned int ifindex, char *ifname);

Returns: pointer to interface name if OK, NULL on error

struct if_nameindex *if_nameindex (void);

Returns: non-null pointer if OK, NULL on error

void if_freenameindex(struct if_nameindex *ptr);

if_nametoindex returns the index of the interface whose name is ifname. if_indextoname
returns a pointer to the interface name given its ifindex. The ifname argument points to a
buffer of size IFNAMSIZ (defined by including the <net/if.h> header; also shown in Figure
17.2) that the caller must allocate to hold the result, and this pointer is also the return
value upon success.

if_nameindex returns a pointer to an array of if_nameindex structures as follows:

struct if_nameindex {

  unsigned int   if_index;     /* 1, 2, ... */

  char          *if_name;      /* null-terminated name: "le0", ... */

};

The final entry in this array contains a structure with an if_index of 0 and an if_name that
is a null pointer. The memory for this array, along with the names pointed to by the array
members, is dynamically obtained and is returned by calling if_freenameindex.

We now provide an implementation of these four functions using routing sockets.

if_nametoindex Function
Figure 18.18 shows the if_nametoindex function.

Figure 18.18 Return an interface index given its name.

libroute/if_nametoindex.c

Page 590

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


 1 #include     "unpifi.h"

 2 #include     "unproute.h"

 3 unsigned int

 4 if_nametoindex(const char *name)

 5 {

 6     unsigned int idx, namelen;

 7     char     *buf, *next, *lim;

 8     size_t     len;

 9     struct if_msghdr *ifm;

10     struct sockaddr *sa, *rti_info[RTAX_MAX];

11     struct sockaddr_dl *sdl;

12     if ( (buf = net_rt_iflist(0, 0, &len)) == NULL)

13         return (0);

14     namelen = strlen(name);

15     lim = buf + len;

16     for (next = buf; next < lim; next += ifm->ifm_msglen) {

17         ifm = (struct if_msghdr *) next;

18         if (ifm->ifm_type == RTM_IFINFO) {

19             sa = (struct sockaddr *) (ifm + 1);

20             get_rtaddrs (ifm->ifm_addrs, sa, rti_info);

21             if ( (sa = rti_info[RTAX_IFP]) != NULL) {

22                 if (sa->sa_family == AF_LINK) {

23                     sdl = (struct sockaddr_dl *) sa;

24                     if (sdl->sdl_nlen == namelen

25                         && strncmp (&sdl->sdl_data [0], name,

26                                             sdl->sdl_nlen) == 0) {

27                         idx = sdl->sdl_index;     /* save before free() */

28                         free(buf);

29                         return (idx);

30                     }

31                 } 

32             }

33         }

34     }

35     free(buf);

36     return (0);     /* no match for name */

37 }

Get interface list

12 13 Our net_rt_iflist function returns the interface list.

Process only RTM_IFINFO messages

17 30 We process the messages in the buffer (Figure 18.14), looking only for the
RTM_IFINFO messages. When we find one, we call our get_rtaddrs function to set up the
pointers to the socket address structures, and if an interface name structure is present
(the RTAX_IFP element of the rti_info array), the interface name is compared to the
argument.

if_indextoname Function
The next function, if_indextoname, is shown in Figure 18.19.

Figure 18.19 Return an interface name given its index.

Page 591

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


libroute/if_indextoname.c

 1 #include     "unpifi.h"

 2 #include     "unproute.h"

 3 char *

 4 if_indextoname(unsigned int idx, char *name)

 5 {

 6     char *buf, *next, *lim;

 7     size_t len;

 8     struct if_msghdr *ifm;

 9     struct sockaddr *sa, *rti_info [RTAX_MAX];

10     struct sockaddr_dl *sdl;

11     if ( (buf = net_rt_iflist(0, idx, &len)) == NULL)

12         return (NULL);

13     lim = buf + len;

14     for (next = buf; next < lim; next += ifm->ifm_msglen) {

15         ifm = (struct if_msghdr *) next;

16         if (ifm->ifm_type == RTM_IFINFO) {

17             sa = (struct sockaddr *) (ifm + 1);

18             get_rtaddrs(ifm->ifm_addrs, sa, rti_info);

19             if ( (sa = rti_info[RTAX_IFP]) != NULL) {

20                 if (sa->sa_family == AF_LINK) {

21                     sdl = (struct sockaddr_dl *) sa;

22                     if (sdl->sdl_index == idx) {

23                         int     slen = min(IFNAMSIZ - 1, sdl->sdl_nlen);

24                         strncpy(name, sdl->sdl_data, slen);

25                         name[slen] = 0; /* null terminate */

26                         free(buf);

27                         return (name);

28                     }

29                 } 

30             }

31         }

32     }

33     free(buf);

34     return (NULL);     /* no match for index */

35  }

This function is nearly identical to the previous function, but instead of looking for an
interface name, we compare the interface index against the caller's argument. Also, the
second argument to our net_rt_iflist function is the desired index, so the result should
contain the information for only the desired interface. When a match is found, the interface
name is returned and it is also null-terminated.

if_nameindex Function
The next function, if_nameindex, returns an array of if_nameindex structures containing
all the interface names and indexes. It is shown in Figure 18.20.

Figure 18.20 Return all the interface names and indexes.

libroute/if_nameindex.c

 1 #include     "unpifi.h"

 2 #include     "unproute.h"

Page 592

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


 3 struct if_nameindex *

 4 if_nameindex (void)

 5 {

 6     char *buf, *next, *lim;

 7     size_t len;

 8     struct if_msghdr *ifm;

 9     struct sockaddr *sa, *rti_info [RTAX_MAX];

10     struct sockaddr_dl *sdl;

11     struct if_nameindex *result, *ifptr;

12     char *namptr;

13     if ( (buf = net_rt_iflist (0, 0, &len) ) == NULL)

14         return (NULL);

15     if ( (result = malloc (len) ) == NULL) /* overestimate */

16         return (NULL);

17     ifptr = result;

18     namptr = (char *) result + len; /* names start at end of buffer */

19     lim = buf + len;

20     for (next = buf; next < lim; next += ifm->ifm_msglen) {

21         ifm = (struct if_msghdr *) next;

22         if (ifm->ifm_type == RTM_IFINFO) {

23             sa = (struct sockaddr *) (ifm + 1);

24             get_rtaddrs (ifm->ifm_addrs, sa, rti_info);

25             if ( (sa = rti_info[RTAX_IFP]) != NULL) {

26                 if (sa->sa_family == AF_LINK) {

27                     sdl = (struct sockaddr_dl *) sa;

28                     namptr -= sdl->sdl_nlen + 1;

29                     strncpy (namptr, &sdl->sdl_data[0], sdl->sdl_nlen);

30                     namptr [sdl->sdl_nlen] = 0; /* null terminate */

31                     ifptr->if_name = namptr;

32                     ifptr->if_index = sdl->sdl_index;

33                     ifptr++;

34                 } 

35             }

36         }

37     }

38     ifptr->if_name = NULL;     /* mark end of array of structs */

39     ifptr->if_index = 0;

40     free (buf);

41     return (result);              /* caller must free() this when done */

42 }

Get interface list, allocate room for result

13 18 We call our net_rt_iflist function to return the interface list. We also use the
returned size as the size of the buffer that we allocate to contain the array of if_nameindex
structures we return. This is an overestimate, but it is simpler than making two passes
through the interface list: one to count the number of interfaces and the total sizes of the
names and another to fill in the information. We create the if_nameindex array at the
beginning of this buffer and store the interface names starting at the end of the buffer.

Process only RTM_IFINFO messages

23 36 We process all the messages looking for RTM_IFINFO messages and the datalink
socket address structures that follow. The interface name and index are stored in the array
we are building.

Terminate array

Page 593

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


38 39 The final entry in the array has a null if_name and an index of 0.

if_freenameindex Function
The final function, shown in Figure 18.21, frees the memory that was allocated for the
array of if_nameindex structures and the names contained therein.

Figure 18.21 Free the memory allocated by if_nameindex.

libroute/if_nameindex.c

43 void

44 if_freenameindex(struct if_nameindex *ptr)

45 {

46     free(ptr);

47 }

This function is trivial because we stored both the array of structures and the names in the
same buffer. If we had called malloc for each name, to free the memory, we would have to
go through the entire array, free the memory for each name, and then free the array.

[ Team LiB ]

Page 594

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

18.7 Summary
The last socket address structure that we encounter in this text is the sockaddr_dl
structure, the variable-length datalink socket address structure. Berkeley-derived kernels
associate these with interfaces, returning the interface index, name, and hardware address
in one of these structures.

Five types of messages can be written to a routing socket by a process and 15 different
messages can be returned by the kernel asynchronously on a routing socket. We showed
an example where the process asks the kernel for information on a routing table entry and
the kernel responds with all the details. These kernel responses contain up to eight socket
address structures and we have to parse this message to obtain each piece of information.

The sysctl function is a general way to fetch and store OS parameters. The information we
are interested in with sysctl is

 Dumping the interface list

 Dumping the routing table

 Dumping the ARP cache

The changes required by IPv6 to the sockets API include four functions to map between
interface names and their indexes. Each interface is assigned a unique positive index.
Berkeley-derived implementations already associate an index with each interface, so we
are easily able to implement these functions using sysctl.

[ Team LiB ]

Page 595

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Exercises
18.1 What would you expect the sdl_len field of a datalink socket address

structure to contain for a device named eth10 whose link-layer address
is a 64-bit IEEE EUI-64 address?

18.2 In Figure 18.6 disable the SO_USELOOPBACK socket option before calling
write. What happens?

[ Team LiB ]

Page 596

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Chapter 19. Key Management Sockets
Section 19.1.?Introduction

Section 19.2.?Reading and Writing

Section 19.3.?Dumping the Security Association Database (SADB)

Section 19.4.?Creating a Static Security Association (SA)

Section 19.5.?Dynamically Maintaining SAs

Section 19.6.?Summary

Exercises

[ Team LiB ]

Page 597

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

19.1 Introduction
With the introduction of the security architecture for IP (IPsec, described in RFC 2401
[Kent and Atkinson 1998a]), a standard mechanism was needed to manage secret
encryption and authorization keys. RFC 2367 [McDonald, Metz, and Phan 1998] introduces
a generic key management API that can be used for IPsec and other network security
services. Similar to routing sockets (Chapter 18), this API creates a new protocol family,
the PF_KEY domain. As with routing sockets, the only type of socket supported in the key
domain is a raw socket.

As described in Section 4.2, on most systems, AF_KEY would be defined to the same value
as PF_KEY. However, RFC 2367 is quite specific that PF_KEY is the constant that must be
used with key management sockets.

Opening a raw key management socket requires privileges. On systems where privileges
are segmented, there must be an individual privilege for opening key management
sockets. On regular UNIX systems, opening a key management socket is limited to the
superuser.

IPsec provides security services to packets based on security associations, or SAs. An SA
describes a combination of source and destination addresses (and optionally, transport
protocol and ports), mechanism (e.g., authentication), and keying material. More than one
SA (e.g., authentication and encryption) can apply to a single stream of traffic. The set of
security associations stored for use on a system is called the security association database,
or SADB.

The SADB on a system may be used for more than just IPsec; for instance, OSPFv2, RIPv2,
RSVP, and Mobile-IP may also have entries in the SADB. For this reason, PF_KEY sockets
are not specific to IPsec.

IPsec also requires a security policy database, or SPDB. The security policy database
describes requirements for traffic; for example, traffic between host A and host B must be
authorized using IPsec AH, and any that is not must be dropped. The SADB describes how
to perform the required security steps, such as, if traffic between host A and host B is
using IPsec AH, then the SADB contains the algorithm and key to use. Unfortunately, there
is no standard mechanism to maintain the SPDB. PF_KEY allows maintenance of the SADB,
but not the SPDB. KAME's IPsec implementation uses PF_KEY extensions for SPDB
maintenance, but there is no standard for this.

Three types of operations are supported on key management sockets:

1. A process can send a message to the kernel and all other processes with open key
management sockets by writing to a key management socket. This is how SADB
entries are added and deleted, and how processes that do their own security like
OSPFv2 can request a key from a key management daemon.

2. A process can read a message from the kernel (or another process) on a key
management socket. The kernel can use this facility to request that a key
management daemon install a security association for a new TCP session that policy
requires be protected.

3. A process can send a dump request message to the kernel, and the kernel will reply
with a dump of the current SADB. This is a debugging feature that may not be
available on all systems.

[ Team LiB ]

Page 598

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

19.2 Reading and Writing
All messages on a key management socket have the same basic header, shown in Figure
19.1. Each message may be followed by various extensions, depending on what additional
information is available or required. All the appropriate structures are defined by including 
<net/pfkeyv2.h>. Each message and extension is 64-bit-aligned and is a multiple of 64
bits in length. All length fields are in units of 64 bits, that is, a length of 1 means 8 bytes.
Any extension that does not require enough data to be a multiple of 64 bits in length is
padded to the next multiple of 64 bits. The value of this padding is not defined.

Figure 19.1 Key management message header.

struct sadb_msg {

  u_int8_t sadb_msg_version;     /* PF_KEY_V2 */

  u_int8_t sadb_msg_type;        /* see Figure 19.2 */

  u_int8_t sadb_msg_errno;       /* error indication */

  u_int8_t sadb_msg_satype;      /* see Figure 19.3 */

  u_int16_t sadb_msg_len;        /* length of header + extensions / 8 */

  u_int16_t sadb_msg_reserved;   /* zero on transmit, ignored on receive */

  u_int32_t sadb_msg_seq;        /* sequence number */

  u_int32_t sadb_msg_pid;        /* process ID of source or dest */

};

The sadb_msg_type value determines which of the 10 key management commands is being
invoked. These message types are listed in Figure 19.2. Each sadb_msg header will be
followed by zero or more extensions. Most message types have required and optional
extensions; we will describe these as we describe each message type. The 16 types of
extensions, along with the name of the structure that defines each extension, are listed in 
Figure 19.4.

Figure 19.2. Types of messages exchanged across a PF_KEY socket.

Figure 19.3. Types of SAs.

Figure 19.4. PF_KEY Extension Types.

Page 599

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


We now show several examples and the messages and extensions involved in several
common operations on key management sockets.

[ Team LiB ]

Page 600

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

19.3 Dumping the Security Association Database
(SADB)
To dump the current SADB, a process uses the SADB_DUMP message. This is the simplest
message to send since the message does not require any extensions, simply the 16-byte 
sadb_msg header. After the process sends the SADB_DUMP message to the kernel on a key
management socket, the kernel replies with a series of SADB_DUMP messages back to the
same socket, each with one entry from the SADB. The end of the list is indicated by a
message with a value of 0 for the sadb_msg_seq field.

The type of SA can be limited by setting the sadb_msg_satype field in the request to one of
the values in Figure 19.3. If it is set to SADB_SATYPE_UNSPEC, then all SAs in the database
are returned. Otherwise, only SAs of the specified type are returned. Not all types of
security associations are supported by all implementations. The KAME implementation only
supports IPsec SAs (SADB_SATYPE_AH and SADB_SATYPE_ESP), so an attempt to dump
SADB_SATYPE_RIPV2 SADB entries will get an error reply with errno EINVAL. When
requesting a specific type whose table is empty, the errno ENOENT is returned.

Our program to dump the SADB follows in Figure 19.5.

Figure 19.5 Program to issue SADB_DUMP command on key management
socket.

key/dump.c

 1 void

 2 sadb_dump(int type)

 3 {

 4     int     s;

 5     char    buf[4096];

 6     struct sadb_msg msg;

 7     int     goteof;

 8     s = Socket(PF_KEY, SOCK_RAW, PF_KEY_V2);

 9     /* Build and write SADB_DUMP request */

10     bzero(&msg, sizeof (msg));

        11     msg.sadb_msg_version = PF_KEY_V2;

12     msg.sadb_msg_type = SADB_DUMP;

13     msg.sadb_msg_satype = type;

14     msg.sadb_msg_len = sizeof (msg) / 8;

15     msg.sadb_msg_pid = getpid();

16     printf("Sending dump message:\n");

17     print_sadb_msg (&msg, sizeof (msg));

18     Write(s, &msg, sizeof (msg));

19     printf("\nMessages returned:\n");

20     /* Read and print SADB_DUMP replies until done */

21     goteof = 0;

22     while (goteof == 0) {

23         int     msglen;

24         struct sadb_msg *msgp;

25         msglen = Read(s, &buf, sizeof (buf));

26         msgp = (struct sadb_msg *) &buf;

Page 601

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


27         print_sadb_msg(msgp, msglen);

28         if (msgp->sadb_msg_seq == 0)

29             goteof = 1;

30     }

31     close(s);

32 }

33 int

34 main(int argc, char **argv)

35 {

36     int     satype = SADB_SATYPE_UNSPEC;

37     int     c;

38     opterr = 0;                  /* don't want getopt () writing to stderr

*/

39     while ( (c = getopt(argc, argv, "t:")) !=  -1) {

40         switch (c) {

41         case 't':

42             if ( (satype = getsatypebyname (optarg) ) == -1)

43                 err_quit("invalid -t option %s", optarg);

44             break;

45         default:

46             err_quit("unrecognized option: %c", c);

47         }

48     }

49     sadb_dump(satype);

50 }

This is our first encounter with the POSIX getopt function. The third argument is a
character string specifying the characters that we allow as command-line arguments, just t
in this example. It is followed by a colon, indicating that the option takes an argument. In
programs that take more than one option, they are concatenated together; for example, 
Figure 29.7 passes 0i:l:v to indicate that it accepts four options; i and l take an
argument and 0 and v don't. This function works with four global variables that are defined
by including <unistd.h>.

extern char   *optarg;

extern int     optind, opterr, optopt;

Before calling getopt, we set opterr to 0 to prevent the function from writing error
messages to standard error in case of an error, because we want to handle these. POSIX
states that if the first character of the third argument is a colon, this also prevents the
function from writing to standard error, but not all implementations support this.

Open PF_KEY socket
1 8 We first open a PF_KEY socket. This requires system privileges, as described earlier,
since this allows access to sensitive keying material.

Build SADB_DUMP request
9 15 We first zero out the sadb_msg struct so that we can skip initializing the fields that we
wish to remain zero. We fill in each remaining field in the sadb_msg struct individually. All
messages on sockets opened with PF_KEY_V2 as the third argument must also use
PF_KEY_V2 as the message version. The message type is SADB_DUMP. We set the length to
the length of the base header with no extensions since the dump message does not take
extensions. Finally, we set the process ID (PID) to our own PID since all messages must be

Page 602

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


identified by the PID of the sender.

Display and write SADB_DUMP message
16 18 We display the message using our print_sadb_msg routine. We don't show this
routine since it is long and uninteresting, but it is included in the freely available source
code. This routine accepts a message that is being written to or has been received from a
key management socket and prints all the information from the message in a
human-readable form. We then write the message to the socket.

Read replies
19 30 We loop, reading replies and printing them using our print_sadb_msg function. The
last message in the dump sequence has a message sequence number of zero, so we use
this as our "end-of-file" indication.

Close PF_KEY socket
31 Finally, we close the socket that we opened.

Handle command-line arguments
38 48 The main function has very little work to do. This program takes a single optional
argument, which is the type of SA to dump. By default, the type is SADB_SATYPE_UNSPEC,
which dumps all SAs of any type. By specifying a command-line argument, the user can
select which type of SAs to dump. This program uses our getsatypebyname function, which
returns the type value for a text string.

Call sadb_dump routine
49 Finally, we call the sadb_dump function we defined above to do all the work.

Sample Run
The following is a sample run of the dump program on a system with two static SAs.

macosx % dump

Sending dump message:

SADB Message Dump, errno 0, satype Unspecified, seq 0, pid 20623

Messages returned:

SADB Message Dump, errno 0, satype IPsec AH, seq 1, pid 20623

 SA: SPI=258 Replay Window=0 State=Mature

  Authentication Algorithm: HMAC-MD5

   Encryption Algorithm: None

  [unknown extension 19]

  Current lifetime:

   0 allocations, 0 bytes

   added at Sun May 18 16:28:11 2003, never used

  Source address:     2.3.4.5/128 (IP proto 255)

  Dest address:     6.7.8.9/128 (IP proto 255)

  Authentication key, 128 bits: 0x20202020202020200202020202020202

SADB Message Dump, errno 0, satype IPsec AH, seq 0, pid 20623

 SA: SPI=257 Replay Window=0 State=Mature

  Authentication Algorithm: HMAC-MD5

  Encryption Algorithm: None

 [unknown extension 19]

Page 603

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


 Current lifetime:

  0 allocations, 0 bytes

  added at Sun May 18 16:26:24 2003, never used

 Source address:     1.2.3.4/128 (IP proto 255)

 Dest address:     5.6.7.8/128 (IP proto 255)

 Authentication key, 128 bits: 0x10101010101010100101010101010101

[ Team LiB ]

Page 604

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

19.4 Creating a Static Security Association (SA)
The most straightforward method of adding an SA is to send an SADB_ADD message with all
parameters filled in, presumably manually specified. Although manual specification of
keying material does not lead easily to key changes, which are crucial to avoid
cryptanalysis attacks, it is quite easy to configure: Alice and Bob agree on a key and
algorithms to use out-of-band, and proceed to use them. We show the steps needed to
create and send an SADB_ADD message.

The SADB_ADD message requires three extensions: SA, address and key. It can also
optionally contain other extensions: lifetime, identity, and sensitivity. We describe the
required extensions first. The SA extension is described by the sadb_sa structure, shown
in Figure 19.6.

Figure 19.6 SA Extension.

struct sadb_sa {

  u_int16_t sadb_sa_len;      /* length of extension / 8 */

  u_int16_t sadb_sa_exttype;  /* SADB_EXT_SA */

  u_int32_t sadb_sa_spi;      /* Security Parameters Index (SPI) */

  u_int8_t  sadb_sa_replay;   /* replay window size, or zero */

  u_int8_t  sadb_sa_state;    /* SA state, see Figure 19.7 */

  u_int8_t  sadb_sa_auth;     /* authentication algorithm, see Figure 19.8 */

  u_int8_t  sadb_sa_encrypt;  /* encryption algorithm, see Figure 19.8 */

  u_int32_t sadb_sa_flags;    /* bitmask of flags */

};

Figure 19.7. Possible states for SAs.

Figure 19.8. Authentication and Encryption algorithms.

The sadb_sa_spi field contains the Security Parameters Index, or SPI. This value,
combined with the destination address and protocol in use (e.g., IPsec AH), uniquely
identifies an SA. When receiving a packet, this value is used to look up the SA for that
packet; when sending a packet, this value is inserted into the packet for the other end to
use. It has no other meaning, so these values can be allocated sequentially, randomly, or
using any method the destination system prefers. The sadb_sa_reply field specifies the
window size for replay protection. Since static keying prevents replay protection, we will
set this to zero. The sadb_sa_state field varies during the life cycle of a dynamically
created SA, using the values in Figure 19.7. However, manually created SAs spend all their
time in the SADB_SASTATE_MATURE state. We will see the other states in Section 19.5.

Page 605

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


The sadb_sa_auth and sadb_sa_encrypt fields specify the authentication and encryption
algorithms for this SA. Possible values for these fields are listed in Figure 19.8. There is
only one flag value currently defined for the sadb_sa_flags field, SADB_SAFLAGS_PFS. This
flag requests perfect forward security, that is, the value of this key must not be dependent
on any previous keys or some master key. This flag value is used when requesting keys
from a key management application and is not used when adding static associations.

The next required extensions for an SADB_ADD command are the addresses. Source and
destination addresses, specified with SADB_EXT_ADDRESS_SRC and SADB_EXT_ADDRESS_DST,
respectively, are required. A proxy address, specified with SADB_EXT_ADDRESS_PROXY, is
optional. For more details on proxy addresses, see RFC 2367 [McDonald, Metz, and Phan
1998]. Addresses are specified using a sadb_address extension, shown in Figure 19.9. The
sadb_address_exttype field determines what type of address this extension is supplying.
The sadb_address_proto field specifies the IP protocol to be matched for this SA, or 0 to
match all protocols. The sadb_address_prefixlen field describes the prefix of the address
that is significant. This permits an SA to match more than one address. A sockaddr of the
appropriate family (e.g., sockaddr_in, sockaddr_in6) follows the sadb_address structure.
The port number in this sockaddr is significant only if the sadb_address_proto specifies a
protocol that supports port numbers (e.g., IPPROTO_TCP).

Figure 19.9 Address extension.

struct sadb_address {

  u_int16_t sadb_address_len;        /* length of extension + address / 8 */

  u_int16_t sadb_address_exttype;    /* SADB_EXT_ADDRESS_{SRC,DST,PROXY} */

  u_int8_t  sadb_address_proto;      /* IP protocol, or 0 for all */

  u_int8_t  sadb_address_prefixlen;  /* # significant bits in address */

  u_int16_t sadb_address_reserved;   /* reserved for extension */

};

                                     /* followed by appropriate sockaddr */

The final required extensions for the SADB_ADD message are the authentication and
encryption keys, specified with the SADB_EXT_KEY_AUTH and SADB_EXT_KEY_ ENCRYPT
extensions, which are represented by a sadb_key structure (Figure 19.10). The key
extension is very straightforward; the sadb_key_exttype member defines whether it is an
authentication or encryption key, the sadb_key_bits member specifies the number of bits
in the key, and the key itself follows the sadb_key structure.

Figure 19.10 Key extension.

struct sadb_key {

  u_int16_t sadb_key_len;       /* length of extension + key / 8 */

  u_int16_t sadb_key_exttype;   /* SADB_EXT_KEY_{AUTH, ENCRYPT} */

  u_int16_t sadb_key_bits;      /* # bits in key */

  u_int16_t sadb_key_reserved;  /* reserved for extension */

};

                                /* followed by key data */

Figure 19.11 Program to issue SADB_ADD command on key management
socket.

key/add.c

 33 void

 34 sadb_add(struct sockaddr *src, struct sockaddr *dst, int type, int alg,

 35          int spi, int keybits, unsigned char *keydata)

 36 {

 37     int     s;

Page 606

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


 38     char    buf[4096], *p;     /* XXX */

 39     struct sadb_msg *msg;

 40     struct sadb_sa *saext;

 41     struct sadb_address *addrext;

 42     struct sadb_key *keyext;

 43     int     len;

 44     int     mypid;

 45     s = Socket(PF_KEY, SOCK_RAW, PF_KEY_V2);

 46     mypid = getpid();

 47     /* Build and write SADB_ADD request */

 48     bzero(&buf, sizeof(buf));

 49     p = buf;

 50     msg = (struct sadb_msg *) p;

 51     msg->sadb_msg_version = PF_KEY_V2;

 52     msg->sadb_msg_type = SADB_ADD;

 53     msg->sadb_msg_satype = type;

 54     msg->sadb_msg_pid = getpid();

 55     len = sizeof(*msg);

 56     p += sizeof(*msg);

 57     saext = (struct sadb_sa *) p;

 58     saext->sadb_sa_len = sizeof(*saext) / 8;

 59     saext->sadb_sa_exttype = SADB_EXT_SA;

 60     saext->sadb_sa_spi = htonl(spi);

 61     saext->sadb_sa_replay = 0; /* no replay protection with static keys */

 62     saext->sadb_sa_state = SADB_SASTATE_MATURE;

 63     saext->sadb_sa_auth = alg;

 64     saext->sadb_sa_encrypt = SADB_EALG_NONE;

 65     saext->sadb_sa_flags = 0;

 66     len += saext->sadb_sa_len * 8;

 67     p += saext->sadb_sa_len * 8;

 68     addrext = (struct sadb_address *) p;

 69     addrext->sadb_address_len = (sizeof(*addrext) + salen(src) + 7) / 8;

 70     addrext->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;

 71     addrext->sadb_address_proto = 0;     /* any protocol */

 72     addrext->sadb_address_prefixlen = prefix_all(src);

 73     addrext->sadb_address_reserved = 0;

 74     memcpy(addrext + 1, src, salen(src));

 75     len += addrext->sadb_address_len * 8;

 76     p += addrext->sadb_address_len * 8;

 77     addrext = (struct sadb_address *) p;

 78     addrext->sadb_address_len = (sizeof(*addrext) + salen(dst) + 7) / 8;

 79     addrext->sadb_address_exttype = SADB_EXT_ADDRESS_DST;

 80     addrext->sadb_address_proto = 0;     /* any protocol */

 81     addrext->sadb_address_prefixlen = prefix_all(dst);

 82     addrext->sadb_address_reserved = 0;

 83     memcpy(addrext + 1, dst, salen(dst));

 84     len += addrext->sadb_address_len * 8;

 85     p += addrext->sadb_address_len * 8;

 86     keyext = (struct sadb_key *) p;

 87     /* "+7" handles alignment requirements */

 88     keyext->sadb_key_len = (sizeof(*keyext) + (keybits / 8) + 7) / 8;

 89     keyext->sadb_key_exttype = SADB_EXT_KEY_AUTH;

 90     keyext->sadb_key_bits = keybits;

Page 607

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


 91     keyext->sadb_key_reserved = 0;

 92     memcpy(keyext + 1, keydata, keybits / 8);

 93     len += keyext->sadb_key_len * 8;

 94     p += keyext->sadb_key_len * 8;

 95     msg->sadb_msg_len = len / 8;

 96     printf("Sending add message:\n");

 97     print_sadb_msg(buf, len);

 98     Write(s, buf, len);

 99     printf("\nReply returned:\n");

100     /* Read and print SADB_ADD reply, discarding any others */

101     for ( ; ; ) {

102         int     msglen;

103         struct sadb_msg *msgp;

104         msglen = Read(s, &buf, sizeof(buf));

105         msgp = (struct sadb_msg *) &buf;

106         if (msgp->sadb_msg_pid == mypid && msgp->sadb_msg_type == SADB_ADD)

{

107             print_sadb_msg(msgp, msglen);

108             break;

109         }

110     }

111     close(s);

112 }

We show our program to add a static SADB entry in Figure 19.11.

Open PF_KEY socket and save PID
55 56 As before, we open a PF_KEY socket and save our PID for later.

Build common message header
47 56 We build the common message header for the SADB_ADD message. We don't set the
sadb_msg_len element until just before writing the message since it must reflect the entire
length of the message. The len variable keeps a running length of the message, and the p
pointer always points to the first unused byte in the buffer.

Append SA extension
57 67 Next, we add the required SA extension (Figure 19.6). The sadb_sa_spi field must
be in network byte order, so we call htonl on the host order value that was passed to the
function. We turn off replay protection and set the SA state (Figure 19.7) to
SADB_SASTATE_MATURE. We set the authentication algorithm to the algorithm value specified
on the command line, and specify no encryption with SADB_EALG_NONE.

Append source address
68 76 We add the source address to the message as an SADB_EXT_ADDRESS_SRC extension.
We set the protocol to 0, meaning that this association applies to all protocols. We set the
prefix length to the appropriate length for the IP version, that is, 32 bits for IPv4 and 128
bits for IPv6. The calculation of the length field adds 7 before dividing by 8, which ensures
that the length reflects the padding required to pad out to a 64-bit boundary as required
for all PF_KEY extensions. The sockaddr is copied after the extension header.

Append destination address
77 85 The destination address is added as an SADB_EXT_ADDRESS_DST extension in exactly

Page 608

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


the same way as the source address.

Append key
86 94 We add the authentication key to the message as an SADB_EXT_KEY_AUTH extension.
We calculate the length field the same way as for the addresses, to add the required
padding for the variable-length key. We set the number of bits and copy the key data to
follow the extension header.

Write message
95 98 We print out the message with our print_sadb_msg function, and write it to the
socket.

Read reply
99 111 We read messages from the socket until we receive one that is addressed to our
PID and is an SADB_ADD message. We then print that message with the print_sadb_msg
function and exit.

Example
We run our program to send an SADB_ADD message for traffic between 127.0.0.1 and
127.0.0.1; in other words, on the local system.

macosx % add 127.0.0.1 127.0.0.1 HMAC-SHA-1-96 160 \ 

                               0123456789abcdef0123456789abcdef01234567

Sending add message:

SADB Message Add, errno 0, satype IPsec AH, seq 0, pid 6246

 SA: SPI=39030 Replay Window=0 State=Mature

  Authentication Algorithm: HMAC-SHA-1

  Encryption Algorithm: None

 Source address:     127.0.0.1/32

 Dest address:     127.0.0.1/32

 Authentication key, 160 bits: 0x0123456789abcdef0123456789abcdef01234567

Reply returned:

SADB Message Add, errno 0, satype IPsec AH, seq 0, pid 6246

 SA: SPI=39030 Replay Window=0 State=Mature

  Authentication Algorithm: HMAC-SHA-1

  Encryption Algorithm: None

 Source address:     127.0.0.1/32

 Dest address:     127.0.0.1/32

Note that the reply echoes the request without the key. This is because the reply is sent to
all PF_KEY sockets, but different PF_KEY sockets may belong to sockets in different
protection domains, and keying data should not cross protection domains. After adding the
SA to the database, we ping 127.0.0.1 to cause the SA to be used, then dump the
database to see what was added.

macosx % dump

Sending dump message:

SADB Message Dump, errno 0, satype Unspecified, seq 0, pid 6283

Messages returned:

Page 609

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


SADB Message Dump, errno 0, satype IPsec AH, seq 0, pid 6283

 SA: SPI=39030 Replay Window=0 State=Mature

  Authentication Algorithm: HMAC-SHA-1

  Encryption Algorithm: None

 [unknown extension 19]

 Current lifetime:

  36 allocations, 0 bytes

  added at Thu Jun  5 21:01:31 2003, first used at Thu Jun 5 21:15:07 2003

 Source address:   127.0.0.1/128 (IP proto 255)

 Dest address:   127.0.0.1/128 (IP proto 255)

 Authentication key, 160 bits: 0x0123456789abcdef0123456789abcdef01234567

We see from this dump that the kernel has changed our IP protocol zero to 255. This is an
artifact of this implementation, not a general property of PF_KEY sockets. In addition, we
see that the kernel changed the prefix length from 32 to 128. This appears to be a
confusing issue between IPv4 and IPv6 within the kernel. The kernel returns an extension
(numbered 19) that our dump program doesn't understand. Unknown extensions are
skipped using the length field. A lifetime extension (Figure 19.12) is returned containing
the current lifetime information of the SA.

Figure 19.12 Lifetime extension.

struct sadb_lifetime {

  u_int16_t sadb_lifetime_len;         /* length of extension / 8 */

  u_int16_t sadb_lifetime_exttype;     /* SADB_EXT_LIFETIME_{SOFT, HARD,

CURRENT} */

  u_int32_t sadb_lifetime_allocations; /* # connections, endpoints, or flows */

  u_int64_t sadb_lifetime_bytes;       /* # bytes */

  u_int64_t sadb_lifetime_addtime;     /* time of creation, or time from

                                          creation to expiration */

  u_int64_t sadb_lifetime_usetime;     /* time first used, or time from

                                          first use to expiration */

};

There are three different lifetime extensions. The SADB_LIFETIME_SOFT and
SADB_LIFETIME_HARD extensions specify soft and hard lifetimes for an SA, respectively. The
kernel sends an SADB_EXPIRE message when the soft lifetime has been reached; the SA will
not be used after its hard lifetime has been reached. The SADB_LIFETIME_CURRENT
extension is returned in SADB_DUMP, SADB_EXPIRE, and SADB_GET responses to describe the
values for the current association.

[ Team LiB ]

Page 610

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

19.5 Dynamically Maintaining SAs
For greater security, periodic rekeying is required. This is usually performed by a protocol
such as IKE (RFC 2409 [Harkins and Carrel 1998]).

As of this writing, the IETF IPsec working group is working on a replacement for IKE.

To learn when an SA is required between a new pair of hosts, a daemon registers itself with
the kernel using the SADB_REGISTER message, specifying the type of SA it can handle in
the sadb_msg_satype field from the values in Figure 19.3. If a daemon can handle multiple
SA types, it sends multiple SADB_REGISTER messages, each registering a single type. In its
SADB_REGISTER reply message, the kernel includes a supported algorithms extension,
indicating what encryption and/or authentication mechanisms are supported with what key
lengths. The supported algorithms extension is described by an sadb_supported structure,
shown in Figure 19.13; it simply contains a series of encryption or authentication algorithm
descriptions in sadb_alg structures following the extension header.

Figure 19.13 Supported algorithms extension.

struct sadb_supported {

  u_int16_t sadb_supported_len;      /* length of extension + algorithms / 8 */

  u_int16_t sadb_supported_exttype;  /* SADB_EXT_SUPPORTED_{AUTH, ENCRYPT} */

  u_int32_t sadb_supported_reserved; /* reserved for future expansion */

};

                                     /* followed by algorithm list */

struct sadb_alg {

  u_int8_t sadb_alg_id;              /* algorithm ID from Figure 19.8 */

  u_int8_t sadb_alg_ivlen;           /* IV length, or zero */

  u_int16_t sadb_alg_minbits;        /* minimum key length */

  u_int16_t sadb_alg_maxbits;        /* maximum key length */

  u_int16_t sadb_alg_reserved;       /* reserved for future expansion */

};

One sadb_alg structure follows the sadb_supported extension header for each algorithm
supported by the system. Figure 19.14 shows a possible reply to a message registering for
SA type SADB_SATYPE_ESP.

Figure 19.14. Data returned from kernel for SADB_REGISTER command.

Page 611

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


Our first example program, shown in Figure 19.15, simply registers with the kernel for a
given mechanism and prints the supported algorithms reply.

Figure 19.15 Program to register on key management socket.

key/register.c

 1 void

 2 sadb_register(int type)

 3 {

 4     int     s;

 5     char    buf[4096];         /* XXX */

 6     struct sadb_msg msg;

 7     int     goteof;

 8     int     mypid;

 9     s = Socket(PF_KEY, SOCK_RAW, PF_KEY_V2);

10     mypid = getpid();

11     /* Build and write SADB_REGISTER request */

12     bzero(&msg, sizeof(msg));

13     msg.sadb_msg_version = PF_KEY_V2;

14     msg.sadb_msg_type = SADB_REGISTER;

15     msg.sadb_msg_satype = type;

16     msg.sadb_msg_len = sizeof(msg) / 8;

17     msg.sadb_msg_pid = mypid;

18     printf("Sending message:\n");

19     print_sadb_msg(&msg, sizeof(msg));

20     Write(s, &msg, sizeof(msg));

21     printf("\nReply returned:\n");

Page 612

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


22     /* Read and print SADB_REGISTER reply, discarding any others */

23     for ( ; ; ) {

24         int     msglen;

25         struct sadb_msg *msgp;

26         msglen = Read(s, &buf, sizeof(buf));

27         msgp = (struct sadb_msg *) &buf;

28         if (msgp->sadb_msg_pid == mypid &&

29            msgp->sadb_msg_type == SADB_REGISTER) {

30            print_sadb_msg(msgp, msglen);

31            break;

32         }

33     }

34     close(s);

35 }

Open PF_KEY socket
1 9 We open the PF_KEY socket.

Store PID
10 Since messages will be addressed to us using our PID, we store it for comparison later.

Create SADB_REGISTER message
11 17 Just like SADB_DUMP, the SADB_REGISTER message does not require any extensions.
We zero out the message and then fill in the individual fields needed.

Display and write message to socket
18 20 We display the message that we're sending using our print_sadb_msg function, and
send the message to the socket.

Wait for reply
23 33 We read messages from the socket and wait for the reply to our register message.
The reply is addressed to our PID and is a SADB_REGISTER message. It contains a list of
supported algorithms, which we print with our print_sadb_msg function.

Example
We run the register program on a system that supports several more protocols than are
described in RFC 2367.

macosx % register -t ah

Sending register message:

SADB Message Register, errno 0, satype IPsec AH, seq 0, pid 20746

Reply returned:

SADB Message Register, errno 0, satype IPsec AH, seq 0, pid 20746

 Supported authentication algorithms:

  HMAC-MD5 ivlen 0 bits 128-128

  HMAC-SHA-1 ivlen 0 bits 160-160

  Keyed MD5 ivlen 0 bits 128-128

  Keyed SHA-1 ivlen 0 bits 160-160

  Null ivlen 0 bits 0-2048

  SHA2-256 ivlen 0 bits 256-256

Page 613

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


  SHA2-384 ivlen 0 bits 384-384

  SHA2-512 ivlen 0 bits 512-512

 Supported encryption algorithms:

  DES-CBC ivlen 8 bits 64-64

  3DES-CBC ivlen 8 bits 192-192

  Null ivlen 0 bits 0-2048

  Blowfish-CBC ivlen 8 bits 40-448

  CAST128-CBC ivlen 8 bits 40-128

  AES ivlen 16 bits 128-256

When the kernel needs to communicate with a peer and policy says that an SA is required
but one is not available, the kernel sends an SADB_ACQUIRE message to key management
sockets that have registered the SA type required, containing a proposal extension
describing the kernel's proposed algorithms and key lengths. The proposal may be a
combination of what is supported by the system and preconfigured policy that limits what
is permitted for this communication. The proposal is a list of algorithms, key lengths, and
lifetimes, in order of preference. When a key management daemon receives an 
SADB_ACQUIRE message, it performs the acts required to choose a key that fits one of the
kernel's proposed combinations, and installs this key in the kernel. It uses the 
SADB_GETSPI message to ask the kernel to select an SPI from a desired range. The kernel's
response to the SADB_GETSPI message includes creating an SA in the larval state. The
daemon then negotiates security parameters with the remote end using the SPI supplied
by the kernel, and uses the SADB_UPDATE message to complete the SA and cause it to enter
the mature state. Dynamically created SAs generally have both a soft and a hard lifetime
associated with them. When either lifetime expires, the kernel sends an SADB_EXPIRE
message, indicating whether the soft or hard lifetime has expired. If the soft lifetime has
expired, the SA has entered the dying state, during which it can still be used but a new SA
must be obtained. If the hard lifetime has expired, the SA has entered the dead state, in
which it is no longer used for security purposes and will be removed from the SADB.

[ Team LiB ]

Page 614

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

19.6 Summary
Key management sockets are used to communicate SAs to the kernel, key management
daemons, and to other security consumers such as routing daemons. SAs can be installed
statically or dynamically via a key negotiation protocol. Dynamic keys can have associated
lifetimes; when the soft lifetime is reached, the key management daemon is informed. If
an SA is not replaced before the hard lifetime is reached, the SA can no longer be used.

Ten messages are exchanged between the process and kernel on key management sockets.
Each message type has associated extensions, some required and some optional. Each
message that is sent by a process is echoed to all other open key management sockets,
removing any extensions containing sensitive data.

[ Team LiB ]

Page 615

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Exercises
19.1 Write a program that opens a PF_KEY socket and dumps all the

messages that it receives.

19.2 Find out about the new protocol that the IETF IPsec working group has
created to replace IKE by visiting the working group web page, 
http://www.ietf.org/html.charters/ipsec-charter.html

[ Team LiB ]

Page 616

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.ietf.org/html.charters/ipsec-charter.html
http://www.ietf.org/html.charters/ipsec-charter.html
http://www.processtext.com/abcchm.html


[ Team LiB ]

Chapter 20. Broadcasting
Section 20.1.?Introduction

Section 20.2.?Broadcast Addresses

Section 20.3.?Unicast versus Broadcast

Section 20.4.?dg_cli Function Using Broadcasting

Section 20.5.?Race Conditions

Section 20.6.?Summary

Exercises

[ Team LiB ]

Page 617

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

20.1 Introduction
In this chapter, we will describe broadcasting and in the next chapter, we will describe
multicasting. All the examples in the text so far have dealt with unicasting: a process
talking to exactly one other process. Indeed, TCP works with only unicast addresses,
although UDP and raw IP support other paradigms. Figure 20.1 shows a comparison of the
different types of addressing.

Figure 20.1. Different forms of addressing.

IPv6 has added anycasting to the addressing architecture. An IPv4 version of anycasting,
which was never widely deployed, is described in RFC 1546 [Partridge, Mendez, and
Milliken 1993]. IPv6 anycasting is defined in RFC 3513 [Hinden and Deering 2003].
Anycasting allows addressing one (usually the "closest" by some metric) system out of a
set of systems that usually provides identical services. With an appropriate routing
configuration, hosts can provide anycasting services in either IPv4 or IPv6 by injecting the
same address into the routing protocol in multiple locations. However, RFC 3513's
anycasting only permits routers to have anycast addresses; hosts may not provide
anycasting services. As of this writing, there is no API defined for using anycast addresses.
There is work in progress to refine the IPv6 anycast architecture, and hosts may be able to
dynamically provide anycasting services in the future.

The important points in Figure 20.1 are:

 Multicasting support is optional in IPv4, but mandatory in IPv6.

 Broadcasting support is not provided in IPv6. Any IPv4 application that uses
broadcasting must be recoded for IPv6 to use multicasting instead.

 Broadcasting and multicasting require datagram transport such as UDP or raw IP;
they cannot work with TCP.

One use for broadcasting is to locate a server on the local subnet when the server is
assumed to be on the local subnet but its unicast IP address is not known. This is
sometimes called resource discovery. Another use is to minimize the network traffic on a
LAN when there are multiple clients communicating with a single server. There are
numerous examples of Internet applications that use broadcasting for this purpose. Some
of these can also use multicasting.

 ARP  Although this is a protocol that lies underneath IPv4, and not a user
application, ARP broadcasts a request on the local subnet that says, "Will the
system with an IP address of a.b.c.d please identify yourself and tell me your
hardware address?" ARP uses link-layer broadcast, not IP-layer, but is an example
of a use of broadcasting.

 DHCP  The client assumes a server or relay is on the local subnet and sends its
request to the broadcast address (often 255.255.255.255 since the client doesn't
yet know its IP address, its subnet mask, or the limited broadcast address of the
subnet).

 Network Time Protocol (NTP)  In one common scenario, an NTP client is configured

Page 618

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


with the IP address of one or more servers to use, and the client polls the servers at
some frequency (every 64 seconds or longer). The client updates its clock using
sophisticated algorithms based on the time-of-day returned by the servers and the
RTT to the servers. But on a broadcast LAN, instead of making each of the clients
poll a single server, the server can broadcast the current time every 64 seconds for
all the clients on the local subnet, reducing the amount of network traffic.

 Routing daemons  The oldest routing daemon, routed, which implements RIP
version 1, broadcasts its routing table on a LAN. This allows all other routers
attached to the LAN to receive these routing announcements, without each router
having to be configured with the IP addresses of all its neighboring routers. This
feature can also be used by hosts on the LAN listening to these routing
announcements and updating their routing tables accordingly. RIP version 2 permits
the use of either multicast or broadcast.

We must note that multicasting can replace both uses of broadcasting (resource discovery
and reducing network traffic) and we will describe the problems with broadcasting later in
this chapter and the next chapter.

[ Team LiB ]

Page 619

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

20.2 Broadcast Addresses
If we denote an IPv4 address as {subnetid, hostid}, where subnetid represents the bits
that are covered by the network mask (or the CIDR prefix) and hostid represents the bits
that are not, then we have two types of broadcast addresses. We denote a field containing
all one bits as  1.

1. Subnet-directed broadcast address: {subnetid,  1} This addresses all the
interfaces on the specified subnet. For example, if we have the subnet
192.168.42/24, then 192.168.42.255 would be the subnet-directed broadcast
address for all interfaces on the 192.168.42/24 subnet.

Normally, routers do not forward these broadcasts (pp. 226 227 of TCPv2). In
Figure 20.2, we show a router connected to the two subnets 192.168.42/24 and
192.168.123/24.

Figure 20.2. Does a router forward a subnet-directed broadcast?

The router receives a unicast IP datagram on the 192.168.123/24 subnet with a
destination address of 192.168.42.255 (the subnet-directed broadcast address of
another interface). The router normally does not forward the datagram on to the
192.168.42/24 subnet. Some systems have a configuration option that allows
subnet-directed broadcasts to be forwarded (Appendix E of TCPv1).

Forwarding subnet-directed broadcasts enables a class of denial-of-service attacks
called "amplification" attacks; for instance, sending an ICMP echo request to a
subnet-directed broadcast address can cause multiple replies to be sent for a single
request. Combined with a forged IP source address, this results in a bandwidth
utilization attack against the victim system, so it's advisable to leave this
configuration option off.

For this reason, it's inadvisable to design an application that relies on forwarding of
subnet-directed broadcasts except in a controlled environment, where you know it's
safe to turn them on.

2. Limited broadcast address: { 1,  1,  1} or 255.255.255.255 Datagrams
destined to this address must never be forwarded by a router.

255.255.255.255 is to be used as the destination address during the bootstrap
process by applications such as BOOTP and DHCP, which do not yet know the node's
IP address.

The question is: What does a host do when an application sends a UDP datagram to
255.255.255.255? Most hosts allow this (assuming the process has set the 
SO_BROADCAST socket option) and convert the destination address to the
subnet-directed broadcast address of the outgoing interface. It is often necessary to

Page 620

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


access the datalink directly (Chapter 29) to send a packet to 255.255.255.255.

Another question is: What does a multihomed host do when the application sends a
UDP datagram to 255.255.255.255? Some systems send a single broadcast on the
primary interface (the first interface that was configured) with the destination IP
address set to the subnet-directed broadcast address of that interface (p. 736 of
TCPv2). Other systems send one copy of the datagram out from each
broadcast-capable interface. Section 3.3.6 of RFC 1122 [Braden 1989] "takes no
stand" on this issue. For portability, however, if an application needs to send a
broadcast out from all broadcast-capable interfaces, it should obtain the interface
configuration (Section 17.6) and do one sendto for each broadcast-capable interface
with the destination set to that interface's broadcast address.

[ Team LiB ]

Page 621

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

20.3 Unicast versus Broadcast
Before looking at broadcasting, let's make certain we understand the steps that take place
when a UDP datagram is sent to a unicast address. Figure 20.3 shows three hosts on an
Ethernet.

Figure 20.3. Unicast example of a UDP datagram.

The subnet address of the Ethernet is 192.168.42/24 with 24 bits in the network mask,
leaving 8 bits for the host ID. The application on the left host calls sendto on a UDP socket,
sending a datagram to 192.168.42.3, port 7433. The UDP layer prepends a UDP header and
passes the UDP datagram to the IP layer. IP prepends an IPv4 header, determines the
outgoing interface, and in the case of an Ethernet, ARP is invoked to map the destination
IP address to the corresponding Ethernet address: 00:0a:95:79:bc:b4. The packet is then
sent as an Ethernet frame with that 48-bit address as the destination Ethernet address.
The frame type field of the Ethernet frame will be 0x0800, specifying an IPv4 packet. The
frame type for an IPv6 packet is 0x86dd.

The Ethernet interface on the host in the middle sees the frame pass by and compares the
destination Ethernet address to its own Ethernet address 00:04:ac:17:bf:38). Since they
are not equal, the interface ignores the frame. With a unicast frame, there is no overhead
whatsoever to this host. The interface ignores the frame.

The Ethernet interface on the host on the right also sees the frame pass by, and when it
compares the destination Ethernet address with its own Ethernet address, they are equal.
This interface reads in the entire frame, probably generates a hardware interrupt when the
frame is complete, and the device driver reads the frame from the interface memory. Since
the frame type is 0x0800, the packet is placed on the IP input queue.

When the IP layer processes the packet, it first compares the destination IP address
(192.168.42.3) with all of its own IP addresses. (Recall that a host can be multihomed.
Also recall our discussion of the strong end system model and the weak end system model
in Section 8.8.) Since the destination address is one of the host's own IP addresses, the
packet is accepted.

The IP layer then looks at the protocol field in the IPv4 header, and its value will be 17 for
UDP. The IP datagram is passed to UDP.

Page 622

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


The UDP layer looks at the destination port (and possibly the source port, too, if the UDP
socket is connected), and in our example, places the datagram onto the appropriate socket
receive queue. The process is awakened, if necessary, to read the newly received
datagram.

The key point in this example is that a unicast IP datagram is received by only the one
host specified by the destination IP address. No other hosts on the subnet are affected.

We now consider a similar example, on the same subnet, but with the sending application
writing a UDP datagram to the subnet-directed broadcast address: 192.168.42.255. Figure
20.4 shows the arrangement.

Figure 20.4. Example of a broadcast UDP datagram.

When the host on the left sends the datagram, it notices that the destination IP address is
the subnet-directed broadcast address and maps this into the Ethernet address of 48 one
bits: ff:ff:ff:ff:ff:ff. This causes every Ethernet interface on the subnet to receive the
frame. The two hosts on the right of this figure that are running IPv4 will both receive the
frame. Since the Ethernet frame type is 0x0800, both hosts pass the packet to the IP layer.
Since the destination IP address matches the broadcast address for each of the two hosts,
and since the protocol field is 17 (UDP), both hosts pass the packet up to UDP.

The host on the right passes the UDP datagram to the application that has bound UDP port
520. Nothing special needs to be done by an application to receive a broadcast UDP
datagram: It just creates a UDP socket and binds the application's port number to the
socket. (We assume the IP address bound is INADDR_ANY, which is typical.)

On the host in the middle, no application has bound UDP port 520. The host's UDP code
then discards the received datagram. This host must not send an ICMP "port unreachable,"
as doing so could generate a broadcast storm: a condition where lots of hosts on the
subnet generate a response at about the same time, leading to the network being unusable
for a period of time. In addition, it's not clear what the sending host would do with an
ICMP error: What if some receivers report errors and others don't?

In this example, we also show the datagram that is output by the host on the left being
delivered to itself. This is a property of broadcasts: By definition, a broadcast goes to every
host on the subnet, which includes the sender (pp. 109 110 of TCPv2). We also assume
that the sending application has bound the port that it is sending to (520), so it will
receive a copy of each broadcast datagram it sends. (In general, however, there is no
requirement that a process bind a UDP port to which it sends datagrams.)

Page 623

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


In this example, we show a logical loopback performed by either the IP layer or the
datalink layer making a copy (pp. 109 110 of TCPv2) and sending the copy up the
protocol stack. A network could use a physical loopback, but this can lead to problems in
the case of network faults (such as an unterminated Ethernet).

This example shows the fundamental problem with broadcasting: Every IPv4 host on the
subnet that is not participating in the application must completely process the broadcast
UDP datagram all the way up the protocol stack, through and including the UDP layer,
before discarding the datagram. (Recall our discussion following Figure 8.21.) Also, every
non-IP host on the subnet (say a host running Novell's IPX) must also receive the entire
frame at the datalink layer before discarding the frame (assuming the host does not
support the frame type, which would be 0x0800 for an IPv4 datagram). For applications
that generate IP datagrams at a high rate (audio or video, for example), this unnecessary
processing can severely affect these other hosts on the subnet. We will see in the next
chapter how multicasting gets around this problem to some extent.

Our choice of UDP port 520 in Figure 20.4 is intentional. This is the port used by the
routed daemon to exchange RIP packets. All routers on a subnet that are using RIP version
1 will send a broadcast UDP datagram every 30 seconds. If there are 200 systems on the
subnet, including two routers using RIP, 198 hosts will have to process (and discard) these
broadcast datagrams every 30 seconds, assuming none of the 198 hosts is running routed.
RIP version 2 uses multicast to avoid this very problem.

[ Team LiB ]

Page 624

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

20.4 dg_cli Function Using Broadcasting
We modify our dg_cli function one more time, this time allowing it to broadcast to the
standard UDP daytime server (Figure 2.18) and printing all replies. The only change we
make to the main function (Figure 8.7) is to change the destination port number to 13.

servaddr.sin_port = htons(13);

We first compile this modified main function with the unmodified dg_cli function from
Figure 8.8 and run it on the host freebsd.

     freebsd % udpcli01 192.168.42.255

     hi

     sendto error: Permission denied

The command-line argument is the subnet-directed broadcast address for the secondary
Ethernet. We type a line of input, the program calls sendto, and the error EACCES is
returned. The reason we receive the error is that we are not allowed to send a datagram to
a broadcast destination address unless we explicitly tell the kernel that we will be
broadcasting. We do this by setting the SO_BROADCAST socket option (Section 7.5).

Berkeley-derived implementations implement this sanity check. Solaris 2.5, on the other
hand, accepts the datagram destined for the broadcast address even if we do not specify
the socket option. The POSIX specification requires the SO_BROADCAST socket option to be
set to send a broadcast packet.

Broadcasting was a privileged operation with 4.2BSD and the SO_BROADCAST socket option
did not exist. This option was added to 4.3BSD and any process was allowed to set the
option.

We now modify our dg_cli function as shown in Figure 20.5. This version sets the
SO_BROADCAST socket option and prints all the replies received within five seconds.

Allocate room for server's address, set socket option
11 13 malloc allocates room for the server's address to be returned by recvfrom. The
SO_BROADCAST socket option is set and a signal handler is installed for SIGALRM.

Read line, send to socket, read all replies
14 24 The next two steps, fgets and sendto, are similar to previous versions of this
function. But since we are sending a broadcast datagram, we can receive multiple replies.
We call recvfrom in a loop and print all the replies received within five seconds. After five
seconds, SIGALRM is generated, our signal handler is called, and recvfrom returns the error
EINTR.

Print each received reply
25 29 For each reply received, we call sock_ntop_host, which in the case of IPv4 returns a
string containing the dotted-decimal IP address of the server. This is printed along with the

Page 625

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


server's reply.

If we run the program specifying the subnet-directed broadcast address of
192.168.42.255, we see the following:

freebsd % udpcli01 192.168.42.255

hi

from 192.168.42.2: Sat Aug 2 16:42:45 2003

from 192.168.42.1: Sat Aug 2 14:42:45 2003

from 192.168.42.3: Sat Aug 2 14:42:45 2003

hello

from 192.168.42.3: Sat Aug 2 14:42:57 2003

from 192.168.42.2: Sat Aug 2 16:42:57 2003

from 192.168.42.1: Sat Aug 2 14:42:57 2003

Each time we must type a line of input to generate the output UDP datagram. Each time
we receive three replies, and this includes the sending host. As we said earlier, the
destination of a broadcast datagram is all the hosts on the attached network, including the
sender. Each reply is unicast because the source address of the request, which is used by
each server as the destination address of the reply, is a unicast address.

All the systems report the same time because all run NTP.

Figure 20.5 dg_cli function that broadcasts.

bcast/dgclibcast1.c

 1 #include      "unp.h"

 2 static void recvfrom_alarm(int);

 3 void

 4 dg_cli(FILE *fp, int sockfd, const SA *pservaddr, socklen_t servlen)

 5 {

 6     int     n;

 7     const int on = 1;

 8     char    sendline[MAXLINE], recvline[MAXLINE + 1];

 9     socklen_t len;

10     struct sockaddr *preply_addr;

11     preply_addr = Malloc(servlen);

12     Setsockopt(sockfd, SOL_SOCKET, SO_BROADCAST, &on, sizeof(on));

13     Signal(SIGALRM, recvfrom_alarm);

14     while (Fgets(sendline, MAXLINE, fp) != NULL) {

15         Sendto(sockfd, sendline, strlen(sendline), 0, pservaddr, servlen);

16         alarm(5);

17         for ( ; ; ) {

18             len = servlen;

19             n = recvfrom(sockfd, recvline, MAXLINE, 0, preply_addr, &len);

20             if (n < 0) {

21                 if (errno == EINTR)

22                     break;      /* waited long enough for replies */

Page 626

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


23                 else

24                    err_sys("recvfrom error");

25             } else {

26                 recvline[n] = 0; /* null terminate */

27                 printf("from %s: %s",

28                        Sock_ntop_host(preply_addr, len), recvline);

29             }

30         }

31     }

32     free(preply_addr);

33 }

34 static void

35 recvfrom_alarm(int signo)

36 {

37     return;                     /* just interrupt the recvfrom() */

38 }

IP Fragmentation and Broadcasts
Berkeley-derived kernels do not allow a broadcast datagram to be fragmented. If the size
of an IP datagram that is being sent to a broadcast address exceeds the outgoing interface
MTU, EMSGSIZE is returned (pp. 233 234 of TCPv2). This is a policy decision that has
existed since 4.2BSD. There is nothing that prevents a kernel from fragmenting a
broadcast datagram, but the feeling is that broadcasting puts enough load on the network
as it is, so there is no need to multiply this load by the number of fragments.

We can see this scenario with our program in Figure 20.5. We redirect standard input from
a file containing a 2,000-byte line, which will require fragmentation on an Ethernet.

     freebsd % udpcli01 192.168.42.255 < 2000line

     sendto error: Message too long

AIX, FreeBSD, and MacOS implement this limitation. Linux, Solaris, and HP-UX fragment
datagrams sent to a broadcast address. For portability, however, an application that needs
to broadcast should determine the MTU of the outgoing interface using the SIOCGIFMTU
ioctl, and then subtract the IP and transport header lengths to determine the maximum
payload size. Alternately, it can pick a common MTU, like Ethernet's 1500, and use it as a
constant.

[ Team LiB ]

Page 627

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

20.5 Race Conditions
A race condition is usually when multiple processes are accessing data that is shared
among them, but the correct outcome depends on the execution order of the processes.
Since the execution order of processes on typical Unix systems depends on many factors
that may vary between executions, sometimes the outcome is correct, but sometimes the
outcome is wrong. The hardest type of race conditions to debug are those in which the
outcome is normally correct and only occasionally is the outcome wrong. We will talk more
about these types of race conditions in Chapter 26, when we discuss mutual exclusion
variables and condition variables. Race conditions are always a concern with threads
programming since so much data is shared among all the threads (e.g., all the global
variables).

Race conditions of a different type often exist when dealing with signals. The problem
occurs because a signal can normally be delivered at anytime while our program is
executing. POSIX allows us to block a signal from being delivered, but this is often of little
use while we are performing I/O operations.

An example is an easy way to see this problem. A race condition exists in Figure 20.5; take
a few minutes and see if you can find it. (Hint: Where can we be executing when the signal
is delivered?) You can also force the condition to occur as follows: Change the argument to 
alarm from 5 to 1, and add sleep(1) immediately before the printf.

When we make these changes to the function and then type the first line of input, the line
is sent as a broadcast and we set the alarm for one second in the future. We block in the
call to recvfrom, and the first reply then arrives for our socket, probably within a few
milliseconds. The reply is returned by recvfrom, but we then go to sleep for one second.
Additional replies are received, and they are placed into our socket's receive buffer. But
while we are asleep, the alarm timer expires and the SIGALRM signal is generated: Our
signal handler is called, and it just returns and interrupts the sleep in which we are
blocked. We then loop around and read the queued replies with a one-second pause each
time we print a reply. When we have read all the replies, we block again in the call to 
recvfrom, but the timer is not running. Thus, we will block forever in recvfrom. The
fundamental problem is that our intent is for our signal handler to interrupt a blocked 
recvfrom, but the signal can be delivered at any time, and we can be executing anywhere
in the infinite for loop when the signal is delivered.

We now examine four different solutions to this problem: one incorrect solution and three
different correct solutions.

Blocking and Unblocking the Signal
Our first (incorrect) solution reduces the window of error by blocking the signal from being
delivered while we are executing the remainder of the for loop. Figure 20.6 shows the new
version.

Figure 20.6 Block signals while executing within the for loop
(incorrect solution).

bcast/dgclibcast3.c

 1 #include     "unp.h"

 2 static void recvfrom_alarm(int);

 3 void

Page 628

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


 4 dg_cli(FILE *fp, int sockfd, const SA *pservaddr, socklen_t servlen)

 5 {

 6     int     n;

 7     const int on = 1;

 8     char    sendline[MAXLINE], recvline[MAXLINE + 1];

 9     sigset_t sigset_alrm;

10     socklen_t len;

11     struct sockaddr *preply_addr;

12     preply_addr = Malloc(servlen);

13     Setsockopt(sockfd, SOL_SOCKET, SO_BROADCAST, &on, sizeof(on));

14     Sigemptyset(&sigset_alrm);

15     Sigaddset(&sigset_alrm, SIGALRM);

16     Signal(SIGALRM, recvfrom_alarm);

17     while (Fgets(sendline, MAXLINE, fp) != NULL) {

18         Sendto(sockfd, sendline, strlen(sendline), 0, pservaddr, servlen);

19         alarm(5);

20         for ( ; ; ) {

21             len = servlen;

22             Sigprocmask(SIG_UNBLOCK, &sigset_alrm, NULL);

23             n = recvfrom(sockfd, recvline, MAXLINE, 0, preply_addr, &len);

24             Sigprocmask(SIG_BLOCK, &sigset_alrm, NULL);

25             if (n < 0) {

26                 if (errno == EINTR)

27                     break;     /* waited long enough for replies */

28                 else

29                      err_sys("recvfrom error");

30             } else {

31                 recvline[n] = 0;     /* null terminate */

32                 printf("from %s: %s",

33                        Sock_ntop_host(preply_addr, len), recvline);

34             }

35         }

36     }

37     free(preply_addr);

38 }

39 static void

40 recvfrom_alarm(int signo)

41 {

42     return;                 /* just interrupt the recvfrom() */

43 }

Declare signal set and initialize

14 15 We declare a signal set, initialize it to the empty set (sigemptyset), and then turn
on the bit corresponding to SIGALRM (sigaddset).

Unblock and block signal

21 24 Before calling recvfrom, we unblock the signal (so that it can be delivered while we
are blocked) and then block it as soon as recvfrom returns. If the signal is generated (i.e.,
the timer expires) while it is blocked, the kernel remembers this fact, but cannot deliver
the signal (i.e., call our signal handler) until it is unblocked. This is the fundamental
difference between the generation of a signal and its delivery. Chapter 10 of APUE provides

Page 629

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


additional details on all these facets of POSIX signal handling.

If we compile and run this program, it appears to work fine, but then most programs with
a race condition work most of the time! There is still a problem: The unblocking of the
signal, the call to recvfrom, and the blocking of the signal are all independent system
calls. Assume recvfrom returns with the final datagram reply and the signal is delivered
between the recvfrom and the blocking of the signal. The next call to recvfrom will block
forever. We have reduced the window, but the problem still exists.

A variation of this solution is to have the signal handler set a global flag when the signal is
delivered.

static void

recvfrom_alarm(int signo)

{

    had_alarm = 1;

    return;

}

The flag is initialized to 0 each time alarm is called. Our dg_cli function checks this flag
before calling recvfrom and does not call it if the flag is nonzero.

for ( ; ; ) {

    len = servlen;

    Sigprocmask(SIG_UNBLOCK, &sigset_alrm, NULL);

    if (had_alarm == 1)

        break;

    n = recvfrom(sockfd, recvline, MAXLINE, 0, preply_addr, &len);

If the signal was generated during the time it was blocked (after the previous return from 
recvfrom), and when the signal is unblocked in this piece of code, it will be delivered
before sigprocmask returns, setting our flag. But there is still a small window of time
between the testing of the flag and the call to recvfrom when the signal can be generated
and delivered, and if this happens, the call to recvfrom will block forever (assuming, of
course, no additional replies are received).

Blocking and Unblocking the Signal with pselect

One correct solution is to use pselect (Section 6.9), as shown in Figure 20.7.

Figure 20.7 Blocking and unblocking signals with pselect.

bcast/dgclibcast4.c

 1 #include     "unp.h"

 2 static void recvfrom_alarm(int);

 3 void

 4 dg_cli(FILE *fp, int sockfd, const SA *pservaddr, socklen_t servlen)

 5 {

 6     int     n;

 7     const int on = 1;

 8     char    sendline[MAXLINE], recvline[MAXLINE + 1];

Page 630

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


 9     fd_set  rset;

10     sigset_t sigset_alrm, sigset_empty;

11     socklen_t len;

12     struct sockaddr *preply_addr;

13     preply_addr = Malloc(servlen);

14     Setsockopt(sockfd, SOL_SOCKET, SO_BROADCAST, &on, sizeof(on));

15     FD_ZERO(&rset);

16     Sigemptyset(&sigset_empty);

17     Sigemptyset(&sigset_alrm);

18     Sigaddset(&sigset_alrm, SIGALRM);

19     Signal(SIGALRM, recvfrom_alarm);

20     while (Fgets(sendline, MAXLINE, fp) != NULL) {

21         Sendto(sockfd, sendline, strlen(sendline), 0, pservaddr, servlen);

22         Sigprocmask(SIG_BLOCK, &sigset_alrm, NULL);

23         alarm(5);

24         for ( ; ; ) {

25             FD_SET(sockfd, &rset);

26             n = pselect(sockfd + 1, &rset, NULL, NULL, NULL, &sigset_empty);

27             if (n < 0) {

28                 if (errno == EINTR)

29                     break;

30                 else

31                    err_sys("pselect error");

32             } else if (n != 1)

33                 err_sys("pselect error: returned %d", n);

34             len = servlen;

35             n = Recvfrom(sockfd, recvline, MAXLINE, 0, preply_addr, &len);

36             recvline[n] = 0;     /* null terminate */

37             printf("from %s: %s",

38                    Sock_ntop_host(preply_addr, len), recvline);

39         }

40      }

41      free(preply_addr);

42 }

43 static void

44 recvfrom_alarm(int signo)

45 {

46     return;                     /* just interrupt the recvfrom() */

47 }

22 33 We block SIGALRM and call pselect. The final argument to pselect is a pointer to
our sigset_empty variable, which is a signal set with no signals blocked, that is, all signals
are unblocked. pselect will save the current signal mask (which has SIGALRM blocked),
test the specified descriptors, and block if necessary with the signal mask set to the empty
set. Before returning, the signal mask of the process is reset to its value when pselect was
called. The key to pselect is that the setting of the signal mask, the testing of the
descriptors, and the resetting of the signal mask are atomic operations with regard to the
calling process.

34 38 If our socket is readable, we call recvfrom, knowing it will not block.

As we mentioned in Section 6.9, pselect is new with the POSIX specification; of all the

Page 631

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


systems in Figure 1.16, only FreeBSD and Linux support the function. Nevertheless, Figure
20.8 shows a simple, albeit incorrect, implementation. Our reason for showing this
incorrect implementation is to show the three steps involved: setting the signal mask to
the value specified by the caller along with saving the current mask, testing the
descriptors, and resetting the signal mask.

Figure 20.8 Simple, incorrect implementation of pselect.

lib/pselect.c

 9 #include     "unp.h"

10 int

11 pselect(int nfds, fd_set *rset, fd_set *wset, fd_set *xset,

12         const struct timespec *ts, const sigset_t *sigmask)

13 {

14     int     n;

15     struct timeval tv;

16     sigset_t savemask;

17     if (ts != NULL) {

18         tv.tv_sec = ts->tv_sec;

19         tv.tv_usec = ts->tv_nsec / 1000;     /* nanosec -> microsec */

20     }

21     sigprocmask(SIG_SETMASK, sigmask, &savemask);     /* caller's mask */

22     n = select(nfds, rset, wset, xset, (ts == NULL) ? NULL : &tv);

23     sigprocmask(SIG_SETMASK, &savemask, NULL); /* restore mask */

24     return (n);

25 }

Using sigsetjmp and siglongjmp

Another correct way to solve our problem is not to use the ability of a signal handler to
interrupt a blocked system call, but to call siglongjmp from the signal handler instead.
This is called a nonlocal goto because we can use it to jump from one function back to
another. Figure 20.9 demonstrates this technique.

Figure 20.9 Use of sigsetjmp and siglongjmp from signal handler.

bcast/dgclibcast5.c

 1 #include     "unp.h"

 2 #include     <setjmp.h>

 3 static void recvfrom_alarm(int);

 4 static sigjmp_buf jmpbuf;

 5 void

 6 dg_cli(FILE *fp, int sockfd, const SA *pservaddr, socklen_t servlen)

 7 {

 8     int     n;

 9     const int on = 1;

10     char    sendline[MAXLINE], recvline[MAXLINE + 1];

11     socklen_t len;

12     struct sockaddr *preply_addr;

13     preply_addr = Malloc(servlen);

Page 632

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


14     Setsockopt(sockfd, SOL_SOCKET, SO_BROADCAST, &on, sizeof(on));

15     Signal(SIGALRM, recvfrom_alarm);

16     while (Fgets(sendline, MAXLINE, fp) != NULL) {

17         Sendto(sockfd, sendline, strlen(sendline), 0, pservaddr, servlen);

18         alarm(5);

19         for ( ; ; ) {

20             if (sigsetjmp(jmpbuf, 1) != 0)

21                 break;

22             len = servlen;

23             n = Recvfrom(sockfd, recvline, MAXLINE, 0, preply_addr, &len);

24             recvline[n] = 0;     /* null terminate */

25             printf("from %s: %s",

26                    Sock_ntop_host(preply_addr, len), recvline);

27         }

28      }

29      free(preply_addr);

30 }

31 static void

32 recvfrom_alarm(int signo)

33 {

34     siglongjmp(jmpbuf, 1);

35 }

Allocate jump buffer

4 We allocate a jump buffer that will be used by our function and its signal handler.

Call sigsetjmp

20 23 When we call sigsetjmp directly from our dg_cli function, it establishes the jump
buffer and returns 0. We proceed on and call recvfrom.

Handle SIGALRM and call siglongjmp

31 35 When the signal is delivered, we call siglongjmp. This causes the sigsetjmp in the
dg_cli function to return with a return value equal to the second argument (1), which
must be a nonzero value. This will cause the for loop in dg_cli to terminate.

Using sigsetjmp and siglongjmp in this fashion guarantees that we will not block forever
in recvfrom because of a signal delivered at an inopportune time. However, this introduces
another potential problem: If the signal is delivered while printf is in the middle of its
output, we will effectively jump out of the middle of printf and back to our sigsetjmp.
This may leave printf with inconsistent private data structures, for example. To prevent
this, we should combine the signal blocking and unblocking from Figure 20.6 with the
nonlocal goto. This makes this solution unwieldy, as the signal blocking has to occur
around any function that may behave poorly as a result of being interrupted in the middle.

Using IPC from Signal Handler to Function
There is yet another correct way to solve our problem. Instead of having the signal handler
just return and hopefully interrupt a blocked recvfrom, we have the signal handler use IPC
to notify our dg_cli function that the timer has expired. This is somewhat similar to the
proposal we made earlier for the signal handler to set the global had_alarm when the timer
expired, because that global variable was being used as a form of IPC (shared memory
between our function and the signal handler). The problem with that solution, however,

Page 633

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


was our function had to test this variable, and this led to timing problems if the signal was
delivered at about the same time.

What we use in Figure 20.10 is a pipe within our process, with the signal handler writing
one byte to the pipe when the timer expires and our dg_cli function reading that byte to
know when to terminate its for loop. What makes this such a nice solution is that the
testing for the pipe being readable is done using select. We test for either the socket
being readable or the pipe being readable.

Create pipe

15 We create a normal Unix pipe and two descriptors are returned. pipefd[0] is the read
end and pipefd[1] is the write end.

We could also use socketpair and get a full-duplex pipe. On some systems, notably SVR4,
a normal Unix pipe is always full-duplex and we can read from either end and write to
either end.

select on both socket and read end of pipe

23 30 We select on both sockfd, the socket, and pipefd[0], the read end of the pipe.

47 52 When SIGALRM is delivered, our signal handler writes one byte to the pipe, making
the read end readable. Our signal handler also returns, possibly interrupting select.
Therefore, if select returns EINTR, we ignore the error, knowing that the read end of the
pipe will also be readable, and that will terminate the for loop.

read from pipe

39 42 When the read end of the pipe is readable, we read the null byte that the signal
handler wrote and ignore it. But this tells us that the timer expired, so we break out of the
infinite for loop.

Figure 20.10 Using a pipe as IPC from signal handler to our function.

bcast/dgclibcast6.c

 1 #include     "unp.h"

 2 static void recvfrom_alarm(int);

 3 static int pipefd[2];

 4 void

 5 dg_cli(FILE *fp, int sockfd, const SA *pservaddr, socklen_t servlen)

 6 {

 7     int     n, maxfdp1;

 8     const int on = 1;

 9     char    sendline[MAXLINE], recvline[MAXLINE + 1];

10     fd_set  rset;

11     socklen_t len;

12     struct sockaddr *preply_addr;

13     preply_addr = Malloc(servlen);

14     Setsockopt(sockfd, SOL_SOCKET, SO_BROADCAST, &on, sizeof(on));

15     Pipe(pipefd);

16     maxfdp1 = max(sockfd, pipefd[0]) + 1;

17     FD_ZERO(&rset);

Page 634

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


18     Signal(SIGALRM, recvfrom_alarm);

19     while (Fgets(sendline, MAXLINE, fp) != NULL) {

20         Sendto(sockfd, sendline, strlen(sendline), 0, pservaddr, servlen);

21         alarm(5);

22         for ( ; ; ) {

23             FD_SET(sockfd, &rset);

24             FD_SET(pipefd[0], &rset);

25             if ( (n = select(maxfdp1, &rset, NULL, NULL, NULL)) < 0) {

26                 if (errno == EINTR)

27                     continue;

28                 else

29                     err_sys("select error");

30             }

31             if (FD_ISSET(sockfd, &rset)) {

32                 len = servlen;

33                 n = Recvfrom(sockfd, recvline, MAXLINE, 0, preply_addr,

34                              &len);

35                 recvline[n] = 0;     /* null terminate */

36                 printf("from %s: %s",

37                        Sock_ntop_host(preply_addr, len), recvline);

38             }

39             if (FD_ISSET(pipefd[0], &rset)) {

40                 Read(pipefd[0], &n, 1); /* timer expired */

41                 break;

42             }

43          }

44      }

45      free(preply_addr);

46 }

47 static void

48 recvfrom_alarm(int signo)

49 {

50     Write(pipefd[1], "", 1);     /* write one null byte to pipe */

51     return;

52 }

[ Team LiB ]

Page 635

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

20.6 Summary
Broadcasting sends a datagram that all hosts on the attached subnet receive. The
disadvantage in broadcasting is that every host on the subnet must process the datagram,
up through the UDP layer in the case of a UDP datagram, even if the host is not
participating in the application. For high data rate applications, such as audio or video, this
can place an excessive processing load on these hosts. We will see in the next chapter that
multicasting solves this problem because only the hosts that are interested in the
application receive the datagram.

Using a version of our UDP echo client that sends a broadcast to the daytime server and
then prints all the replies that are received within five seconds, we looked at race
conditions with the SIGALRM signal. Since the use of the alarm function and the SIGALRM
signal is a common way to place a timeout on a read operation, this subtle error is common
in networking applications. We showed one incorrect way to solve the problem, and three
correct ways:

 Using pselect

 Using sigsetjmp and siglongjmp

 Using IPC (typically a pipe) from the signal handler to the main loop

[ Team LiB ]

Page 636

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Exercises
20.1 Run the UDP client using the dg_cli function that broadcasts (Figure

20.5). How many replies do you receive? Are the replies always in the
same order? Do the hosts on your network have synchronized clocks?

20.2 Put some printfs in Figure 20.10 after select returns to see whether it
returns an error or readability for one of the two descriptors. When the 
alarm expires, does your system return EINTR or readability on the
pipe?

20.3 Run a tool such as tcpdump, if available, and look for broadcast packets
on your LAN; tcpdump ether broadcast is the tcpdump command. To
which protocol suites do the broadcasts belong?

[ Team LiB ]

Page 637

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Chapter 21. Multicasting
Section 21.1.?Introduction

Section 21.2.?Multicast Addresses

Section 21.3.?Multicasting versus Broadcasting on a LAN

Section 21.4.?Multicasting on a WAN

Section 21.5.?Source-Specific Multicast

Section 21.6.?Multicast Socket Options

Section 21.7.?mcast_join and Related Functions

Section 21.8.?dg_cli Function Using Multicasting

Section 21.9.?Receiving IP Multicast Infrastructure Session Announcements

Section 21.10.?Sending and Receiving

Section 21.11.?Simple Network Time Protocol (SNTP)

Section 21.12.?Summary

Exercises

[ Team LiB ]

Page 638

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

21.1 Introduction
As shown in Figure 20.1, a unicast address identifies a single IP interface, a broadcast
address identifies all IP interfaces on the subnet, and a multicast address identifies a set of
IP interfaces. Unicasting and broadcasting are the extremes of the addressing spectrum
(one or all) and the intent of multicasting is to allow addressing something in between. A
multicast datagram should be received only by those interfaces interested in the datagram,
that is, by the interfaces on the hosts running applications wishing to participate in the
multicast group. Also, broadcasting is normally limited to a LAN, whereas multicasting can
be used on a LAN or across a WAN. Indeed, applications multicast across a subset of the
Internet on a daily basis.

The additions to the sockets API to support multicasting are simple; they comprise nine
socket options: three that affect the sending of UDP datagrams to a multicast address and
six that affect the host's reception of multicast datagrams.

[ Team LiB ]

Page 639

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

21.2 Multicast Addresses
When describing multicast addresses, we must distinguish between IPv4 and IPv6.

IPv4 Class D Addresses
Class D addresses, in the range 224.0.0.0 through 239.255.255.255, are the multicast
addresses in IPv4 (Figure A.3). The low-order 28 bits of a class D address form the
multicast group ID and the 32-bit address is called the group address.

Figure 21.1 shows how IP multicast addresses are mapped into Ethernet multicast
addresses. This mapping for IPv4 multicast addresses is described in RFC 1112 [Deering
1989] for Ethernets, in RFC 1390 [Katz 1993] for FDDI networks, and in RFC 1469
[Pusateri 1993] for token-ring networks. We also show the mapping for IPv6 multicast
addresses to allow easy comparison of the resulting Ethernet addresses.

Figure 21.1. Mapping of IPv4 and IPv6 multicast address to Ethernet
addresses.

Considering just the IPv4 mapping, the high-order 24 bits of the Ethernet address are
always 01:00:5e. The next bit is always 0, and the low-order 23 bits are copied from the
low-order 23 bits of the multicast group address. The high-order 5 bits of the group
address are ignored in the mapping. This means that 32 multicast addresses map to a
single Ethernet address: The mapping is not one-to-one.

The low-order 2 bits of the first byte of the Ethernet address identify the address as a
universally administered group address. Universally administered means the high-order 24
bits have been assigned by the IEEE and group addresses are recognized and handled
specially by receiving interfaces.

There are a few special IPv4 multicast addresses:

 224.0.0.1 is the all-hosts group. All multicast-capable nodes (hosts, routers,
printers, etc.) on a subnet must join this group on all multicast-capable interfaces.
(We will talk about what it means to join a multicast group shortly.)

 224.0.0.2 is the all-routers group. All multicast-capable routers on a subnet must
join this group on all multicast-capable interfaces.

The range 224.0.0.0 through 224.0.0.255 (which we can also write as 224.0.0.0/24) is
called link local. These addresses are reserved for low-level topology discovery or

Page 640

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


maintenance protocols, and datagrams destined to any of these addresses are never
forwarded by a multicast router. We will say more about the scope of various IPv4
multicast addresses after looking at IPv6 multicast addresses.

IPv6 Multicast Addresses
The high-order byte of an IPv6 multicast address has the value ff. Figure 21.1 shows the
mapping from a 16-byte IPv6 multicast address into a 6-byte Ethernet address. The
low-order 32 bits of the group address are copied into the low-order 32 bits of the Ethernet
address. The high-order 2 bytes of the Ethernet address are 33:33. This mapping for
Ethernets is specified in RFC 2464 [Crawford 1998a], the same mapping for FDDI is in RFC
2467 [Crawford 1998b], and the token-ring mapping is in RFC 2470 [Crawford, Narten,
and Thomas 1998].

The low-order two bits of the first byte of the Ethernet address specify the address as a
locally administered group address. Locally administered means there is no guarantee that
the address is unique to IPv6. There could be other protocol suites besides IPv6 sharing
the network and using the same high-order two bytes of the Ethernet address. As we
mentioned earlier, group addresses are recognized and handled specially by receiving
interfaces.

Two formats are defined for IPv6 multicast addresses, as shown in Figure 21.2. When the p
flag is 0, the T flag differentiates between a well-known multicast group (a value of 0) and
a transient multicast group (a value of 1). A P value of 1 designates a multicast address
that is assigned based on a unicast prefix (defined in RFC 3306 [Haberman and Thaler
2002]). If the P flag is 1, the T flag also must be 1 (i.e., unicast-based multicast addresses
are always transient), and the plen and prefix fields are set to the prefix length and value
of the unicast prefix, respectively. The upper two bits of this field are reserved. IPv6
multicast addresses also have a 4-bit scope field that we will discuss shortly. RFC 3307
[Haberman 2002] describes the allocation mechanism for the low-order 32 bits of an IPv6
group address (the group ID), independent of the setting of the P flag.

Figure 21.2. Format of IPv6 multicast addresses

There are a few special IPv6 multicast addresses:

 ff01::1 and ff02::1 are the all-nodes groups at interface-local and link-local
scope. All nodes (hosts, routers, printers, etc.) on a subnet must join these groups
on all multicast-capable interfaces. This is similar to the IPv4 224.0.0.1 multicast
address. However, since multicast is an integral part of IPv6, unlike IPv4, this is not
optional.

Although the IPv4 group is called the all-hosts group and the IPv6 group is called
the all-nodes group, they serve the same purpose. The group was renamed in IPv6
to make it clear that it is intended to address routers, printers, and any other IP
devices on the subnet as well as hosts.

 ff01::2, ff02::2 and ff05::2 are the all-routers groups at interface-local,

Page 641

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


link-local, and site-local scopes. All routers on a subnet must join these groups on
all multicast-capable interfaces. This is similar to the IPv4 224.0.0.2 multicast
address.

Scope of Multicast Addresses
IPv6 multicast addresses have an explicit 4-bit scope field that specifies how "far" the
multicast packet will travel. IPv6 packets also have a hop limit field that limits the number
of times the packet is forwarded by a router. The following values have been assigned to
the scope field:

1: interface-local

2: link-local

4: admin-local

5: site-local

8: organization-local

14: global

The remaining values are unassigned or reserved. An interface-local datagram must not be
output by an interface and a link-local datagram must never be forwarded by a router.
What defines an admin region, a site, or an organization is up to the administrators of the
multicast routers at that site or organization. IPv6 multicast addresses that differ only in
scope represent different groups.

IPv4 does not have a separate scope field for multicast packets. Historically, the IPv4 TTL
field in the IP header has doubled as a multicast scope field: A TTL of 0 means
interface-local; 1 means link-local; up through 32 means site-local; up through 64 means
region-local; up through 128 means continent-local (meaning avoiding low-rate or highly
congested links, intercontinental or not); and up through 255 are unrestricted in scope
(global). This double usage of the TTL field has led to difficulties, as detailed in RFC 2365
[Meyer 1998].

Although use of the IPv4 TTL field for scoping is accepted and recommended practice,
administrative scoping is preferred when possible. This defines the range 239.0.0.0
through 239.255.255.255 as the administratively scoped IPv4 multicast space (RFC 2365
[Meyer 1998]). This is the high end of the multicast address space. Addresses in this range
are assigned locally by an organization, but are not guaranteed to be unique across
organizational boundaries. An organization must configure its boundary routers (multicast
routers at the boundary of the organization) not to forward multicast packets destined to
any of these addresses.

Administratively scoped IPv4 multicast addresses are divided into local scope and
organization-local scope, the former being similar (but not semantically equivalent) to IPv6
site-local scope. We summarize the different scoping rules in Figure 21.3.

Figure 21.3. Scope of IPv4 and IPv6 multicast addresses.

Page 642

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


Multicast Sessions
Especially in the case of streaming multimedia, the combination of an IP multicast address
(either IPv4 or IPv6) and a transport-layer port (typically UDP) is referred to as a session.
For example, an audio/video teleconference may comprise two sessions; one for audio and
one for video. These sessions almost always use different ports and sometimes also use
different groups for flexibility in choice when receiving. For example, one client may choose
to receive only the audio session, and one client may choose to receive both the audio and
the video session. If the sessions used the same group address, this choice would not be
possible.

[ Team LiB ]

Page 643

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

21.3 Multicasting versus Broadcasting on a LAN
We now return to the examples in Figures 20.3 and 20.4 to show what happens in the case
of multicasting. We use IPv4 for the example shown in Figure 21.4, but the steps are
similar for IPv6.

Figure 21.4. Multicast example of a UDP datagram.

The receiving application on the rightmost host starts and creates a UDP socket, binds port
123 to the socket, and then joins the multicast group 224.0.1.1. We will see shortly that
this "join" operation is done by calling setsockopt. When this happens, the IPv4 layer
saves the information internally and then tells the appropriate datalink to receive Ethernet
frames destined to 01:00:5e:00:01:01 (Section 12.11 of TCPv2). This is the Ethernet
address corresponding to the multicast address that the application has just joined using
the mapping we showed in Figure 21.1.

The next step is for the sending application on the leftmost host to create a UDP socket and
send a datagram to 224.0.1.1, port 123. Nothing special is required to send a multicast
datagram: The application does not have to join the multicast group. The sending host
converts the IP address into the corresponding Ethernet destination address and the frame
is sent. Notice that the frame contains both the destination Ethernet address (which is
examined by the interfaces) and the destination IP address (which is examined by the IP
layers).

We assume that the host in the middle is not IPv4 multicast-capable (since support for
IPv4 multicasting is optional). This host ignores the frame completely because: (i) the
destination Ethernet address does not match the address of the interface; (ii) the
destination Ethernet address is not the Ethernet broadcast address; and (iii) the interface
has not been told to receive any group addresses (those with the low-order bit of the
high-order byte set to 1, as in Figure 21.1).

The frame is received by the datalink on the right based on what we call imperfect filtering,
which is done by the interface using the Ethernet destination address. We say this is
imperfect because it is normally the case that when the interface is told to receive frames
destined to one specific Ethernet multicast address, it can receive frames destined to other
Ethernet multicast addresses, too.

When told to receive frames destined to a specific Ethernet multicast address, many

Page 644

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


current Ethernet interface cards apply a hash function to the address, calculating a value
between 0 and 511. One of 512 bits in an array is then turned ON. When a frame passes
by on the cable destined for a multicast address, the same hash function is applied by the
interface to the destination address (which is the first field in the frame), calculating a
value between 0 and 511. If the corresponding bit in the array is ON, the frame is
received; otherwise, it is ignored. Older interface cards reduce the size of the bit array from
512 to 64, increasing the probability that an interface will receive frames in which it is not
interested. Over time, as more and more applications use multicasting, this size will
probably increase even more. Some interface cards today already have perfect filtering (the
ability to filter out datagrams addressed to all but the desired multicast addresses). Other
interface cards have no multicast filtering at all, and when told to receive a specific
multicast address, must receive all multicast frames (sometimes called multicast
promiscuous mode). One popular interface card does perfect filtering for 16 multicast
addresses as well as having a 512-bit hash table. Another does perfect filtering for 80
multicast addresses, but then has to enter multicast promiscuous mode. Even if the
interface performs perfect filtering, perfect software filtering at the IP layer is still required
because the mapping from the IP multicast address to the hardware address is not
one-to-one.

Assuming that the datalink on the right receives the frame, since the Ethernet frame type
is IPv4, the packet is passed to the IP layer. Since the received packet was destined to a
multicast IP address, the IP layer compares this address against all the multicast
addresses that applications on this host have joined. We call this perfect filtering since it is
based on the entire 32-bit class D address in the IPv4 header. In this example, the packet
is accepted by the IP layer and passed to the UDP layer, which in turn passes the datagram
to the socket that is bound to port 123.

There are three scenarios that we do not show in Figure 21.4:

1. A host running an application that has joined the multicast address 225.0.1.1. Since
the upper five bits of the group address are ignored in the mapping to the Ethernet
address, this host's interface will also be receiving frames with a destination
Ethernet address of 01:00:5e:00:01:01. In this case, the packet will be discarded
by the perfect filtering in the IP layer.

2. A host running an application that has joined some multicast group whose
corresponding Ethernet address just happens to be one that the interface receives
when it is programmed to receive 01:00:5e:00:01:01. (i.e., the interface card
performs imperfect filtering). This frame will be discarded either by the datalink
layer or by the IP layer.

3. A packet destined to the same group, 224.0.1.1, but a different port, say 4000. The
rightmost host in Figure 21.4 still receives the packet, which is accepted by the IP
layer, but assuming a socket does not exist that has bound port 4000, the packet
will be discarded by the UDP layer.

This demonstrates that for a process to receive a multicast datagram, the process
must join the group and bind the port.

[ Team LiB ]

Page 645

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

21.4 Multicasting on a WAN
Multicasting on a single LAN, as discussed in the previous section, is simple. One host
sends a multicast packet and any interested host receives the packet. The benefit of
multicasting over broadcasting is reducing the load on all the hosts not interested in the
multicast packets.

Multicasting is also beneficial on WANs. Consider the WAN shown in Figure 21.5, which
shows five LANs connected with five multicast routers.

Figure 21.5. Five LANs connected with five multicast routers.

Next, assume that some program is started on five of the hosts (say a program that listens
to a multicast audio session) and those five programs join a given multicast group. Each of
the five hosts then joins that multicast group. We also assume that the multicast routers
are all communicating with their neighbor multicast router using a multicast routing
protocol, which we designate as just MRP. We show this in Figure 21.6.

Figure 21.6. Five hosts join a multicast group on a WAN.

When a process on a host joins a multicast group, that host sends an IGMP message to any
attached multicast routers telling them that the host has just joined that group. The
multicast routers then exchange this information using the MRP so that each multicast
router knows what to do if it receives a packet destined to the multicast address.

Multicast routing is still a research topic and could easily consume a book on its own.

We now assume that a process on the host at the top left starts sending packets destined
to the multicast address. Say this process is sending the audio packets that the multicast
receivers are waiting to receive. We show these packets in Figure 21.7.

Page 646

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


Figure 21.7. Sending multicast packets on a WAN.

We can follow the steps taken as the multicast packets go from the sender to all the
receivers:

 The packets are multicast on the top left LAN by the sender. Receiver H1 receives
these (since it has joined the group) as does MR1 (since a multicast router must
receive all multicast packets).

 MR1 forwards the multicast packet to MR2, because the MRP has informed MR1 that
MR2 needs to receive packets destined to this group.

 MR2 multicasts the packet on to its attached LAN, since hosts H2 and H3 belong to
the group. It also makes a copy of the packet and sends it to MR3.

Making a copy of the packet, as MR2 does here, is something unique to multicast
forwarding. A unicast packet is never duplicated as it is forwarded by routers.

 MR3 sends the multicast packet to MR4, but MR3 does not multicast a copy on its
attached LAN because we assume no host on the LAN has joined the group.

 MR4 multicasts the packet onto its attached LAN, since hosts H4 and H5 belong to
the group. It does not make a copy and send it to MR5 because none of the hosts on
MR5's attached LAN belong to the group and MR4 knows this based on the multicast
routing information it has exchanged with MR5.

Two less desirable alternatives to multicasting on a WAN are broadcast flooding and
sending individual copies to each receiver. In the first case, the packets would be
broadcast by the sender, and each router would broadcast the packets out each of its
interfaces, except the arriving interface. It should be obvious that this increases the
number of uninterested hosts and routers that must deal with the packet.

In the second case, the sender must know the IP address of all the receivers and send
each one a copy. With the five receivers we show in Figure 21.7, this would require five
packets on the sender's LAN, four packets going from MR1 to MR2, and two packets going
from MR2 to MR3 to MR4. Now just imagine the situation with a million receivers!

[ Team LiB ]

Page 647

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

21.5 Source-Specific Multicast
Multicasting on a WAN has been difficult to deploy for several reasons. The biggest problem
is that the MRP, described in Section 21.4, needs to get the data from all the senders,
which may be located anywhere in the network, to all the receivers, which may similarly be
located anywhere. Another large problem is multicast address allocation: There are not
enough IPv4 multicast addresses to statically assign them to everyone who wants one, as
is done with unicast addresses. To send wide-area multicast and not conflict with other
multicast senders, you need a unique address, but there is not yet a global multicast
address allocation mechanism.

Source-specific multicast, or SSM [Holbrook and Cheriton 1999], provides a pragmatic
solution to these problems. It combines the group address with a system's source address,
which solves the problems as follows:

 The receivers supply the sender's source address to the routers as part of joining
the group. This removes the rendezvous problem from the network, as the network
now knows exactly where the sender is. However, it retains the scaling properties of
not requiring the sender to know who all the receivers are. This simplifies multicast
routing protocols immensely.

 It redefines the identifier from simply being a multicast group address to being a
combination of a unicast source and multicast destination (which SSM now calls a 
channel. This means that the source may pick any multicast address since it
becomes the (source, destination) combination that must be unique, and the source
already makes it unique. An SSM session is the combination of source, destination,
and port.

SSM also provides a certain amount of anti-spoofing, that is, it is harder for source 2 to
transmit on source 1's channel since source 1's channel includes source 1's source address.
Spoofing is still possible, of course, but is much harder.

[ Team LiB ]

Page 648

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

21.6 Multicast Socket Options
The API support for traditional multicasting requires only five new socket options.
Source-filtering support, which is required for SSM, adds four more. Figure 21.8 shows the
three nonmembership-related socket options, plus the datatype of the argument expected
in the call to getsockopt or setsockopt. Figure 21.9 shows the six membership-related
socket options for IPv4, IPv6, and the IP version-independent API. A pointer to a variable
of the datatype shown is the fourth argument to getsockopt and setsockopt. All nine of
these options are valid with setsockopt, but the six that join and leave a multicast group
or source are not allowed with getsockopt.

Figure 21.8. Multicast socket options.

Figure 21.9. Multicast group membership socket options.

The IPv4 TTL and loopback options take a u_char argument, while the IPv6 hop limit and
loopback options take an int and u_int argument, respectively. A common programming
error with the IPv4 multicast options is to call setsockopt with an int argument to specify
the TTL or loopback (which is not allowed; pp. 354 355 of TCPv2), since most of the other
socket options in Figure 7.1 have integer arguments. The change with IPv6 makes them
more consistent with other options.

We now describe each of these nine socket options in more detail. Notice that the nine
options are conceptually identical between IPv4 and IPv6; only the name and argument
type are different.

IP_ADD_MEMBERSHIP, IPV6_JOIN_GROUP, MCAST_JOIN_GROUP

Join an any-source multicast group on a specified local interface. We specify the local
interface with one of its unicast addresses for IPv4 or with the interface index for IPv6 and
the protocol-independent API. The following three structures are used when joining or
leaving a group:

struct ip_mreq {

  struct in_addr   imr_multiaddr;    /*  IPv4 class D multicast addr */

Page 649

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


  struct in_addr   imr_interface;    /*  IPv4 addr of local interface */

};

struct ipv6_mreq {

  struct in6_addr  ipv6mr_multiaddr; /*  IPv6 multicast addr */

  unsigned int     ipv6mr_interface; /*  interface index, or 0 */

};

struct group_req {

  unsigned int            gr_interface;    /* interface index, or 0 */

  struct sockaddr_storage gr_group;        /* IPv4 or IPv6 multicast addr */

}

If the local interface is specified as the wildcard address for IPv4 (INADDR_ANY) or as an
index of 0 for IPv6, then a single local interface is chosen by the kernel.

We say that a host belongs to a given multicast group on a given interface if one or more
processes currently belongs to that group on that interface.

More than one join is allowed on a given socket, but each join must be for a different
multicast address, or for the same multicast address but on a different interface from
previous joins for that address on this socket. This can be used on a multihomed host
where, for example, one socket is created and then for each interface, a join is performed
for a given multicast address.

Recall from Figure 21.3 that IPv6 multicast addresses have an explicit scope field as part of
the address. As we noted, IPv6 multicast addresses that differ only in scope represent
different groups. Therefore, if an implementation of NTP wanted to receive all NTP packets,
regardless of scope, it would have to join ff01::101 (interface-local), ff02::101
(link-local), ff05::101 (site-local), ff08::101 (organization-local), and ff0e::101 (global).
All the joins could be performed on a single socket, and the IPV6_PKTINFO socket option
could be set (Section 22.8) to have recvmsg return the destination address of each
datagram.

The IP protocol-independent socket option (MCAST_JOIN_GROUP) is the same as the IPv6
option except that it uses a sockaddr_storage instead of in6_addr to pass the group
address to the kernel. A sockaddr_storage (Figure 3.5) is large enough to store any type
of address the system supports.

Most implementations have a limit on the number of joins that are allowed per socket. This
limit is specified as IP_MAX_MEMBERSHIPS (20 for Berkeley-derived implementations), but
some implementations have lifted this limitation or raised the maximum.

When the interface on which to join is not specified, Berkeley-derived kernels look up the
multicast address in the normal IP routing table and use the resulting interface (p. 357 of
TCPv2). Some systems install a route for all multicast addresses (that is, a route with a
destination of 224.0.0.0/8 for IPv4) upon initialization to handle this scenario.

The change was made with the IPv6 and protocol-independent options to use an interface
index to specify the interface instead of the local unicast address that is used with IPv4 to
allow joins on unnumbered interfaces and tunnel endpoints.

The original IPv6 multicast API definition used IPV6_ADD_MEMBERSHIP instead of
IPV6_JOIN_GROUP. The API is otherwise the same. Our mcast_join function described later
hides this difference.

IP_DROP_MEMBERSHIP, IPV6_LEAVE_GROUP, MCAST_LEAVE_GROUP

Leave an any-source multicast group on a specified local interface. The same structures
that we just showed for joining a group are used with this socket option. If the local

Page 650

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


interface is not specified (that is, the value is INADDR_ANY for IPv4 or it has an interface
index of 0 for IPv6), the first matching multicasting group membership is dropped.

If a process joins a group but never explicitly leaves the group, when the socket is closed
(either explicitly or on process termination), the membership is dropped automatically. It
is possible for multiple sockets on a host to each join the same group, in which case, the
host remains a member of that group until the last socket leaves the group.

The original IPv6 multicast API definition used IPV6_DROP_MEMBERSHIP instead of
IPV6_LEAVE_GROUP. The API is otherwise the same. Our mcast_leave function described
later hides this difference.

IP_BLOCK_SOURCE, MCAST_BLOCK_SOURCE

Block receipt of traffic on this socket from a source given an existing any-source group
membership on a specified local interface. If all joined sockets have blocked the same
source, the system can inform routers that this traffic is unwanted, possibly affecting
multicast routing in the network. It can be used to ignore traffic from rogue senders, for
example. We specify the local interface with one of its unicast addresses for IPv4 or with
the interface index for the protocol-independent API. The following two structures are used
when blocking or unblocking a source:

struct ip_mreq_source {

  struct in_addr   imr_multiaddr;        /* IPv4 class D multicast addr */

  struct in_addr   imr_sourceaddr;       /* IPv4 source addr */

  struct in_addr   imr_interface;        /* IPv4 addr of local interface */

};

struct group_source_req {

  unsigned int            gsr_interface; /* interface index, or 0 */

  struct sockaddr_storage gsr_group;     /* IPv4 or IPv6 multicast addr */

  struct sockaddr_storage gsr_source;    /* IPv4 or IPv6 source addr */

}

If the local interface is specified as the wildcard address for IPv4 (INADDR_ANY) or as an
index of 0 for the protocol-independent API, then the local interface is chosen by the kernel
to match the first membership on this socket for the given group.

The block source request modifies an existing group membership, so the group must have
already been joined on the specified interface with the IP_ADD_MEMBERSHIP,
IPV6_JOIN_GROUP, or MCAST_JOIN_GROUP option.

IP_UNBLOCK_SOURCE, MCAST_UNBLOCK_SOURCE

Unblock a previously blocked source. The arguments must be the same as a previous 
IP_BLOCK_SOURCE or MCAST_BLOCK_SOURCE request on this socket.

If the local interface is specified as the wildcard address for IPv4 (INADDR_ANY) or as an
index of 0 for the protocol-independent API, then the first matching blocked source is
unblocked.

IP_ADD_SOURCE_MEMBERSHIP, MCAST_JOIN_SOURCE_GROUP

Join a source-specific group on a specified local interface. The same structures that we just
showed for blocking or unblocking sources are used with this socket option. The group
must not have already been joined using the anysource interface (IP_ADD_MEMBERSHIP,
IPV6_JOIN_GROUP, or MCAST_JOIN_GROUP).

Page 651

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


If the local interface is specified as the wildcard address for IPv4 (INADDR_ANY) or as an
index of 0 for the protocol-independent API, then the local interface is chosen by the
kernel.

IP_DROP_SOURCE_MEMBERSHIP, MCAST_LEAVE_SOURCE_GROUP

Leave a source-specific group on a specified local interface. The same structures that we
just showed for joining a source-specific group are used with this socket option. If the local
interface is not specified (that is, the value is INADDR_ANY for IPv4 or it has an interface
index of 0 for the protocol-independent API), the first matching source-specific
membership is dropped.

If a process joins a source-specific group but never explicitly leaves the group, when the
socket is closed (either explicitly or on process termination), the membership is dropped
automatically. It is possible for multiple processes on a host to each join the same
source-specific group, in which case, the host remains a member of that group until the
last process leaves the group.

IP_MULTICAST_IF, IPV6_MULTICAST_IF

Specify the interface for outgoing multicast datagrams sent on this socket. This interface is
specified as either an in_addr structure for IPv4 or an interface index for IPv6. If the value
specified is INADDR_ANY for IPv4 or is an interface index of 0 for IPv6, this removes any
interface previously assigned by this socket option and the system will choose the interface
each time a datagram is sent.

Be careful to distinguish between the local interface specified (or chosen) when a process
joins a group (the interface on which arriving multicast datagrams will be received) and
the local interface specified (or chosen) when a multicast datagram is output.

Berkeley-derived kernels choose the default interface for an outgoing multicast datagram
by searching the normal IP routing table for a route to the destination multicast address,
and the corresponding interface is used. This is the same technique used to choose the
receiving interface if the process does not specify one when joining a group. The
assumption is that if a route exists for a given multicast address (perhaps the default route
in the routing table), then the resulting interface should be used for input and output.

IP_MULTICAST_TTL, IPV6_MULTICAST_HOPS

Set the IPv4 TTL or the IPv6 hop limit for outgoing multicast datagrams. If this is not
specified, both will default to 1, which restricts the datagram to the local subnet.

IP_MULTICAST_LOOP, IPV6_MULTICAST_LOOP

Enable or disable local loopback of multicast datagrams. By default, loopback is enabled: A
copy of each multicast datagram sent by a process on the host will also be looped back and
processed as a received datagram by that host, if the host belongs to that multicast group
on the outgoing interface.

This is similar to broadcasting, where we saw that broadcasts sent on a host are also
processed as a received datagram on that host (Figure 20.4). (With broadcasting, there is
no way to disable this loopback.) This means that if a process belongs to the multicast
group to which it is sending datagrams, it will receive its own transmissions.

The loopback that is being described here is an internal loopback performed at the IP layer
or higher. Should the interface hear its own transmissions, RFC 1112 [Deering 1989]
requires that the driver discard these copies. This RFC also states that the loopback option
defaults to ON as "a performance optimization for upper-layer protocols that restrict the
membership of a group to one process per host (such as a routing protocol)."

Page 652

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


The first six pairs of socket options (ADD_MEMBERSHIP/JOIN_GROUP,
DROP_MEMBERSHIP/LEAVE_GROUP, BLOCK_SOURCE, UNBLOCK_SOURCE,
ADD_SOURCE_MEMBERSHIP/JOIN_SOURCE_GROUP, and
DROP_SOURCE_MEMBERSHIP/LEAVE_SOURCE_GROUP) affect the receiving of multicast
datagrams, while the last three pairs affect the sending of multicast datagrams (outgoing
interface, TTL or hop limit, and loopback). We mentioned earlier that nothing special is
required to send a multicast datagram. If no multicast socket option is specified before
sending a multicast datagram, the interface for the outgoing datagram will be chosen by
the kernel, the TTL or hop limit will be 1, and a copy will be looped back.

To receive a multicast datagram, a process must join the multicast group and it must also 
bind a UDP socket to the port number that will be used as the destination port number for
datagrams sent to the group. The two operations are distinct and both are required. Joining
the group tells the host's IP layer and datalink layer to receive multicast datagrams sent to
that group. Binding the port is how the application specifies to UDP that it wants to receive
datagrams sent to that port. Some applications also bind the multicast address to the
socket, in addition to the port. This prevents any other datagrams that might be received
for that port to other unicast, broadcast, or multicast addresses from being delivered to the
socket.

Historically, the multicast service interface only required that some socket on the host join
the multicast group, not necessarily the socket that binds the port and then receives the
multicast datagrams. There is the potential, however, with these implementations for
multicast datagrams to be delivered to applications that are not multicast-aware. Newer
multicast kernels now require that the process bind the port and set any multicast socket
option for the socket, the latter being an indication that the application is multicast-aware.
The most common multicast socket option to set is a join of the group. Solaris differs
slightly and only delivers received multicast datagrams to a socket that has both joined the
group and bound the port. For portability, all multicast applications should join the group
and bind the port.

The newer multicast service interface requires that the IP layer only deliver multicast
packets to a socket if that socket has joined the applicable group and/or source. This was
introduced with IGMPv3 (RFC 3376 [Cain et al. 2002]) to permit source filtering and
source-specific multicast. This reinforces the requirement to join the group, but relaxes the
requirement to bind to the group address. However, for maximum portability to both the
old and new multicast service interfaces, applications should both join the group and bind
to the group address.

Some older multicast-capable hosts do not allow the bind of a multicast address to a
socket. For portability, an application may wish to ignore a bind error for a multicast
address and try again using INADDR_ANY or in6addr_any.

[ Team LiB ]

Page 653

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

21.7 mcast_join and Related Functions
Although the multicast socket options for IPv4 are similar to the multicast socket options
for IPv6, there are enough differences that protocol-independent code using multicasting
becomes complicated with lots of #ifdefs. A better solution is to hide the differences
within the following eight functions:

#include "unp.h"

int mcast_join(int sockfd, const struct sockaddr *grp, socklen_t grplen, const
char *ifname, u_int ifindex);

int mcast_leave(int sockfd, const struct sockaddr *grp, socklen_t grplen);

int mcast_block_source(int sockfd, const struct sockaddr *src, socklen_t srclen,
const struct sockaddr *grp, socklen_t grplen);

int mcast_unblock_source(int sockfd, const struct sockaddr *src, socklen_t
srclen, const struct sockaddr *grp, socklen_t grplen);

int mcast_join_source_group(int sockfd, const struct sockaddr *src, socklen_t
srclen, const struct sockaddr *grp, socklen_t grplen, const char *ifname, u_int
ifindex);

int mcast_leave_source_group(int sockfd, const struct sockaddr *src, socklen_t
srclen, const struct sockaddr *grp, socklen_t grplen);

int mcast_set_if(int sockfd, const char *ifname, u_int ifindex);

int mcast_set_loop(int sockfd, int flag);

int mcast_set_ttl(int sockfd, int ttl);

All above return: 0 if OK,  1 on error

int mcast_get_if(int sockfd);

Returns: non-negative interface index if OK,  1 on error

int mcast_get_loop(int sockfd);

Returns: current loopback flag if OK,  1 on error

int mcast_get_ttl(int sockfd);

Returns: current TTL or hop limit if OK,  1 on error

mcast_join joins the any-source multicast group whose IP address is contained within the
socket address structure pointed to by grp, and whose length is specified by grplen. We

Page 654

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


can specify the interface on which to join the group by either the interface name (a
non-null ifname) or a nonzero interface index (ifindex). If neither is specified, the kernel
chooses the interface on which the group is joined. Recall that with IPv6, the interface is
specified to the socket option by its index. If a name is specified for an IPv6 socket, we
call if_nametoindex to obtain the index. With the IPv4 socket option, the interface is
specified by its unicast IP address. If a name is specified for an IPv4 socket, we call ioctl
with a request of SIOCGIFADDR to obtain the unicast IP address for the interface. If an index
is specified for an IPv4 socket, we first call if_indextoname to obtain the name and then
process the name as just described.

An interface name, such as le0 or ether0, is normally the way users specify interfaces, and
not with either the IP address or the index. tcpdump, for example, is one of the few
programs that lets the user specify an interface, and its -i option takes an interface name
as the argument.

mcast_leave leaves the multicast group whose IP address is contained within the socket
address structure pointed to by grp. Note that mcast_leave does not take an interface
specification; it always deletes the first matching membership. This simplifies the library
API, but means that programs that require direct control of per-interface membership need
to use the setsockopt API directly.

mcast_block_source blocks reception on the given socket of the source and group whose
IP addresses are contained within the socket address structures pointed to by src and grp,
respectively, and whose lengths are specified by srclen and grplen. mcast_join must have
already been called on this socket for the given group.

mcast_unblock_source unblocks reception of traffic from the given source to the given
group. The src, srclen, grp, and grplen arguments must be the same as a previous call to
mcast_block_source.

mcast_join_source_group joins the source-specific group where the source and group IP
addresses are contained within the socket address structures pointed to by src and grp,
respectively, and whose lengths are specified by srclen and grplen. We can specify the
interface on which to join the group by either the interface name (a non-null ifname) or a
nonzero interface index (ifindex). If neither is specified, the kernel chooses the interface on
which the group is joined.

mcast_leave_source_group leaves the source-specific multicast group whose source and
group IP addresses are contained within the socket address structures pointed to by src
and grp, respectively, and whose lengths are specified by srclen and grplen. As with
mcast_leave, mcast_leave_source_group does not take an interface specification; it
always deletes the first matching membership.

mcast_set_if sets the default interface index for outgoing multicast datagrams. If ifindex
is greater than 0, then it specifies the interface index; otherwise, if ifname is nonnull, then
it specifies the interface name. For IPv6, the name is mapped to an index using 
if_nametoindex. For IPv4, the mapping from either a name or an index into the interface's
unicast IP address is done as described for mcast_join.

mcast_set_loop sets the loopback option to either 0 or 1, and mcast_set_ttl sets either
the IPv4 TTL or the IPv6 hop limit. The three mcast_get_XXX functions return the
corresponding value.

Example: mcast_join Function
Figure 21.10 shows the first third of our mcast_join function. This third shows how
straightforward the protocol-independent API can be.

Handle index

Page 655

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


9 17 If the caller supplied an index, then we just use it directly. Otherwise, if the caller
supplied an interface name, the index is obtained by calling if_nametoindex. Otherwise,
the interface is set to 0, telling the kernel to choose the interface.

Copy address and call setsockopt

18 22 The caller's socket address is copied directly into the request's group field. Recall
that the group field is a sockaddr_storage, so it is big enough to handle any socket
address type the system supports. However, to guard against buffer overruns caused by
sloppy coding, we check the sockaddr size and return EINVAL if it is too large.

23 24 setsockopt performs the join. The level argument to setsockopt is determined
using the family of the group address and our family_to_level function. Some systems
support a mismatch between level and the socket's address family, for instance, using
IPPROTO_IP with MCAST_JOIN_GROUP, even with an AF_INET6 socket, but not all do, so we
turn the address family into the appropriate level. We do not show this trivial function, but
the source code is freely available (see the Preface).

Figure 21.10 Join a multicast group: IP version-independent.

lib/mcast_join.c

 1 #include    "unp.h"

 2 #include    <net/if.h>

 3 int

 4 mcast_join(int sockfd, const SA *grp, socklen_t grplen,

 5            const char *ifname, u_int ifindex)

 6 {

 7 #ifdef MCAST_JOIN_GROUP

 8     struct group_req req;

 9     if (ifindex > 0) {

10         req.gr_interface = ifindex;

11     } else if (ifname != NULL) {

12         if ( (req.gr_interface = if_nametoindex(ifname)) == 0) {

13             errno = ENXIO;      /* i/f name not found */

14             return (-1);

15         }

16     } else

17         req.gr_interface = 0;

18     if (grplen > sizeof(req.gr_group)) {

19         errno = EINVAL;

20         return -1;

21     }

22     memcpy(&req.gr_group, grp, grplen);

23     return (setsockopt(sockfd, family_to_level(grp->sa_family),

24                        MCAST_JOIN_GROUP, &req, sizeof(req)));

25 #else

Figure 21.11 shows the second third of mcast_join, which handles IPv4 sockets.

Handle index

33 38 The IPv4 multicast address in the socket address structure is copied into an ip_mreq
structure. If an index was specified, if_indextoname is called, storing the name into our
ifreq structure. If this succeeds, we branch ahead to issue the ioctl.

Handle name

39 46 The caller's name is copied into an ifreq structure, and an ioctl of SIOCGIFADDR

Page 656

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


returns the unicast address associated with this name. Upon success the IPv4 address is
copied into the imr_interface member of the ip_mreq structure.

Specify default

47 48 If an index was not specified and a name was not specified, the interface is set to
the wildcard address, telling the kernel to choose the interface.

49 50 setsockopt performs the join.

Figure 21.11 Join a multicast group: IPv4 socket.

lib/mcast_join.c

26   switch (grp->sa_family) {

27   case AF_INET:{

28           struct ip_mreq mreq;

29           struct ifreq ifreq;

30           memcpy(&mreq.imr_multiaddr,

31                  &((const struct sockaddr_in *) grp)->sin_addr,

32                  sizeof(struct in_addr));

33           if (ifindex > 0) {

34               if (if_indextoname(ifindex, ifreq.ifr_name) == NULL) {

35                   errno = ENXIO; /*  i/f index not found */

36                   return (-1);

37               }

38               goto doioctl;

39           } else if (ifname != NULL) {

40               strncpy(ifreq.ifr_name, ifname, IFNAMSIZ);

41             doioctl:

42               if (ioctl(sockfd, SIOCGIFADDR, &ifreq) < 0)

43                   return (-1);

44               memcpy(&mreq.imr_interface,

45                      &((struct sockaddr_in *) &ifreq.ifr_addr)->sin_addr,

46                      sizeof(struct in_addr));

47           } else

48               mreq.imr_interface.s_addr = htonl(INADDR_ANY);

49           return (setsockopt(sockfd, IPPROTO_IP, IP_ADD_MEMBERSHIP,

50                              &mreq, sizeof(mreq)));

51      }

The final portion of the function, which handles IPv6 sockets, is shown in Figure 21.12.

Copy address

55 57 First the IPv6 multicast address is copied from the socket address structure into the
ipv6_mreq structure.

Handle index, name, or default

58 66 If an index was specified, it is stored in the ipv6mr_interface member; if a name
was specified, the index is obtained by calling if_nametoindex; otherwise, the interface
index is set to 0 for setsockopt, telling the kernel to choose the interface.

67 68 The group is joined.

Figure 21.12 Join a multicast group: IPv6 socket.

Page 657

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


lib/mcast_join.c

52 #ifdef  IPV6

53     case AF_INET6:{

54             struct ipv6_mreq mreq6;

55             memcpy(&mreq6.ipv6mr_multiaddr,

56                    &((const struct sockaddr_in6 *) grp) ->sin6_addr,

57                    sizeof(struct in6_addr));

58             if (ifindex > 0) {

59                 mreq6.ipv6mr_interface = ifindex;

60             } else if (ifname != NULL) {

61                 if ( (mreq6.ipv6mr_interface = if_nametoindex(ifname)) == 0)

{

62                     errno = ENXIO;  /* i/f name not found */

63                     return (-1);

64                 }

65             } else

66                 mreq6.ipv6mr_interface = 0;

67             return (setsockopt(sockfd, IPPROTO_IPV6, IPV6_JOIN_GROUP,

68                                &mreq6, sizeof(mreq6)));

69         }

70 #endif

71     default:

72         errno = EAFNOSUPPORT;

73         return (-1);

74     }

75 #endif

76 }

Example: mcast_set_loop Function
Figure 21.13 shows our mcast_set_loop function.

Since the argument is a socket descriptor and not a socket address structure, we call our 
sockfd_to_family function to obtain the address family of the socket. The appropriate
socket option is set.

We do not show the source code for all remaining mcast_XXX functions, but it is freely
available (see the Preface).

Figure 21.13 Set the multicast loopback option.

lib/mcast_set_loop.c

 1 #include    "unp.h"

 2 int

 3 mcast_set_loop(int sockfd, int onoff)

 4 {

 5     switch (sockfd_to_family(sockfd)) {

 6     case AF_INET:{

 7             u_char  flag;

 8             flag = onoff;

 9             return (setsockopt(sockfd, IPPROTO_IP, IP_MULTICAST_LOOP,

10                                &flag, sizeof(flag)));

Page 658

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


11         }

12 #ifdef  IPV6

13     case AF_INET6:{

14             u_int   flag;

15             flag = onoff;

16             return (setsockopt(sockfd, IPPROTO_IPV6, IPV6_MULTICAST_LOOP,

17                                &flag, sizeof(flag)));

18         }

19 #endif

20     default:

21         errno = EAFNOSUPPORT;

22         return (-1);

23     }

24 }

[ Team LiB ]

Page 659

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

21.8 dg_cli Function Using Multicasting
We modify our dg_cli function from Figure 20.5 by just removing the call to setsockopt.
As we said earlier, none of the multicast socket options needs to be set to send a multicast
datagram if the default settings for the outgoing interface, TTL, and loopback option are
acceptable. We run a modified UDP echo server that joins the allhosts group, then run our
program specifying the all-hosts group as the destination address.

macosx % udpcli01 224.0.0.1  

hi there  

from 172.24.37.78: hi there MacOS X

from 172.24.37.94: hi there FreeBSD

We get a response from both systems on the subnet. They are each running the multicast
echo server. Each reply is unicast because the source address of the request, which is used
by each server as the destination address of the reply, is a unicast address.

IP Fragmentation and Multicasts
We mentioned at the end of Section 20.4 that most systems do not allow the
fragmentation of a broadcast datagram as a policy decision. Fragmentation is fine to use
with multicasting, as we can easily verify using the same file with a 2,000-byte line.

     macosx % udpcli01 224.0.0.1 < 2000line

     from 172.24.37.78: xxxxxxxxxx[...]

     from 172.24.37.94: xxxxxxxxxx[...]

[ Team LiB ]

Page 660

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

21.9 Receiving IP Multicast Infrastructure Session
Announcements
The IP multicast infrastructure is the portion of the Internet with inter-domain multicast
enabled. Multicast is not enabled on the entire Internet; the IP multicast infrastructure
started life as the "MBone" in 1992 as an overlay network and moved toward being
deployed as part of the Internet infrastructure in 1998. Multicast is widely deployed within
enterprises, but being part of the inter-domain IP multicast infrastructure is less common.

To receive a multimedia conference on the IP multicast infrastructure, a site needs to know
only the multicast address of the conference and the UDP ports for the conference's data
streams (audio and video, for example). The Session Announcement Protocol, or SAP (RFC
2974 [Handley, Perkins, and Whelan 2000]), describes the way this is done (the packet
headers and frequency with which these announcements are multicast to the IP multicast
infrastructure), and the Session Description Protocol, or SDP (RFC 2327 [Handley and
Jacobson 1998]), describes the contents of these announcements (how the multicast
addresses and UDP port numbers are specified). A site wishing to announce a session on
the IP multicast infrastructure periodically sends a multicast packet containing a
description of the session to a well-known multicast group and UDP port. Sites on the IP
multicast infrastructure run a program named sdr to receive these announcements. This
program does a lot: Not only does it receive session announcements, but it also provides
an interactive user interface that displays the information and lets the user send
announcements.

In this section, we will develop a simple program that only receives these session
announcements to show an example of a simple multicast receiving program. Our goal is to
show the simplicity of a multicast receiver, not to delve into the details of this one
application.

Figure 21.14 shows our main program that receives periodic SAP/SDP announcements.

Well-Known name and Well-Known port
2 3 The multicast address assigned for SAP announcements is 224.2.127.254 and its name
is sap.mcast.net. All the well-known multicast addresses (see
http://www.iana.org/assignments/multicast-addresses) appear in the DNS under the
mcast.net hierarchy. The well-known UDP port is 9875.

Figure 21.14 main program to receive SAP/SDP announcements.

mysdr/main.c

 1 #include    "unp.h"

 2 #define SAP_NAME     "sap.mcast.net" /* default group name and port */

 3 #define SAP_PORT     "9875"

 4 void     loop(int, socklen_t);

 5 int

 6 main(int argc, char **argv)

 7 {

 8     int     sockfd;

 9     const int on = 1;

10     socklen_t salen;

11     struct sockaddr *sa;

Page 661

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.iana.org/assignments/multicast-addresses
http://www.iana.org/assignments/multicast-addresses
http://www.processtext.com/abcchm.html


12     if (argc == 1)

13         sockfd = Udp_client(SAP_NAME, SAP_PORT, (void **) &sa, &salen);

14     else if (argc == 4)

15         sockfd = Udp_client(argv[1], argv[2], (void **) &sa, &salen);

16     else

17         err_quit("usage: mysdr <mcast-addr> <port#> <interface-name>");

18     Setsockopt(sockfd, SOL_SOCKET, SO_REUSEADDR, &on, sizeof(on));

19     Bind(sockfd, sa, salen);

20     Mcast_join(sockfd, sa, salen, (argc == 4) ? argv[3] : NULL, 0);

21     loop(sockfd, salen);        /* receive and print */

22     exit(0);

23 }

Create UDP socket
12 17 We call our udp_client function to look up the name and port, and it fills in the
appropriate socket address structure. We use the defaults if no command-line arguments
are specified; otherwise, we take the multicast address, port, and interface name from the
command-line arguments.

bind port
18 19 We set the SO_REUSEADDR socket option to allow multiple instances of this program
to run on a host, and bind the port to the socket. By binding the multicast address to the
socket, we prevent the socket from receiving any other UDP datagrams that may be
received for the port. Binding this multicast address is not required, but it provides filtering
by the kernel of packets in which we are not interested.

Join multicast group
20 We call our mcast_join function to join the group. If the interface name was specified
as a command-line argument, it is passed to our function; otherwise, we let the kernel
choose the interface on which the group is joined.

21 We call our loop function, shown in Figure 21.15, to read and print all the
announcements.

Figure 21.15 Loop that receives and prints SAP/SDP announcements.

mysdr/loop.c

 1 #include    "mysdr.h"

 2 void

 3 loop(int sockfd, socklen_t salen)

 4 {

 5     socklen_t len;

 6     ssize_t n;

 7     char   *p;

 8     struct sockaddr *sa;

 9     struct sap_packet {

10         uint32_t sap_header;

11         uint32_t sap_src;

12         char    sap_data[BUFFSIZE];

13     } buf;

Page 662

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


14     sa = Malloc(salen);

15     for ( ; ; ) {

16         len = salen;

17         n = Recvfrom(sockfd, &buf, sizeof(buf) - 1, 0, sa, &len);

18         ((char *) &buf)[n] = 0; /* null terminate */

19         buf.sap_header = ntohl(buf.sap_header);

20         printf("From %s hash 0x%04x\n", Sock_ntop(sa, len),

21                buf.sap_header & SAP_HASH_MASK);

22         if (((buf.sap_header & SAP_VERSION_MASK) >> SAP_VERSION_SHIFT) > 1)

{

23             err_msg("... version field not 1 (0x%08x)", buf.sap_header);

24             continue;

25         }

26         if (buf.sap_header & SAP_IPV6) {

27             err_msg("... IPv6");

28             continue;

29         }

30         if (buf.sap_header & (SAP_DELETE | SAP_ENCRYPTED | SAP_COMPRESSED))

{

31             err_msg("... can't parse this packet type (0x%08x)",

32                     buf.sap_header);

33             continue;

34         }

35         p = buf.sap_data + ((buf.sap_header & SAP_AUTHLEN_MASK)

36                             >> SAP_AUTHLEN_SHIFT);

37         if (strcmp(p, "application/sdp") == 0)

38             p += 16;

39         printf("%s\n", p);

40     }

41 }

Packet format
9 13 sap_packet describes the SDP packet: a 32-bit SAP header, followed by a 32-bit
source address, followed by the actual announcement. The announcement is simply lines of
ISO 8859 1 text and should not exceed 1,024 bytes. Only one session announcement is
allowed in each UDP datagram.

Read UDP datagram, print sender and contents
15 21 recvfrom waits for the next UDP datagram destined to our socket. When one arrives,
we place a null byte at the end of the buffer, fix the byte order of the header field, and
print the source of the packet and SAP hash.

Check SAP header
22 34 We check the SAP header to see if it is a type that we handle. We don't handle SAP
packets with IPv6 addresses in the header, or compressed or encrypted packets.

Find beginning of announcement and print
35 39 We skip over any authentication data that may be present, skip over the packet
content type if it's present, and then print out the contents of the packet.

Figure 21.16 shows some typical output from our program.

Figure 21.16 Typical SAP/SDP announcement.

Page 663

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


freebsd % mysdr

From 128.223.83.33:1028 hash 0x0000

v=0

o=- 60345 0 IN IP4 128.223.214.198

s=UO Broadcast - NASA Videos - 25 Years of Progress

i=25 Years of Progress, parts 1-13. Broadcast with Cisco System's

 IP/TV using MPEG1 codec (6 hours 5 Minutes; repeats) More information

 about IP/TV and the client needed to view this program is available

 from http://videolab.uoregon.edu/download.html

u=http://videolab.uoregon.edu/

e=Hans Kuhn <multicast@lists.uoregon.edu>

p=Hans Kuhn <541/346-1758>

b=AS:1000

t=0 0

a=type:broadcast

a=tool:IP/TV Content Manager 3.2.24

a=x-iptv-file:1 name y:25yop1234567890123.mpg

m=video 63096 RTP/AVP 32 31 96

c=IN IP4 224.2.245.25/127

a=framerate:30

a=rtpmap:96 WBIH/90000

a=x-iptv-svr:video blaster2.uoregon.edu file 1 loop

m=audio 31954 RTP/AVP 14 96 0 3 5 97 98 99 100 101 102 10 11 103 104 105 106

c=IN IP4 224.2.216.85/127

a=rtpmap:96 X-WAVE/8000

a=rtpmap:97 L8/8000/2

a=rtpmap:98 L8/8000

a=rtpmap:99 L8/22050/2

a=rtpmap:100 L8/22050

a=rtpmap:101 L8/11025/2

a=rtpmap:102 L8/11025

a=rtpmap:103 L16/22050/2

a=rtpmap:104 L16/22050

a=rtpmap:105 L16/22050/2

a=rtpmap:106 L16/11025

a=x-iptv-svr:audio blaster2.uoregon.edu file 1 loop

This announcement describes the NASA coverage on the IP Multicast Infrastructure of a
space shuttle mission. The SDP session description consists of numerous lines of the form

type=value

where the type is always one character and is case-significant. The value is a structured
text string that depends on the type. Spaces are not allowed around the equals sign. v=0 is
the version.

0= is the origin. - indicates no particular username, 60345 is the session ID, 0 is the
version number for this announcement, IN is the network type, IP4 is the address type,
and 128.223.214.198 is the address. The five-tuple consisting of the username, session
ID, network type, address type, and address form a globally unique identifier for the
session.

s= defines the session name, and i= is information about the session. We have wrapped
the latter every 80 characters. u= provides a Uniform Resource Identifier (URI) for more
information about the session, and e= and p= provide the email address and phone number
of the person responsible for the conference.

b= provides a measure of the expected bandwidth for this session. t= provides the starting
time and stopping time, both in NTP units, which are seconds since January 1, 1900, UTC.
In this case, this session is "permanent;" having no particular start or stop time, so both

Page 664

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://videolab.uoregon.edu/download.html
http://www.processtext.com/abcchm.html


start and stop time are specified as 0.

The a= lines are attributes; either of the session, if they appear before any m= lines, or of
the media, if they appear after a m= line.

The m= lines are the media announcements. The first of these two lines specifies that the
video is on port 63096 and its format is RTP, using the Audio/Video Profile or AVP, with
possible payload types 32, 31 or 96 (which are MPEG, H.261, and WBIH, respectively).
The c= line that follows provides the connection information, which in this example,
specifies that it is IP-based, using IPv4, with a multicast address of 224.2.245.25 and a
TTL of 127. Although these are separated by a slash, like the CIDR prefix format, they are
not meant to represent a prefix and a mask.

The next m= line specifies that the audio is on port 31954 and may be in any of a number
of RTP/AVP payload types, some of which are standard and some of which are specified
below using a=rtpmap: attributes. The c= line that follows provides the connection
information for the audio, which in this example specifies that it is IP-based, using IPv4,
with a multicast address of 224.2.216.85 and a TTL of 127.

[ Team LiB ]

Page 665

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

21.10 Sending and Receiving
The IP multicast infrastructure session announcement program in the previous section only
received multicast datagrams. We will now develop a simple program that sends and
receives multicast datagrams. Our program consists of two parts. The first part sends a
multicast datagram to a specific group every five seconds and the datagram contains the
sender's hostname and process ID. The second part is an infinite loop that joins the
multicast group to which the first part is sending and prints every received datagram
(containing the hostname and process ID of the sender). This allows us to start the
program on multiple hosts on a LAN and easily see which host is receiving datagrams from
which senders.

Figure 21.17 shows the main function for our program.

Figure 21.17 Create sockets, fork, and start sender and receiver.

mcast/main.c

 1 #include    "unp.h"

 2 void    recv_all(int, socklen_t);

 3 void    send_all(int, SA *, socklen_t);

 4 int

 5 main(int argc, char **argv)

 6 {

 7     int     sendfd, recvfd;

 8     const int on = 1;

 9     socklen_t salen;

10     struct sockaddr *sasend, *sarecv;

11     if (argc != 3)

12         err_quit("usage: sendrecv <IP-multicast-address> <port#>");

13     sendfd = Udp_client(argv[1], argv[2], (void **) &sasend, &salen);

14     recvfd = Socket(sasend->sa_family, SOCK_DGRAM, 0);

15     Setsockopt(recvfd, SOL_SOCKET, SO_REUSEADDR, &on, sizeof(on));

16     sarecv = Malloc(salen);

17     memcpy(sarecv, sasend, salen);

18     Bind(recvfd, sarecv, salen);

19     Mcast_join(recvfd, sasend, salen, NULL, 0);

20     Mcast_set_loop(sendfd, 0);

21     if (Fork() == 0)

22         recv_all(recvfd, salen);    /* child -> receives */

23     send_all(sendfd, sasend, salen);    /* parent -> sends */

24 }

We create two sockets, one for sending and one for receiving. We want the receiving socket
to bind the multicast group and port, say 239.255.1.2 port 8888. (Recall that we could
just bind the wildcard IP address and port 8888, but binding the multicast address
prevents the socket from receiving any other datagrams that might arrive destined for port

Page 666

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


8888.) We then want the receiving socket to join the multicast group. The sending socket
will send datagrams to this same multicast address and port, say 239.255.1.2 port 8888.
But if we try to use a single socket for sending and receiving, the source protocol address
is 239.255.1.2:8888 from the bind (using netstat notation) and the destination protocol
address for the sendto is also 239.255.1.2:8888. However, now the source protocol
address that is bound to the socket becomes the source IP address of the UDP datagram,
and RFC 1122 [Braden 1989] forbids an IP datagram from having a source IP address that
is a multicast address or a broadcast address (see Exercise 21.2 also). Therefore, we must
create two sockets: one for sending and one for receiving.

Create sending socket
13 Our udp_client function creates the sending socket, processing the two command-line
arguments that specify the multicast address and port number. This function also returns a
socket address structure that is ready for calls to sendto along with the length of this
socket address structure.

Create receiving socket and bind multicast address and port
14 18 We create the receiving socket using the same address family that was used for the
sending socket. We set the SO_REUSEADDR socket option to allow multiple instances of this
program to run at the same time on a host. We then allocate room for a socket address
structure for this socket, copy its contents from the sending socket address structure
(whose address and port were taken from the command-line arguments), and bind the
multicast address and port to the receiving socket.

Join multicast group and turn off loopback
19 20 We call our mcast_join function to join the multicast group on the receiving socket
and our mcast_set_loop function to disable the loopback feature on the sending socket.
For the join, we specify the interface name as a null pointer and the interface index as 0,
telling the kernel to choose the interface.

fork and call appropriate functions
21 23 We fork and then the child is the receive loop and the parent is the send loop.

Our send_all function, which sends one multicast datagram every five seconds, is shown
in Figure 21.18. The main function passes as arguments the socket descriptor, a pointer to
a socket address structure containing the multicast destination and port, and the
structure's length.

Obtain hostname and form datagram contents
9 11 We obtain the hostname from the uname function and build the output line containing
it and the process ID.

Send datagram, then go to sleep
12 15 We send a datagram and then sleep for five seconds.

The recv_all function, which is the infinite receive loop, is shown in Figure 21.19.

Allocate socket address structure
9 A socket address structure is allocated to receive the sender's protocol address for each
call to recvfrom.

Page 667

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


Read and print datagrams
10 15 Each datagram is read by recvfrom, null-terminated, and printed.

Figure 21.18 Send a multicast datagram every five seconds.

mcast/send.c

 1 #include    "unp.h"

 2 #include    <sys/utsname.h>

 3 #define SENDRATE     5           /* send one datagram every five seconds */

 4 void

 5 send_all(int sendfd, SA *sadest, socklen_t salen)

 6 {

 7     char    line[MAXLINE];      /* hostname and process ID */

 8     struct utsname myname;

 9     if (uname(&myname) < 0)

10         err_sys("uname error");;

11     snprintf(line, sizeof(line), "%s, %d\n", myname.nodename, getpid());

12     for ( ; ; ) {

13         Sendto(sendfd, line, strlen(line), 0, sadest, salen);

14         sleep(SENDRATE);

15     }

16 }

Figure 21.19 Receive all multicast datagrams for a group we have
joined.

mcast/recv.c

 1 #include    "unp.h"

 2 void

 3 recv_all(int recvfd, socklen_t salen)

 4 {

 5     int     n;

 6     char    line[MAXLINE + 1];

 7     socklen_t len;

 8     struct sockaddr *safrom;

 9     safrom = Malloc(salen);

10     for ( ; ; ) {

11         len = salen;

12         n = Recvfrom(recvfd, line, MAXLINE, 0, safrom, &len);

13         line[n] = 0;            /* null terminate */

14         printf("from %s: %s", Sock_ntop(safrom, len), line);

15     }

16 }

Example
We run this program on our two systems, freebsd4 and macosx. We see that each system

Page 668

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


sees the packets that the other is sending.

freebsd4 % sendrecv 239.255.1.2 8888

from 172.24.37.78:51297: macosx, 21891

from 172.24.37.78:51297: macosx, 21891

from 172.24.37.78:51297: macosx, 21891

from 172.24.37.78:51297: macosx, 21891

macosx % sendrecv 239.255.1.2 8888

from 172.24.37.94.1215: freebsd4, 55372

from 172.24.37.94.1215: freebsd4, 55372

from 172.24.37.94.1215: freebsd4, 55372

from 172.24.37.94.1215: freebsd4, 55372

[ Team LiB ]

Page 669

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

21.11 Simple Network Time Protocol (SNTP)
NTP is a sophisticated protocol for synchronizing clocks across a WAN or a LAN, and can
often achieve millisecond accuracy. RFC 1305 [Mills 1992] describes the protocol in detail
and RFC 2030 [Mills 1996] describes SNTP, a simplified but protocol-compatible version
intended for hosts that do not need the complexity of a complete NTP implementation. It is
common for a few hosts on a LAN to synchronize their clocks across the Internet to other
NTP hosts and then redistribute this time on the LAN using either broadcasting or
multicasting.

In this section, we will develop an SNTP client that listens for NTP broadcasts or multicasts
on all attached networks and then prints the time difference between the NTP packet and
the host's current time-of-day. We do not try to adjust the time-of-day, as that takes
superuser privileges.

The file ntp.h, shown in Figure 21.20, contains some basic definitions of the NTP packet
format.

Figure 21.20 ntp.h header: NTP packet format and definitions.

ssntp/ntp.h

 1 #define JAN_1970    2208988800UL     /* 1970 - 1900 in seconds */

 2 struct l_fixedpt {               /* 64-bit fixed-point */

 3     uint32_t int_part;

 4     uint32_t fraction;

 5 };

 6 struct s_fixedpt {               /* 32-bit fixed-point */

 7     uint16_t int_part;

 8     uint16_t fraction;

 9 };

10 struct ntpdata {                 /* NTP header */

11     u_char  status;

12     u_char  stratum;

13     u_char  ppoll;

14     int     precision:8;

15     struct s_fixedpt distance;

16     struct s_fixedpt dispersion;

17     uint32_t refid;

18     struct l_fixedpt reftime;

19     struct l_fixedpt org;

20     struct l_fixedpt rec;

21     struct l_fixedpt xmt;

22 };

23 #define VERSION_MASK    0x38

24 #define MODE_MASK       0x07

25 #define MODE_CLIENT     3

26 #define MODE_SERVER     4

27 #define MODE_BROADCAST  5

2 22 1_fixedpt defines the 64-bit fixed-point values used by NTP for timestamps and
s_fixedpt defines the 32-bit fixed-point values that are also used by NTP. The ntpdata

Page 670

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


structure is the 48-byte NTP packet format.

Figure 21.21 shows the main function.

Get multicast IP address
12 14 When the program is executed, the user must specify the multicast address to join
as the command-line argument. With IPv4, this would be 224.0.1.1 or the name 
ntp.mcast.net. With IPv6, this would be ff05::101 for the site-local scope NTP. Our
udp_client function allocates space for a socket address structure of the correct type
(either IPv4 or IPv6) and stores the multicast address and port in that structure. If this
program is run on a host that does not support multicasting, any IP address can be
specified, as only the address family and port are used from this structure. Note that our 
udp_client function does not bind the address to the socket; it just creates the socket and
fills in the socket address structure.

Figure 21.21 main function.

ssntp/main.c

 1 #include    "sntp.h"

 2 int

 3 main(int argc, char **argv)

 4 {

 5     int     sockfd;

 6     char    buf[MAXLINE];

 7     ssize_t n;

 8     socklen_t salen, len;

 9     struct ifi_info *ifi;

10     struct sockaddr *mcastsa, *wild, *from;

11     struct timeval now;

12     if (argc != 2)

13         err_quit("usage: ssntp <IPaddress>");

14     sockfd = Udp_client(argv[1], "ntp", (void **) &mcastsa, &salen);

15     wild = Malloc(salen);

16     memcpy(wild, mcastsa, salen);   /* copy family and port */

17     sock_set_wild(wild, salen);

18     Bind(sockfd, wild, salen);  /* bind wildcard */

19 #ifdef  MCAST

20         /* obtain interface list and process each one */

21     for (ifi = Get_ifi_info(mcastsa->sa_family, 1); ifi != NULL;

22          ifi = ifi->ifi_next) {

23         if (ifi->ifi_flags & IFF_MULTICAST) {

24             Mcast_join(sockfd, mcastsa, salen, ifi->ifi_name, 0);

25             printf("joined %s on %s\n",

26                    Sock_ntop(mcastsa, salen), ifi->ifi_name);

27         }

28     }

29 #endif

30     from = Malloc(salen);

31     for ( ; ; ) {

32         len = salen;

33         n = Recvfrom(sockfd, buf, sizeof(buf), 0, from, &len);

Page 671

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


34         Gettimeofday(&now, NULL);

35         sntp_proc(buf, n, &now);

36     }

37 }

Bind wildcard address to socket
15 18 We allocate space for another socket address structure and fill it in by copying the
structure that was filled in by udp_client. This sets the address family and port. We call
our sock_set_wild function to set the IP address to the wildcard and then call bind.

Get interface list
20 22 Our get_ifi_info function returns information on all the interfaces and addresses.
The address family that we ask for is taken from the socket address structure that was
filled in by udp_client based on the command-line argument.

Join multicast group
23 27 We call our mcast_join function to join the multicast group specified by the
command-line argument for each multicast-capable interface. All these joins are done on
the one socket that this program uses. As we said earlier, there is normally a limit of 
IP_MAX_MEMBERSHIPS (often 20) joins per socket, but few multihomed hosts have that
many interfaces.

Read and process all NTP packets
30 36 Another socket address structure is allocated to hold the address returned by
recvfrom and the program enters an infinite loop, reading all the NTP packets that the host
receives and calling our sntp_proc function (described next) to process the packet. Since
the socket was bound to the wildcard address, and since the multicast group was joined on
all multicast-capable interfaces, the socket should receive any unicast, broadcast, or
multicast NTP packet that the host receives. Before calling sntp_proc, we call
gettimeofday to fetch the current time, because sntp_proc calculates the difference
between the time in the packet and the current time.

Our sntp_proc function, shown in Figure 21.22, processes the actual NTP packet.

Validate packet
10 21 We first check the size of the packet and then print the version, mode, and server
stratum. If the mode is MODE_CLIENT, the packet is a client request, not a server reply, and
we ignore it.

Obtain transmit time from NTP packet
22 33 The field in the NTP packet that we are interested in is xmt, the transmit timestamp,
which is the 64-bit fixed-point time at which the packet was sent by the server. Since NTP
timestamps count seconds beginning in 1900 and Unix timestamps count seconds
beginning in 1970, we first subtract JAN_1970 (the number of seconds in these 70 years)
from the integer part.

The fractional part is a 32-bit unsigned integer between 0 and 4,294,967,295, inclusive.
This is copied from a 32-bit integer (useci) to a double-precision floating-point variable (
usecf) and then divided by 4,294,967,296 (232). The result is greater than or equal to 0.0
and less than 1.0. We multiply this by 1,000,000, the number of microseconds in a second,
storing the result as a 32-bit unsigned integer in the variable useci. This is the number of
microseconds and will be between 0 and 999,999 (see Exercise 21.5). We convert to
microseconds because the Unix timestamp returned by gettimeofday is returned as two

Page 672

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


integers: the number of seconds since January 1, 1970, UTC, along with the number of
microseconds. We then calculate and print the difference between the host's time-of-day
and the NTP server's time-of-day, in microseconds.

Figure 21.22 sntp_proc function: processes the NTP packet.

ssntp/sntp_proc.c

 1 #include    "sntp.h"

 2 void

 3 sntp_proc(char *buf, ssize_t n, struct timeval *nowptr)

 4 {

 5     int     version, mode;

 6     uint32_t nsec, useci;

 7     double  usecf;

 8     struct timeval diff;

 9     struct ntpdata *ntp;

10     if (n < (ssize_t) sizeof(struct ntpdata)) {

11         printf("\npacket too small: %d bytes\n", n);

12         return;

13     }

14     ntp = (struct ntpdata *) buf;

15     version = (ntp->status & VERSION_MASK) >> 3;

16     mode = ntp->status & MODE_MASK;

17     printf("\nv%d, mode %d, strat %d, ", version, mode, ntp->stratum);

18     if (mode == MODE_CLIENT) {

19         printf("client\n");

20         return;

21     }

22     nsec = ntohl(ntp->xmt.int_part) - JAN_1970;

23     useci = ntohl(ntp->xmt.fraction);   /* 32-bit integer fraction */

24     usecf = useci;              /* integer fraction -> double */

25     usecf /= 4294967296.0;      /* divide by 2**32 -> [0, 1.0) */

26     useci = usecf * 1000000.0;  /* fraction -> parts per million */

27     diff.tv_sec = nowptr->tv_sec - nsec;

28     if ( (diff.tv_usec = nowptr->tv_usec - useci) < 0) {

29         diff.tv_usec += 1000000;

30         diff.tv_sec--;

31     }

32     useci = (diff.tv_sec * 1000000) + diff.tv_usec; /* diff in microsec */

33     printf("clock difference = %d usec\n", useci);

34 }

One thing that our program does not take into account is the network delay between the
server and the client. But we assume that the NTP packets are normally received as a
broadcast or multicast on a LAN, in which case, the network delay should be only a few
milliseconds.

If we run this program on our host macosx with an NTP server on our host freebsd4, which
is multicasting NTP packets to the Ethernet every 64 seconds, we have the following
output:

macosx # ssntp 224.0.1.1

Page 673

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


joined 224.0.1.1.123 on lo0

joined 224.0.1.1.123 on en1

v4, mode 5, strat 3, clock difference = 661 usec

v4, mode 5, strat 3, clock difference = -1789 usec

v4, mode 5, strat 3, clock difference = -2945 usec

v4, mode 5, strat 3, clock difference = -3689 usec

v4, mode 5, strat 3, clock difference = -5425 usec

v4, mode 5, strat 3, clock difference = -6700 usec

v4, mode 5, strat 3, clock difference = -8520 usec

To run our program, we first terminated the normal NTP server running on this host, so
when our program starts, the time is very close to the server's time. We see this host lost
9181 microseconds in the 384 seconds we ran the program, or about 2 seconds in 24
hours.

[ Team LiB ]

Page 674

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

21.12 Summary
A multicast application starts by joining the multicast group assigned to the application.
This tells the IP layer to join the group, which in turns tells the datalink layer to receive
multicast frames that are sent to the corresponding hardware layer multicast address.
Multicasting takes advantage of the hardware filtering present on most interface cards, and
the better the filtering, the fewer the number of undesired packets received. Using this
hardware filtering reduces the load on all the other hosts that are not participating in the
application.

Multicasting on a WAN requires multicast-capable routers and a multicast routing protocol.
Until all the routers on the Internet are multicast-capable, multicast is only available to a
subset of Internet users. We use the term "IP multicast infrastructure" to describe the set
of all multicast-capable systems on the Internet.

Nine socket options provide the API for multicasting:

 Join an any-source multicast group on an interface

 Leave a multicast group

 Block a source from a joined group

 Unblock a blocked source

 Join a source-specific multicast group on an interface

 Leave a source-specific multicast group

 Set the default interface for outgoing multicasts

 Set the TTL or hop limit for outgoing multicasts

 Enable or disable loopback of multicasts

The first six are for receiving, and the last three are for sending. There is enough difference
between the IPv4 socket options and the IPv6 socket options that protocol-independent
multicasting code becomes littered with #ifdefs very quickly. We developed 12 functions
of our own, all beginning with mcast_, that can help in writing multicast applications that
work with either IPv4 or IPv6.

[ Team LiB ]

Page 675

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Exercises
21.1 Build the program shown in Figure 20.9 and run it specifying an IP

address on the command line of 224.0.0.1. What happens?

21.2 Modify the program in the previous example to bind 224.0.0.1 and port
0 to its socket. Run it. Are you allowed to bind a multicast address to
the socket? If you have a tool such as tcpdump, watch the packets on
the network. What is the source IP address of the datagram you send?

21.3 One way to tell which hosts on your subnet are multicast-capable is to 
ping the all-hosts group: 224.0.0.1. Try this.

21.4 One way to tell if your host is connected to the IP multicast
infrastructure is to run our program from Section 21.9, wait a few
minutes, and see if any session announcements appear. Try this and
see if you receive any announcements.

21.5 Go through the calculations in Figure 21.22 when the fractional part of
the NTP timestamp is 1,073,741,824 (one-quarter of 232).

Redo these calculations for the largest possible integer fraction (232  
1).

21.6 Modify the implementation of mcast_set_if for IPv4 to remember each
interface name for which it obtains the IP address to prevent calling 
ioctl again for that interface.

[ Team LiB ]

Page 676

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Chapter 22. Advanced UDP Sockets
Section 22.1.?Introduction

Section 22.2.?Receiving Flags, Destination IP Address, and Interface Index

Section 22.3.?Datagram Truncation

Section 22.4.?When to Use UDP Instead of TCP

Section 22.5.?Adding Reliability to a UDP Application

Section 22.6.?Binding Interface Addresses

Section 22.7.?Concurrent UDP Servers

Section 22.8.?IPv6 Packet Information

Section 22.9.?IPv6 Path MTU Control

Section 22.10.?Summary

Exercises

[ Team LiB ]

Page 677

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

22.1 Introduction
This chapter is a collection of various topics that affect applications using UDP sockets. First
is determining the destination address of a UDP datagram and the interface on which the
datagram was received, because a socket bound to a UDP port and the wildcard address
can receive unicast, broadcast, and multicast datagrams on any interface.

TCP is a byte-stream protocol and it uses a sliding window, so there is no such thing as a
record boundary or allowing the sender to overrun the receiver with data. With UDP,
however, each input operation corresponds to a UDP datagram (a record), so a problem
arises of what happens when the received datagram is larger than the application's input
buffer.

UDP is unreliable but there are applications where it makes sense to use UDP instead of
TCP. We will discuss the factors affecting when UDP can be used instead of TCP. In these
UDP applications, we must include some features to make up for UDP's unreliability: a
timeout and retransmission, to handle lost datagrams, and sequence numbers, to match
the replies to the requests. We develop a set of functions that we can call from our UDP
applications to handle these details.

If the implementation does not support the IP_RECVDSTADDR socket option, then one way to
determine the destination IP address of a UDP datagram is to bind all the interface
addresses and use select.

Most UDP servers are iterative, but there are applications that exchange multiple UDP
datagrams between the client and server requiring some form of concurrency. TFTP is the
common example, and we will discuss how this is done, both with and without inetd.

The final topic is the per-packet information that can be specified as ancillary data for an
IPv6 datagram: the source IP address, the sending interface, the outgoing hop limit, and
the next-hop address. Similar information can be returned with an IPv6 datagram: the
destination IP address, received interface, and received hop limit.

[ Team LiB ]

Page 678

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

22.2 Receiving Flags, Destination IP Address, and
Interface Index
Historically, sendmsg and recvmsg have been used only to pass descriptors across Unix
domain sockets (Section 15.7), and even this was rare. But the use of these two functions
is increasing for two reasons:

1. The msg_flags member, which was added to the msghdr structure with 4.3BSD
Reno, returns flags to the application. We summarized these flags in Figure 14.7.

2. Ancillary data is being used to pass more and more information between the
application and the kernel. We will see in Chapter 27 that IPv6 continues this trend.

As an example of recvmsg, we will write a function named recvfrom_flags, which is similar
to recvfrom but also returns the following:

 The returned msg_flags value

 The destination address of the received datagram (from the IP_RECVDSTADDR socket
option)

 The index of the interface on which the datagram was received (the IP_RECVIF
socket option)

To return the last two items, we define the following structure in our unp.h header:

struct unp_in_pktinfo {

  struct in_addr  ipi_addr;     /* destination IPv4 address */

  int             ipi_ifindex;  /* received interface index */

};

We have purposely chosen the structure name and member names to be similar to the
IPv6 in6_pktinfo structure that returns the same two items for an IPv6 socket (Section
22.8). Our recvfrom_flags function will take a pointer to an unp_in_pktinfo structure as
an argument, and if this pointer is non-null, we will return the structure through the
pointer.

A design problem with this structure is what to return if the IP_RECVDSTADDR information is
not available (i.e., the implementation does not support the socket option). The interface
index is easy to handle because a value of 0 can indicate that the index is not known. But
all 32-bit values for an IP address are valid. What we have chosen is to return a value of all
zeros (0.0.0.0) as the destination address when the actual value is not available. While this
is a valid IP address, it is never allowed as the destination IP address (RFC 1122 [Braden
1989]); it is valid only as the source IP address when a host is bootstrapping and does not
yet know its IP address.

Unfortunately, Berkeley-derived kernels accept IP datagrams destined to 0.0.0.0 (pp. 218
 219 of TCPv2). These are obsolete broadcasts generated by 4.2BSD-derived kernels.

We now show the first half of our recvfrom_flags function in Figure 22.1. This function is
intended to be used with a UDP socket.

Figure 22.1 recvfrom_flags function: calls recvmsg.

Page 679

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


advio/recvfromflags.c

 1 #include    "unp.h"

 2 #include    <sys/param.h>       /* ALIGN macro for CMSG_NXTHDR() macro */

 3 ssize_t

 4 recvfrom_flags(int fd, void *ptr, size_t nbytes, int *flagsp,

 5                SA *sa, socklen_t *salenptr, struct unp_in_pktinfo *pktp)

 6 {

 7     struct msghdr msg;

 8     struct iovec iov[1];

 9     ssize_t n;

10 #ifdef  HAVE_MSGHDR_MSG_CONTROL

11     struct cmsghdr *cmptr;

12     union {

13         struct cmsghdr cm;

14         char    control[CMSG_SPACE(sizeof(struct in_addr)) +

15                         CMSG_SPACE(sizeof(struct unp_in_pktinfo))];

16     } control_un;

17     msg.msg_control = control_un.control;

18     msg.msg_controllen = sizeof(control_un.control);

19     msg.msg_flags = 0;

20 #else

21     bzero(&msg, sizeof(msg));   /* make certain msg_accrightslen = 0 */

22 #endif

23     msg.msg_name = sa;

24     msg.msg_namelen = *salenptr;

25     iov[0].iov_base = ptr;

26     iov[0].iov_len = nbytes;

27     msg.msg_iov = iov;

28     msg.msg_iovlen = 1;

29     if ( (n = recvmsg(fd, &msg, *flagsp)) < 0)

30         return (n);

31     *salenptr = msg.msg_namelen;    /* pass back results */

32     if (pktp)

33         bzero(pktp, sizeof(struct unp_in_pktinfo)); /* 0.0.0.0, i/f = 0 */

Include files
1 2 The CMSG_NXTHDR macro requires the <sys/param.h> header.

Function arguments
3 5 The function arguments are similar to recvfrom, except the fourth argument is now a
pointer to an integer flag (so that we can return the flags returned by recvmsg) and the
seventh argument is new: It is a pointer to an unp_in_pktinfo structure that will contain
the destination IPv4 address of the received datagram and the interface index on which the
datagram was received.

Implemenation differences
10 22 When dealing with the msghdr structure and the various MSG_xxx constants, we
encounter lots of differences between various implementations. Our way of handling these
differences is to use C's conditional inclusion feature (#ifdef). If the implementation

Page 680

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


supports the msg_control member, space is allocated to hold the values returned by both
the IP_RECVDSTADDR and IP_RECVIF socket options, and the appropriate members are
initialized.

Fill in msghdr structure and call recvmsg
23 33 A msghdr structure is filled in and recvmsg is called. The values of the msg_namelen
and msg_flags members must be passed back to the caller; they are value-result
arguments. We also initialize the caller's unp_in_pktinfo structure, setting the IP address
to 0.0.0.0 and the interface index to 0.

Figure 22.2 shows the second half of our function.

34 37 If the implementation does not support the msg_control member, we just set the
returned flags to 0 and return. The remainder of the function handles the msg_control
information.

Return if no control information
38 41 We return the msg_flags value and then return to the caller if: (i) there is no control
information; (ii) the control information was truncated; or (iii) the caller does not want an 
unp_in_pktinfo structure returned.

Process ancillary data
42 43 We process any number of ancillary data objects using the CMSG_FIRSTHDR and
CMSG_NXTHDR macros.

Process IP_RECVDSTADDR
44 51 If the destination IP address was returned as control information (Figure 14.9), it is
returned to the caller.

Process IP_RECVIF
52 59 If the index of the received interface was returned as control information, it is
returned to the caller. Figure 22.3 shows the contents of the ancillary data object that is
returned.

Figure 22.2 recvfrom_flags function: returns flags and destination
address.

advio/recvfromflags.c

34 #ifndef HAVE_MSGHDR_MSG_CONTROL

35     *flagsp = 0;                /* pass back results */

36     return (n);

37 #else

38     *flagsp = msg.msg_flags;    /* pass back results */

39     if (msg.msg_controllen < sizeof(struct cmsghdr) ||

40         (msg.msg_flags & MSG_CTRUNC) || pktp == NULL)

41         return (n);

42     for (cmptr = CMSG_FIRSTHDR(&msg); cmptr != NULL;

43          cmptr = CMSG_NXTHDR(&msg, cmptr)) {

44 #ifdef  IP_RECVDSTADDR

45         if (cmptr->cmsg_level == IPPROTO_IP &&

Page 681

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


46             cmptr->cmsg_type == IP_RECVDSTADDR) {

47             memcpy(&pktp->ipi_addr, CMSG_DATA(cmptr),

48                    sizeof(struct in_addr));

49             continue;

50         }

51 #endif

52 #ifdef  IP_RECVIF

53         if (cmptr->cmsg_level == IPPROTO_IP && cmptr->cmsg_type ==

IP_RECVIF) {

54             struct sockaddr_dl *sdl;

55             sdl = (struct sockaddr_dl *) CMSG_DATA(cmptr);

56             pktp->ipi_ifindex = sdl->sdl_index;

57             continue;

58         }

59 #endif

60         err_quit("unknown ancillary data, len = %d, level = %d, type = %d",

61                  cmptr->cmsg_len, cmptr->cmsg_level, cmptr->cmsg_type);

62     }

63     return (n);

64 #endif  /* HAVE_MSGHDR_MSG_CONTROL */

65 }

Figure 22.3. Ancillary data object returned for IP_RECVIF.

Recall the datalink socket address structure in Figure 18.1. The data returned in the
ancillary data object is one of these structures, but the three lengths are 0 (name length,
address length, and selector length). Therefore, there is no need for any of the data that
follows these lengths, so the size of the structure should be 8 bytes, not the 20 that we
show in Figure 18.1. The information we return is the interface index.

Example: Print Destination IP Address and Datagram-Truncated Flag
To test our function, we modify our dg_echo function (Figure 8.4) to call recvfrom_flags
instead of recvfrom. We show this new version of dg_echo in Figure 22.4.

Change MAXLINE

2 3 We remove the existing definition of MAXLINE that occurs in our unp.h header and
redefine it to be 20. We do this to see what happens when we receive a UDP datagram that
is larger than the buffer that we pass to the input function (recvmsg in this case).

Set IP_RECVDSTADDR and IP_RECVIF socket options

14 21 If the IP_RECVDSTADDR socket option is defined, it is turned on. Similarly, the
IP_RECVIF socket option is turned on.

Figure 22.4 dg_echo function that calls our recvfrom_flags function.

advio/dgechoaddr.c

 1 #include    "unpifi.h"

Page 682

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


 2 #undef  MAXLINE

 3 #define MAXLINE 20              /* to see datagram truncation */

 4 void

 5 dg_echo(int sockfd, SA *pcliaddr, socklen_t clilen)

 6 {

 7     int     flags;

 8     const int on = 1;

 9     socklen_t len;

10     ssize_t n;

11     char    mesg[MAXLINE], str[INET6_ADDRSTRLEN], ifname[IFNAMSIZ];

12     struct in_addr in_zero;

13     struct unp_in_pktinfo pktinfo;

14 #ifdef  IP_RECVDSTADDR

15     if (setsockopt(sockfd, IPPROTO_IP, IP_RECVDSTADDR, &on, sizeof(on)) < 0)

16         err_ret("setsockopt of IP_RECVDSTADDR");

17 #endif

18 #ifdef  IP_RECVIF

19     if (setsockopt(sockfd, IPPROTO_IP, IP_RECVIF, &on, sizeof(on)) < 0)

20         err_ret("setsockopt of IP_RECVIF");

21 #endif

22     bzero(&in_zero, sizeof(struct in_addr));     /* all 0 IPv4 address */

23     for ( ; ; ) {

24         len = clilen;

25         flags = 0;

26         n = Recvfrom_flags(sockfd, mesg, MAXLINE, &flags,

27                            pcliaddr, &len, &pktinfo);

28         printf("%d-byte datagram from %s", n, Sock_ntop(pcliaddr, len));

29         if (memcmp(&pktinfo.ipi_addr, &in_zero, sizeof(in_zero)) != 0)

30             printf(", to %s", Inet_ntop(AF_INET, &pktinfo.ipi_addr,

31                                         str, sizeof(str)));

32         if (pktinfo.ipi_ifindex > 0)

33             printf(", recv i/f = %s",

34                    If_indextoname(pktinfo.ipi_ifindex, ifname));

35 #ifdef  MSG_TRUNC

36         if (flags & MSG_TRUNC)

37             printf(" (datagram truncated)");

38 #endif

39 #ifdef  MSG_CTRUNC

40         if (flags & MSG_CTRUNC)

41             printf(" (control info truncated)");

42 #endif

43 #ifdef  MSG_BCAST

44         if (flags & MSG_BCAST)

45             printf(" (broadcast)");

46 #endif

47 #ifdef  MSG_MCAST

48         if (flags & MSG_MCAST)

49             printf(" (multicast)");

50 #endif

51         printf("\n");

52         Sendto(sockfd, mesg, n, 0, pcliaddr, len);

53     }

54 }

Read datagram, print source IP address and port

Page 683

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


24 28 The datagram is read by calling recvfrom_flags. The source IP address and port of
the server's reply are converted to presentation format by sock_ntop.

Print destination IP address

29 31 If the returned IP address is not 0, it is converted to presentation format by
inet_ntop and printed.

Print name of received interface

32 34 If the returned interface index is not 0, its name is obtained by calling
if_indextoname and it is printed.

Test various flags

35 51 We test four additional flags and print a message if any are on.

[ Team LiB ]

Page 684

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

22.3 Datagram Truncation
On BSD-derived systems, when a UDP datagram arrives that is larger than the application's
buffer, recvmsg sets the MSG_TRUNC flag in the msg_flags member of the msghdr structure (
Figure 14.7). All Berkeley-derived implementations that support the msghdr structure with
the msg_flags member provide this notification.

This is an example of a flag that must be returned from the kernel to the process. We
mentioned in Section 14.3 that one design problem with the recv and recvfrom functions
is that their flags argument is an integer, which allows flags to be passed from the process
to the kernel, but not vice versa.

Unfortunately, not all implementations handle a larger-than-expected UDP datagram in this
fashion. There are three possible scenarios:

1. Discard the excess bytes and return the MSG_TRUNC flag to the application. This
requires that the application call recvmsg to receive the flag.

2. Discard the excess bytes, but do not tell the application.

3. Keep the excess bytes and return them in subsequent read operations on the
socket.

The POSIX specification specifies the first type of behavior: discarding the excess
bytes and setting the MSG_TRUNC flag. Early releases of SVR4 exhibited the third
type of behavior.

Since there are such variations in how implementations handle datagrams that are larger
than the application's receive buffer, one way to detect the problem is to always allocate an
application buffer that is one byte greater than the largest datagram the application should
ever receive. If a datagram is ever received whose length equals this buffer, consider it an
error.

[ Team LiB ]

Page 685

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

22.4 When to Use UDP Instead of TCP
In Sections 2.3 and 2.4, we described the major differences between UDP and TCP. Given
that TCP is reliable while UDP is not, the question arises: When should we use UDP instead
of TCP, and why? We first list the advantages of UDP:

 As we show in Figure 20.1, UDP supports broadcasting and multicasting. Indeed,
UDP must be used if the application uses broadcasting or multicasting. We
discussed these two addressing modes in Chapters 20 and 21.

 UDP has no connection setup or teardown. With regard to Figure 2.5, UDP requires
only two packets to exchange a request and a reply (assuming the size of each is
less than the minimum MTU between the two end-systems). TCP requires about 10
packets, assuming that a new TCP connection is established for each request-reply
exchange.

Also important in this number-of-packet analysis is the number of packet round
trips required to obtain the reply. This becomes important if the latency exceeds the
bandwidth, as described in Appendix A of TCPv3. That text shows that the
minimum transaction time for a UDP request-reply is RTT + server processing time
(SPT). With TCP, however, if a new TCP connection is used for the request-reply, the
minimum transaction time is 2 x RTT + SPT, one RTT greater than the UDP time.

It should be obvious with regard to the second point that if a TCP connection is used for
multiple request-reply exchanges, then the cost of the connection's establishment and
teardown is amortized across all the requests and replies, and this is normally a better
design than using a new connection for each request-reply. Nevertheless, there are
applications that use a new TCP connection for each request-reply (e.g., the older versions
of HTTP), and there are applications in which the client and server exchange one
request-reply (e.g., the DNS) and then might not talk to each other for hours or days.

We now list the features of TCP that are not provided by UDP, which means that an
application must provide these features itself, if they are necessary to the application. We
use the qualifier "necessary" because not all features are needed by all applications. For
example, dropped segments might not need to be retransmitted for a real-time audio
application, if the receiver can interpolate the missing data. Also, for simple request-reply
transactions, windowed flow control might not be needed if the two ends agree ahead of
time on the size of the largest request and reply.

 Positive acknowledgments, retransmission of lost packets, duplicate detection, and
sequencing of packets reordered by the network TCP acknowledges all data,
allowing lost packets to be detected. The implementation of these two features
requires that every TCP data segment contain a sequence number that can then be
acknowledged. It also requires that TCP estimate a retransmission timeout value for
the connection and that this value be updated continually as network traffic
between the two end-systems changes.

 Windowed flow control A receiving TCP tells the sender how much buffer space it
has allocated for receiving data, and the sender cannot exceed this. That is, the
amount of unacknowledged data at the sender can never exceed the receiver's
advertised window.

 Slow start and congestion avoidance This is a form of flow control imposed by the
sender to determine the current network capacity and to handle periods of
congestion. All current TCPs must support these two features and we know from
experience (before these algorithms were implemented in the late 1980s) that
protocols that do not "back off" in the face of congestion just make the congestion
worse (e.g., [Jacobson 1988]).

Page 686

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


In summary, we can state the following recommendations:

 UDP must be used for broadcast or multicast applications. Any form of desired error
control must be added to the clients and servers, but applications often use
broadcasting or multicasting when some (assumed small) amount of error is
acceptable (such as lost packets for audio or video). Multicast applications requiring
reliable delivery have been built (e.g., multicast file transfer), but we must decide
whether the performance gain in using multicasting (sending one packet to N
destinations versus sending N copies of the packet across N TCP connections)
outweighs the added complexity required within the application to provide reliable
communications.

 UDP can be used for simple request-reply applications, but error detection must
then be built into the application. Minimally, this involves acknowledgments,
timeouts, and retransmission. Flow control is often not an issue for reasonably sized
requests and responses. We will provide an example of these features in a UDP
application in Section 22.5. The factors to consider here are how often the client and
server communicate (Could a TCP connection be left up between the two?) and how
much data is exchanged (if multiple packets are normally required, then the cost of
the TCP connection's establishment and teardown becomes less of a factor).

 UDP should not be used for bulk data transfer (e.g., file transfer). The reason is that
windowed flow control, congestion avoidance, and slow-start must all be built into
the application, along with the features from the previous bullet point, which means
we are reinventing TCP within the application. We should let the vendors focus on
better TCP performance and concentrate our efforts on the application itself.

There are exceptions to these rules, especially in existing applications. TFTP, for example,
uses UDP for bulk data transfer. UDP was chosen for TFTP because it is simpler to
implement than TCP in bootstrap code (800 lines of C code for UDP versus 4500 lines for
TCP in TCPv2, for example), and because TFTP is used only to bootstrap systems on a LAN,
not for bulk data transfer across WANs. But this requires that TFTP include its own
sequence number field for acknowledgments, along with a timeout and retransmission
capability.

NFS is another exception to the rule: It also uses UDP for bulk data transfer (although
some might claim it is really a request-reply application, albeit using large requests and
replies). This is partly historical, because in the mid-1980s when it was designed, UDP
implementations were faster than TCP, and NFS was used only on LANs, where packet loss
is often orders of magnitude less than on WANs. But as NFS started being used across
WANs in the early 1990s, and as TCP implementations passed UDP in terms of bulk data
transfer performance, NFS version 3 was designed to support TCP, and most vendors are
now providing NFS over both UDP and TCP. Similar reasoning (UDP being faster than TCP in
the mid-1980s along with a predominance of LANs over WANs) led the precursor of the
DCE RPC package (the Apollo NCS package) to also choose UDP over TCP, although current
implementations support both UDP and TCP.

We might be tempted to say that UDP usage is decreasing compared to TCP, with good TCP
implementations being as fast as the network today, and with fewer application designers
wanting to reinvent TCP within their UDP application. But the predicted increase in
multimedia applications over the next decade will see an increase in UDP usage, since
multimedia usually implies multicasting, which requires UDP.

[ Team LiB ]

Page 687

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

22.5 Adding Reliability to a UDP Application
If we are going to use UDP for a request-reply application, as mentioned in the previous
section, then we must add two features to our client:

1. Timeout and retransmission to handle datagrams that are discarded

2. Sequence numbers so the client can verify that a reply is for the appropriate request

These two features are part of most existing UDP applications that use the simple
request-reply paradigm: DNS resolvers, SNMP agents, TFTP, and RPC, for example. We are
not trying to use UDP for bulk data transfer; our intent is for an application that sends a
request and waits for a reply.

By definition, a datagram is unreliable; therefore, we purposely do not call this a "reliable
datagram service." Indeed, the term "reliable datagram" is an oxymoron. What we are
showing is an application that adds reliability on top of an unreliable datagram service
(UDP).

Adding sequence numbers is simple. The client prepends a sequence number to each
request and the server must echo this number back to the client in the reply. This lets the
client verify that a given reply is for the request that was issued.

The old-fashioned method for handling timeout and retransmission was to send a request
and wait for N seconds. If no response was received, retransmit and wait another N
seconds. After this had happened some number of times, the application gave up. This is
an example of a linear retransmit timer. (Figure 6.8 of TCPv1 shows an example of a TFTP
client that uses this technique. Many TFTP clients still use this method).

The problem with this technique is that the amount of time required for a datagram to
make a round trip on a network can vary from fractions of a second on a LAN to many
seconds on a WAN. Factors affecting the RTT are distance, network speed, and congestion.
Additionally, the RTT between a client and server can change rapidly with time, as network
conditions change. We must use a timeout and retransmission algorithm that take into
account the actual RTTs that we measure along with the changes in the RTT over time.
Much work has been focused on this area, mostly relating to TCP, but the same ideas apply
to any network application.

We want to calculate the RTO to use for every packet that we send. To calculate this, we
measure the RTT: the actual round-trip time for a packet. Every time we measure an RTT,
we update two statistical estimators: srtt is the smoothed RTT estimator and rttvar is the
smoothed mean deviation estimator. The latter is a good approximation of the standard
deviation, but easier to compute since it does not involve a square root. Given these two
estimators, the RTO to use is srtt plus four times rttvar. [Jacobson 1988] provides all the
details of these calculations, which we can summarize in the following four equations:

delta is the difference between the measured RTT and the current smoothed RTT estimator
(srtt). g is the gain applied to the RTT estimator and equals 1/8. h is the gain applied to
the mean deviation estimator and equals 1/4.

The two gains and the multiplier 4 in the RTO calculation are purposely powers of 2 so they
can be calculated using shift operations instead of multiplying or dividing. Indeed, the TCP

Page 688

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


kernel implementation (Section 25.7 of TCPv2) is normally performed using fixed-point
arithmetic for speed, but for simplicity, we use floating-point calculations in our code that
follows.

Another point made in [Jacobson 1988] is that when the retransmission timer expires, an 
exponential backoff must be used for the next RTO. For example, if our first RTO is 2
seconds and the reply is not received in this time, then the next RTO is 4 seconds. If there
is still no reply, the next RTO is 8 seconds, and then 16, and so on.

Jacobson's algorithms tell us how to calculate the RTO each time we measure an RTT and
how to increase the RTO when we retransmit. But, a problem arises when we have to
retransmit a packet and then receive a reply. This is called the retransmission ambiguity
problem. Figure 22.5 shows the following three possible scenarios when our retransmission
timer expires:

Figure 22.5. Three scenarios when retransmission timer expires.

 The request is lost

 The reply is lost

 The RTO is too small

When the client receives a reply to a request that was retransmitted, it cannot tell to which
request the reply corresponds. In the example on the right, the reply corresponds to the
original request, while in the two other examples, the reply corresponds to the
retransmitted request.

Karn's algorithm [Karn and Partridge 1991] handles this scenario with the following rules
that apply whenever a reply is received for a request that was retransmitted:

 If an RTT was measured, do not use it to update the estimators since we do not
know to which request the reply corresponds.

 Since this reply arrived before our retransmission timer expired, reuse this RTO for
the next packet. Only when we receive a reply to a request that is not retransmitted
will we update the RTT estimators and recalculate the RTO.

It is not hard to take Karn's algorithm into account when coding our RTT functions, but it
turns out that an even better and more elegant solution exists. This solution is from the
TCP extensions for "long fat pipes" (networks with either a high bandwidth, a long RTT, or
both), which are documented in RFC 1323 [Jacobson, Braden, and Borman 1992]. In
addition to prepending a sequence number to each request, which the server must echo
back, we also prepend a timestamp that the server must also echo. Each time we send a
request, we store the current time in the timestamp. When a reply is received, we calculate
the RTT of that packet as the current time minus the timestamp that was echoed by the
server in its reply. Since every request carries a timestamp that is echoed by the server,
we can calculate the RTT of every reply we receive. There is no longer any ambiguity at all.
Furthermore, since all the server does is echo the client's timestamp, the client can use
any units desired for the timestamps and there is no requirement at all that the client and
server have synchronized clocks.

Page 689

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


Example
We will now put all of this together in an example. We start with our UDP client main
function from Figure 8.7 and just change the port number from SERV_PORT to 7 (the
standard echo server, Figure 2.18).

Figure 22.6 is the dg_cli function. The only change from Figure 8.8 is to replace the calls
to sendto and recvfrom with a call to our new function, dg_send_recv.

Before showing our dg_send_recv function and the RTT functions it calls, Figure 22.7
shows an outline of how we add reliability to a UDP client. All functions beginning with 
rtt_ will be shown shortly.

Figure 22.6 dg_cli function that calls our dg_send_recv function.

rtt/dg_cli.c

 1 #include    "unp.h"

 2 ssize_t Dg_send_recv(int, const void *, size_t, void *, size_t,

 3                      const SA *, socklen_t);

 4 void

 5 dg_cli(FILE *fp, int sockfd, const SA *pservaddr, socklen_t servlen)

 6 {

 7     ssize_t n;

 8     char    sendline[MAXLINE], recvline[MAXLINE + 1];

 9     while (Fgets(sendline, MAXLINE, fp) != NULL) {

10         n = Dg_send_recv(sockfd, sendline, strlen(sendline),

11                          recvline, MAXLINE, pservaddr, servlen);

12         recvline[n] = 0;        /* null terminate */

13         Fputs(recvline, stdout);

14     }

15 }

Figure 22.7 Outline of RTT functions and when they are called.

static sigjmp_buf jmpbuf;

{

    .  .  .

    form request

    signal(SIGALRM, sig_alrm); /* establish signal handler */

    rtt_newpack();             /* initialize rexmt counter to 0 */

sendagain:

    sendto();

    alarm(rtt_start());        /* set alarm for RTO seconds */

    if (sigsetjmp(jmpbuf, 1) != 0) {

        if (rtt_timeout())     /* double RTO, retransmitted enough? */

            give up

        goto sendagain;        /* retransmit */

    }

    do {

        recvfrom();

    } while (wrong sequence#);

Page 690

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


    alarm(0);                  /* turn off alarm */

    rtt_stop();                /* calculate RTT and update estimators */

    process reply

    .  .  .

}

void

sig_alrm(int signo)

{

    siglongjmp(jmpbuf, 1);

}

When a reply is received but the sequence number is not the one expected, we call 
recvfrom again, but we do not retransmit the request and we do not restart the
retransmission timer that is running. Notice in the rightmost example in Figure 22.5 that
the final reply from the retransmitted request will be in the socket receive buffer the next
time the client sends a new request. That is fine as the client will read this reply, notice
that the sequence number is not the one expected, discard the reply, and call recvfrom
again.

We call sigsetjmp and siglongjmp to avoid the race condition with the SIGALRM signal we
described in Section 20.5.

Figure 22.8 shows the first half of our dg_send_recv function.

1 5 We include a new header, unprtt.h, shown in Figure 22.10, which defines the
rtt_info structure that maintains the RTT information for a client. We define one of these
structures and numerous other variables.

Define msghdr structures and hdr structure

6 10 We want to hide the fact from the caller that we prepend a sequence number and a
timestamp to each packet. The easiest way to do this is to use writev, writing our header
(the hdr structure), followed by the caller's data, as a single UDP datagram. Recall that the
output for writev on a datagram socket is a single datagram. This is easier than forcing
the caller to allocate room at the front of its buffer for our use and is also faster than
copying our header and the caller's data into one buffer (that we would have to allocate)
for a single sendto. But since we are using UDP and have to specify a destination address,
we must use the iovec capability of sendmsg and recvmsg, instead of sendto and recvfrom.
Recall from Section 14.5 that some systems have a newer msghdr structure with ancillary
data, while older systems still have the access rights members at the end of the structure.
To avoid complicating the code with #ifdefs to handle these differences, we declare two
msghdr structures as static, forcing their initialization to all zero bits by C and then just
ignore the unused members at the end of the structures.

Initialize first time we are called

20 24 The first time we are called, we call the rtt_init function.

Fill in msghdr structures

25 41 We fill in the two msghdr structures that are used for output and input. We
increment the sending sequence number for this packet, but do not set the sending
timestamp until we send the packet (since it might be retransmitted, and each
retransmission needs the current timestamp).

The second half of the function, along with the sig_alrm signal handler, is shown in Figure
22.9.

Page 691

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


Figure 22.8 dg_send_recv function: first half.

 1 #include    "unprtt.h"

 2 #include    <setjmp.h>

 3 #define RTT_DEBUG

 4 static struct rtt_info rttinfo;

 5 static int rttinit = 0;

 6 static struct msghdr msgsend, msgrecv;  /* assumed init to 0 */

 7 static struct hdr {

 8     uint32_t seq;               /* sequence # */

 9     uint32_t ts;                /* timestamp when sent */

10 } sendhdr, recvhdr;

11 static void sig_alrm(int signo);

12 static sigjmp_buf jmpbuf;

13 ssize_t

14 dg_send_recv(int fd, const void *outbuff, size_t outbytes,

15              void *inbuff, size_t inbytes,

16              const SA *destaddr, socklen_t destlen)

17 {

18     ssize_t n;

19     struct iovec iovsend[2], iovrecv[2];

20     if (rttinit == 0) {

21         rtt_init(&rttinfo);     /* first time we're called */

22         rttinit = 1;

23         rtt_d_flag = 1;

24     }

25     sendhdr.seq++;

26     msgsend.msg_name = destaddr;

27     msgsend.msg_namelen = destlen;

28     msgsend.msg_iov = iovsend;

29     msgsend.msg_iovlen = 2;

30     iovsend[0].iov_base = &sendhdr;

31     iovsend[0].iov_len = sizeof(struct hdr);

32     iovsend[1].iov_base = outbuff;

33     iovsend[1].iov_len = outbytes;

34     msgrecv.msg_name = NULL;

35     msgrecv.msg_namelen = 0;

36     msgrecv.msg_iov = iovrecv;

37     msgrecv.msg_iovlen = 2;

38     iovrecv[0].iov_base = &recvhdr;

39     iovrecv[0].iov_len = sizeof(struct hdr);

40     iovrecv[1].iov_base = inbuff;

41     iovrecv[1].iov_len = inbytes;

Figure 22.9 dg_send_recv function:second half.

rtt/dg_send_recv.c

42    Signal(SIGALRM, sig_alrm);

43    rtt_newpack(&rttinfo);      /* initialize for this packet */

44  sendagain:

Page 692

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


45    sendhdr.ts = rtt_ts(&rttinfo);

46    Sendmsg(fd, &msgsend, 0);

47    alarm(rtt_start(&rttinfo)); /* calc timeout value & start timer */

48    if (sigsetjmp(jmpbuf, 1) != 0) {

49        if (rtt_timeout(&rttinfo) < 0) {

50            err_msg("dg_send_recv: no response from server, giving up");

51            rttinit = 0;        /* reinit in case we're called again */

52            errno = ETIMEDOUT;

53            return (-1);

54        }

55        goto sendagain;

56    }

57    do {

58        n = Recvmsg(fd, &msgrecv, 0);

59    } while (n < sizeof(struct hdr) || recvhdr.seq ! = sendhdr.seq);

60    alarm(0);                   /* stop SIGALRM timer */

61        /* calculate & store new RTT estimator values */

62    rtt_stop(&rttinfo, rtt_ts(&rttinfo) - recvhdr.ts);

63    return (n - sizeof(struct hdr));    /* return size of received datagram

*/

64 }

65 static void

66 sig_alrm(int signo)

67 {

68     siglongjmp(jmpbuf, 1);

69 }

Establish signal handler

42 43 A signal handler is established for SIGALRM and rtt_newpack sets the retransmission
counter to 0.

Send datagram

45 47 The current timestamp is obtained by rtt_ts and stored in the hdr structure
prepended to the user's data. A single UDP datagram is sent by sendmsg. rtt_start
returns the number of seconds for this timeout and the SIGALRM is scheduled by calling
alarm.

Establish jump buffer

48 We establish a jump buffer for our signal handler with sigsetjmp. We wait for the next
datagram to arrive by calling recvmsg. (We discussed the use of sigsetjmp and
siglongjmp along with SIGALRM with Figure 20.9.) If the alarm timer expires, sigsetjmp
returns 1.

Handle timeout

49 55 When a timeout occurs, rtt_timeout calculates the next RTO (the exponential
backoff) and returns -1 if we should give up, or 0 if we should retransmit. If we give up,
we set errno to ETIMEDOUT and return to the caller.

Call recvmsg, compare sequence numbers

57 59 We wait for a datagram to arrive by calling recvmsg. When it returns, the datagram's

Page 693

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


length must be at least the size of our hdr structure and its sequence number must equal
the sequence number that was sent. If either comparison is false, recvmsg is called again.

Turn off alarm and update RTT estimators

60 62 When the expected reply is received, the pending alarm is turned off and rtt_stop
updates the RTT estimators. rtt_ts returns the current timestamp and the timestamp
from the received datagram is subtracted from this, giving the RTT.

SIGALRM handler

65 69 siglongjmp is called, causing the sigsetjmp in dg_send_recv to return 1.

We now look at the various RTT functions that were called by dg_send_recv. Figure 22.10
shows the unprtt.h header.

Figure 22.10 unprtt.h header.

lib/unprtt.h

 1 #ifndef __unp_rtt_h

 2 #define __unp_rtt_h

 3 #include    "unp.h"

 4 struct rtt_info {

 5     float   rtt_rtt;            /* most recent measured RTT, in seconds */

 6     float   rtt_srtt;           /* smoothed RTT estimator, in seconds */

 7     float   rtt_rttvar;         /* smoothed mean deviation, in seconds */

 8     float   rtt_rto;            /* current RTO to use, in seconds */

 9     int     rtt_nrexmt;         /* # times retransmitted: 0, 1, 2, ... */

10     uint32_t rtt_base;          /* # sec since 1/1/1970 at start */

11 };

12 #define RTT_RXTMIN      2       /* min retransmit timeout value, in seconds

*/

13 #define RTT_RXTMAX     60       /* max retransmit timeout value, in seconds

*/

14 #define RTT_MAXNREXMT   3       /* max # times to retransmit */

15                 /* function prototypes */

16 void    rtt_debug(struct rtt_info *);

17 void    rtt_init(struct rtt_info *);

18 void    rtt_newpack(struct rtt_info *);

19 int     rtt_start(struct rtt_info *);

20 void    rtt_stop(struct rtt_info *, uint32_t);

21 int     rtt_timeout(struct rtt_info *);

22 uint32_t rtt_ts(struct rtt_info *);

23 extern int rtt_d_flag;          /* can be set to nonzero for addl info */

24 #endif  /* __unp_rtt_h */

rtt_info structure

4 11 This structure contains the variables necessary to time the packets between a client
and server. The first four variables are from the equations given near the beginning of this
section.

12 14 These constants define the minimum and maximum retransmission timeouts and

Page 694

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


the maximum number of times we retransmitted.

Figure 22.11 shows a macro and the first two of our RTT functions.

Figure 22.11 RTT_RTOCALC macro and rtt_minmax and rtt_init functions.

lib/rtt.c

 1 #include    "unprtt.h"

 2 int     rtt_d_flag = 0;         /* debug flag; can be set by caller */

 3 /*

 4  * Calculate the RTO value based on current estimators:

 5  *      smoothed RTT plus four times the deviation

 6  */

 7 #define RTT_RTOCALC(ptr) ((ptr)->rtt_srtt + (4.0 * (ptr)->rtt_rttvar))

 8 static float

 9 rtt_minmax(float rto)

10 {

11     if (rto < RTT_RXTMIN)

12         rto = RTT_RXTMIN;

13     else if (rto > RTT_RXTMAX)

14         rto = RTT_RXTMAX;

15     return (rto);

16 }

17 void

18 rtt_init(struct rtt_info *ptr)

19 {

20     struct timeval tv;

21     Gettimeofday(&tv, NULL);

22     ptr->rtt_base = tv.tv_sec;   /* # sec since 1/1/1970 at start */

23     ptr->rtt_rtt = 0;

24     ptr->rtt_srtt = 0;

25     ptr->rtt_rttvar = 0.75;

26     ptr->rtt_rto = rtt_minmax(RTT_RTOCALC(ptr));

27     /* first RTO at (srtt + (4 * rttvar)) = 3 seconds */

28 }

3 7 The RTT_RTOCALC macro calculates the RTO as the RTT estimator plus four times the
mean deviation estimator.

8 16 rtt_minmax makes certain that the RTO is between the upper and lower limits in the
unprtt.h header.

17 28 rtt_init is called by dg_send_recv the first time any packet is sent. gettimeofday
returns the current time and date in the same timeval structure that we saw with select (
Section 6.3). We save only the current number of seconds since the Unix Epoch, which is
00:00:00 January 1, 1970, UTC. The measured RTT is set to 0 and the RTT and mean
deviation estimators are set to 0 and 0.75, respectively, giving an initial RTO of 3 seconds.

Figure 22.12 shows the next three RTT functions.

Figure 22.12 rtt_ts, rtt_newpack, and rtt_start functions.

lib/rtt.c

Page 695

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


34 uint 32_t

35 rtt_ts(struct rtt_info *ptr)

36 {

37     uint32_t ts;

38     struct timeval tv;

39     Gettimeofday(&tv, NULL);

40     ts = ((tv.tv_sec - ptr->rtt_base) * 1000) + (tv. tv_usec / 1000);

41     return (ts);

42 }

43 void

44 rtt_newpack(struct rtt_info *ptr)

45 {

46     ptr->rtt_nrexmt = 0;

47 }

48 int

49 rtt_start(struct rtt_info *ptr)

50 {

51     return ((int) (ptr->rtt_rto + 0.5));    /* round float to int */

52         /* return value can be used as: alarm(rtt_start(&foo)) */

53 }

34 42 rtt_ts returns the current timestamp for the caller to store as an unsigned 32-bit
integer in the datagram being sent. We obtain the current time and date from 
gettimeofday and then subtract the number of seconds when rtt_init was called (the
value saved in rtt_base). We convert this to milliseconds and also convert the
microsecond value returned by gettimeofday into milliseconds. The timestamp is then the
sum of these two values in milliseconds.

The difference between two calls to rtt_ts is the number of milliseconds between the two
calls. But, we store the millisecond timestamps in an unsigned 32-bit integer instead of a 
timeval structure.

43 47 rtt_newpack just sets the retransmission counter to 0. This function should be called
whenever a new packet is sent for the first time.

48 53 rtt_start returns the current RTO in seconds. The return value can then be used as
the argument to alarm.

rtt_stop, shown in Figure 22.13, is called after a reply is received to update the RTT
estimators and calculate the new RTO.

Figure 22.13 rtt_stop function: updates RTT estimators and calculates
new RTO.

lib/rtt.c

62 void

63 rtt_stop(struct rtt_info *ptr, uint32_t ms)

64 {

65     double  delta;

66     ptr->rtt_rtt = ms / 1000.0; /* measured RTT in seconds */

67     /*

68      * Update our estimators of RTT and mean deviation of RTT.

69      * See Jacobson's SIGCOMM '88 paper, Appendix A, for the details.

Page 696

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


70      * We use floating point here for simplicity.

71      */

72     delta = ptr->rtt_rtt - ptr->rtt_srtt;

73     ptr->rtt_srtt += delta / 8; /* g = 1/8 */

74     if (delta < 0.0)

75         delta = -delta;         /* |delta| */

76     ptr->rtt_rttvar += (delta - ptr->rtt_rttvar) / 4; /* h = 1/4 */

77     ptr->rtt_rto = rtt_minmax(RTT_RTOCALC(ptr));

78 }

62 78 The second argument is the measured RTT, obtained by the caller by subtracting the
received timestamp in the reply from the current timestamp (rtt_ts). The equations at
the beginning of this section are then applied, storing new values for rtt_srtt,
rtt_rttvar, and rtt_rto.

The final function, rtt_timeout, is shown in Figure 22.14. This function is called when the
retransmission timer expires.

Figure 22.14 rtt_timeout function: applies exponential backoff.

lib/rtt.c

83 int

84 rtt_timeout(struct rtt_info *ptr)

85 {

86     ptr->rtt_rto *= 2;          /* next RTO */

87     if (++ptr->rtt_nrexmt > RTT_MAXNREXMT)

88         return (-1);            /* time to give up for this packet */

89     return (0);

90 }

86 The current RTO is doubled: This is the exponential backoff.

87 89 If we have reached the maximum number of retransmissions,  1 is returned to tell
the caller to give up; otherwise, 0 is returned.

As an example, our client was run twice to two different echo servers across the Internet in
the morning on a weekday. Five hundred lines were sent to each server. Eight packets
were lost to the first server and 16 packets were lost to the second server. Of the 16 lost to
the second server, one packet was lost twice in a row: that is, the packet had to be
retransmitted two times before a reply was received. All other lost packets were handled
with a single retransmission. We could verify that these packets were really lost by printing
the sequence number of each received packet. If a packet is just delayed and not lost,
after the retransmission, two replies will be received by the client: one corresponding to
the original transmission that was delayed and one corresponding to the retransmission.
Notice we are unable to tell when we retransmit whether it was the client's request or the
server's reply that was discarded.

For the first edition of this book, the author wrote a UDP server that randomly discarded
packets to test this client. That is no longer needed; all we have to do is run the client to a
server across the Internet and we are almost guaranteed of some packet loss!

[ Team LiB ]

Page 697

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

22.6 Binding Interface Addresses
One common use for our get_ifi_info function is with UDP applications that need to
monitor all interfaces on a host to know when a datagram arrives, and on which interface it
arrives. This allows the receiving program to know the destination address of the UDP
datagram, since that address is what determines the socket to which a datagram is
delivered, even if the host does not support the IP_RECVDSTADDR socket option.

Recall our discussion at the end of Section 22.2. If the host employs the common weak
end system model, the destination IP address may differ from the IP address of the
receiving interface. In this case, all we can determine is the destination address of the
datagram, which does not need to be an address assigned to the receiving interface. To
determine the receiving interface requires either the IP_RECVIF or IPV6_PKTINFO socket
option.

Figure 22.15 is the first part of a simple example of this technique with a UDP server that
binds all the unicast addresses, all the broadcast addresses, and finally the wildcard
address.

Call get_ifi_info, to obtain interface information
11 12 get_ifi_info, obtains all the IPv4 addresses, including aliases, for all interfaces.
The program then loops through each returned ifi_info structure.

Create UDP socket and bind unicast address
13 20 A UDP socket is created and the unicast address is bound to it. We also set the
SO_REUSEADDR socket option, as we are binding the same port (SERV_PORT) for all IP
addresses.

Figure 22.15 First part of UDP server that binds all addresses.

advio/udpserv03.c

 1 #include    "unpifi.h"

 2 void    mydg_echo(int, SA *, socklen_t, SA *);

 3 int

 4 main(int argc, char **argv)

 5 {

 6     int     sockfd;

 7     const int on = 1;

 8     pid_t   pid;

 9     struct ifi_info *ifi, *ifihead;

10     struct sockaddr_in *sa, cliaddr, wildaddr;

11     for (ifihead = ifi = Get_ifi_info(AF_INET, 1);

12          ifi != NULL; ifi = ifi->ifi_next) {

13             /* bind unicast address */

14         sockfd = Socket(AF_INET, SOCK_DGRAM, 0);

15         Setsockopt(sockfd, SOL_SOCKET, SO_REUSEADDR, &on, sizeof(on));

16         sa = (struct sockaddr_in *) ifi->ifi_addr;

17         sa->sin_family = AF_INET;

Page 698

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


18         sa->sin_port = htons(SERV_PORT);

19         Bind(sockfd, (SA *) sa, sizeof(*sa));

20         printf("bound %s\n", Sock_ntop((SA *) sa, sizeof(*sa)));

21         if ( (pid = Fork()) == 0) {  /* child */

22             mydg_echo(sockfd, (SA *) &cliaddr, sizeof(cliaddr), (SA *) sa);

23             exit(0);            /* never executed */

24         }

Not all implementations require that this socket option be set. Berkeley-derived
implementations, for example, do not require the option and allow a new bind of an
already bound port if the new IP address being bound: (i) is not the wildcard, and (ii)
differs from all the IP addresses that are already bound to the port.

fork child for this address
21 24 A child is forked and the function mydg_echo is called for the child. This function
waits for any datagram to arrive on this socket and echoes it back to the sender.

Figure 22.16 shows the next part of the main function, which handles broadcast addresses.

Bind broadcast address
25 42 If the interface supports broadcasting, a UDP socket is created and the broadcast
address is bound to it. This time, we allow the bind to fail with an error of EADDRINUSE
because if an interface has multiple addresses (aliases) on the same subnet, then each of
the different unicast addresses will have the same broadcast address. We showed an
example of this following Figure 17.6. In this scenario, we expect only the first bind to
succeed.

Figure 22.16 Second part of UDP server that binds all addresses.

advio/udpserv03.c

25     if (ifi->ifi_flags & IFF_BROADCAST) {

26             /* try to bind broadcast address */

27         sockfd = Socket(AF_INET, SOCK_DGRAM, 0);

28         Setsockopt(sockfd, SOL_SOCKET, SO_REUSEADDR, &on, sizeof(on));

29         sa = (struct sockaddr_in *) ifi->ifi_brdaddr;

30         sa->sin_family = AF_INET;

31         sa->sin_port = htons(SERV_PORT);

32         if (bind(sockfd, (SA *) sa, sizeof(*sa)) < 0) {

33             if (errno == EADDRINUSE) {

34                 printf("EADDRINUSE: %s\n",

35                        Sock_ntop((SA *) sa, sizeof(*sa)));

36                 Close(sockfd);

37                 continue;

38             } else

39                 err_sys("bind error for %s",

40                         Sock_ntop((SA *) sa, sizeof(*sa)));

41         }

42         printf("bound %s\n", Sock_ntop((SA *) sa, sizeof(*sa)));

43         if ( (pid = Fork()) == 0) {  /* child */

44             mydg_echo(sockfd, (SA *) &cliaddr, sizeof(cliaddr),

45                       (SA *) sa);

46             exit(0);        /* never executed */

47         }

48     }

Page 699

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


49 }

fork child
43 47 A child is spawned and it calls the function mydg_echo.

The final part of the main function is shown in Figure 22.17. This code binds the wildcard
address to handle any destination addresses except the unicast and broadcast addresses
we have already bound. The only datagrams that should arrive on this socket should be
those destined to the limited broadcast address (255.255.255.255).

Create socket and bind wildcard address
50 62 A UDP socket is created, the SO_REUSEADDR socket option is set, and the wildcard IP
address is bound. A child is spawned, which calls the mydg_echo function.

main function terminates
63 The main function terminates, and the server continues executing all the children that
were spawned.

Figure 22.17 Final part of UDP server that binds all addresses.

advio/udpserv03.c

50         /* bind wildcard address */

51     sockfd = Socket(AF_INET, SOCK_DGRAM, 0);

52     Setsockopt(sockfd, SOL_SOCKET, SO_REUSEADDR, &on, sizeof(on));

53     bzero(&wildaddr, sizeof(wildaddr));

54     wildaddr.sin_family = AF_INET;

55     wildaddr.sin_addr.s_addr = htonl(INADDR_ANY);

56     wildaddr.sin_port = htons(SERV_PORT);

57     Bind(sockfd, (SA *) &wildaddr, sizeof(wildaddr));

58     printf("bound %s\n", Sock_ntop((SA *) &wildaddr, sizeof(wildaddr)));

59     if ( (pid = Fork()) == 0) {  /* child */

60         mydg_echo(sockfd, (SA *) &cliaddr, sizeof(cliaddr), (SA *) sa);

61         exit(0);                /* never executed */

62     }

63     exit(0);

64 }

The function mydg_echo, which is executed by all the children, is shown in Figure 22.18.

Figure 22.18 mydg_echo function.

advio/udpserv03.c

65 void

66 mydg_echo(int sockfd, SA *pcliaddr, socklen_t clilen, SA *myaddr)

67 {

68     int     n;

69     char    mesg[MAXLINE];

70     socklen_t len;

71     for ( ; ; ) {

72         len = clilen;

73         n = Recvfrom(sockfd, mesg, MAXLINE, 0, pcliaddr, &len);

74         printf("child %d, datagram from %s", getpid(),

75                Sock_ntop(pcliaddr, len));

Page 700

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


76         printf(", to %s\n", Sock_ntop(myaddr, clilen));

77         Sendto(sockfd, mesg, n, 0, pcliaddr, len);

78     }

79 }

New argument
65 66 The fourth argument to this function is the IP address that was bound to the socket.
This socket should receive only datagrams destined to that IP address. If the IP address is
the wildcard, then the socket should receive only datagrams that are not matched by some
other socket bound to the same port.

Read datagram and echo reply
71 78 The datagram is read with recvfrom and sent back to the client with sendto.

This function also prints the client's IP address and the IP address that was bound to the
socket.

We now run this program on our host solaris after establishing an alias address for the
hme0 Ethernet interface. The alias address is host number 200 on 10.0.0/24.

solaris % udpserv03  

bound 127.0.0.1:9877 loopback interface

bound 10.0.0.200:9877 unicast address of hme0:1 interface

bound 10.0.0.255:9877 broadcast address of hme0:1 interface

bound 192.168.1.20:9877 unicast address of hme0 interface

bound 192.168.1.255:9877 broadcast address of hme0 interface

bound 0.0.0.0.9877 wildcard

We can check that all these sockets are bound to the indicated IP address and port using 
netstat.

solaris % netstat -na | grep 9877  

127.0.0.1.9877 Idle

10.0.0.200.9877 Idle

*.9877 Idle

192.129.100.100.9877 Idle

*.9877 Idle

*.9877 Idle

We should note that our design of one child process per socket is for simplicity and other
designs are possible. For example, to reduce the number of processes, the program could

Page 701

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


manage all the descriptors itself using select, never calling fork. The problem with this
design is the added code complexity. While it is easy to use select for all the descriptors,
we would have to maintain some type of mapping of each descriptor to its bound IP
address (probably an array of structures) so we could print the destination IP address
when a datagram was read from a socket. It is often simpler to use a single process or a
single thread for one operation or descriptor instead of having a single process multiplex
many different operations or descriptors.

[ Team LiB ]

Page 702

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

22.7 Concurrent UDP Servers
Most UDP servers are iterative: The server waits for a client request, reads the request,
processes the request, sends back the reply, and then waits for the next client request. But
when the processing of the client request takes a long time, some form of concurrency is
desired.

The definition of a "long time" is whatever is considered too much time for another client to
wait while the current client is being serviced. For example, if two client requests arrive
within 10 ms of each other, and it takes an average of 5 seconds of clock time to service a
client, then the second client will have to wait about 10 seconds for its reply, instead of
about 5 seconds if the request was handled as soon as it arrived.

With TCP, it is simple to just fork a new child (or create a new thread, as we will see in
Chapter 26) and let the child handle the new client. What simplifies this server
concurrency when TCP is being used is that every client connection is unique: The TCP
socket pair is unique for every connection. But with UDP, we must deal with two different
types of servers:

1. First is a simple UDP server that reads a client request, sends a reply, and is then
finished with the client. In this scenario, the server that reads the client request
can fork a child and let it handle the request. The "request," that is, the contents of
the datagram and the socket address structure containing the client's protocol
address, are passed to the child in its memory image from fork. The child then
sends its reply directly to the client.

2. Second is a UDP server that exchanges multiple datagrams with the client. The
problem is that the only port number the client knows for the server is its wellknown
port. The client sends the first datagram of its request to that port, but how does
the server distinguish between subsequent datagrams from that client and new
requests? The typical solution to this problem is for the server to create a new
socket for each client, bind an ephemeral port to that socket, and use that socket
for all its replies. This requires that the client look at the port number of the server's
first reply and send subsequent datagrams for this request to that port.

An example of the second type of UDP server is TFTP. To transfer a file using TFTP normally
requires many datagrams (hundreds or thousands, depending on the file size), because the
protocol sends only 512 bytes per datagram. The client sends a datagram to the server's
well-known port (69), specifying the file to send or receive. The server reads the request,
but sends its reply from another socket that it creates and bind to an ephemeral port. All
subsequent datagrams between the client and server for this file use the new socket. This
allows the main TFTP server to continue to handle other client requests, which arrive at
port 69, while this file transfer takes place (perhaps over seconds, or even minutes).

If we assume a standalone TFTP server (i.e., not invoked by inetd), we have the scenario
shown in Figure 22.19. We assume that the ephemeral port bound by the child to its new
socket is 2134.

Figure 22.19. Processes involved in standalone concurrent UDP
server.

Page 703

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


If inetd is used, the scenario involves one more step. Recall from Figure 13.6 that most
UDP servers specify the wait-flag as wait. In our description following Figure 13.10, we
said that this causes inetd to stop selecting on the socket until its child terminates,
allowing its child to read the datagram that has arrived on the socket. Figure 22.20 shows
the steps involved.

Figure 22.20. UDP concurrent server invoked by inetd.

The TFTP server that is the child of inetd calls recvfrom and reads the client request. It
then forks a child of its own, and that child will process the client request. The TFTP server
then calls exit, sending SIGCHLD to inetd, which tells inetd to again select on the socket
bound to UDP port 69.

[ Team LiB ]

Page 704

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

22.8 IPv6 Packet Information
IPv6 allows an application to specify up to five pieces of information for an outgoing
datagram:

1. Source IPv6 address

2. Outgoing interface index

3. Outgoing hop limit

4. Next-hop address

5. Outgoing traffic class

This information is sent as ancillary data with sendmsg. "Sticky" values can be set for the
socket, so that they apply to every packet sent, as described in Section 27.7. Four similar
pieces of information can be returned for a received packet, and they are returned as
ancillary data with recvmsg:

1. Destination IPv6 address

2. Arriving interface index

3. Arriving hop limit

4. Arriving traffic class

Figure 22.21 summarizes the contents of the ancillary data, which we will discuss shortly.

Figure 22.21. Ancillary data for IPv6 packet information.

An in6_pktinfo structure contains either the source IPv6 address and outgoing interface
index for an outgoing datagram or the destination IPv6 address and arriving interface
index for a received datagram.

struct in6_pktinfo {

Page 705

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


  struct in6_addr ipi6_addr;     /* src/dst IPv6 address */

  int             ipi6_ifindex;  /* send/recv interface index */

};

This structure is defined by including the <netinet/in.h> header. In the cmsghdr structure
containing this ancillary data, the cmsg_level member will be IPPROTO_IPV6, the
cmsg_type member will be IPV6_PKTINFO, and the first byte of data will be the first byte of
the in6_pktinfo structure. In the example in Figure 22.21, we assume no padding
between the cmsghdr structure and the data, and 4 bytes for an integer.

To specify this information for a given packet, just specify the control information as
ancillary data for sendmsg. To specify this information for all packets sent on a socket, set
the IPV6_PKTINFO socket option with the in6_pktinfo as the option value as described in
Section 27.7. This information is returned as ancillary data by recvmsg only if the
application has the IPV6_RECVPKTINFO socket option enabled.

Outgoing and Arriving Interface
Interfaces on an IPv6 node are identified by positive integers, as we discussed in Section
18.6. Recall that no interface is ever assigned an index of 0. When specifying the outgoing
interface, if the ipi6_ifindex value is 0, the kernel will choose the outgoing interface. If
the application specifies an outgoing interface for a multicast packet, the interface
specified by the ancillary data overrides any interface specified by the IPV6_MULTICAST_IF
socket option for this datagram only.

Source and Destination IPv6 Addresses
The source IPv6 address is normally specified by calling bind. Supplying the source
address together with the data may require less overhead. This option also allows a server
to guarantee that the source address of its reply equals the destination address of the
client's request, a feature some clients require and that is harder to accomplish with IPv4 (
Exercise 22.4).

When specifying the source IPv6 address as ancillary data, if the ipi6_addr member of
the in6_pktinfo structure is IN6ADDR_ANY_INIT, then: (i) if an address is currently bound
to the socket, it is used as the source address, or (ii) if no address is currently bound to
the socket, the kernel will choose the source address. If the ipi6_addr member is not the
unspecified address, but the socket has already bound a source address, then the 
ipi6_addr value overrides the already bound source address for this output operation only.
The kernel will verify that the requested source address is indeed a unicast address
assigned to the node.

When the in6_pktinfo structure is returned as ancillary data by recvmsg, the ipi6_addr
member contains the destination IPv6 address from the received packet. This is similar in
concept to the IP_RECVDSTADDR socket option for IPv4.

Specifying and Receiving the Hop Limit
The outgoing hop limit is normally specified with either the IPV6_UNICAST_HOPS socket
option for unicast datagrams (Section 7.8) or the IPV6_MULTICAST_HOPS socket option for
multicast datagrams (Section 21.6). Specifying the hop limit as ancillary data lets us
override either the kernel's default or a previously specified value, for either a unicast
destination or a multicast destination, for a single output operation. Returning the received
hop limit is useful for programs such as traceroute and for a class of IPv6 applications
that need to verify that the received hop limit is 255 (e.g., that the packet has not been
forwarded).

The received hop limit is returned as ancillary data by recvmsg only if the application has

Page 706

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


enabled the IPV6_RECVHOPLIMIT socket option. In the cmsghdr structure containing this
ancillary data, the cmsg_level member will be IPPROTO_IPV6, the cmsg_type member will
be IPV6_HOPLIMIT, and the first byte of data will be the first byte of the (4-byte) integer
hop limit. We showed this in Figure 22.21. Realize that the value returned as ancillary data
is the actual value from the received datagram, while the value returned by a getsockopt
of the IPV6_UNICAST_HOPS option is the default value the kernel will use for outgoing
datagrams on the socket.

To control the outgoing hop limit for a given packet, just specify the control information as
ancillary data for sendmsg. The normal values for the hop limit are between 0 and 255,
inclusive, but if the integer value is -1, this tells the kernel to use its default.

The hop limit is not contained in the in6_pktinfo structure for the following reason: Some
UDP servers want to respond to client requests by sending their reply out the same
interface on which the request was received and with the source IPv6 address of the reply
equal to the destination IPv6 address of the request. To do this, the application can enable
just the IPV6_RECVPKTINFO socket option and then use the received control information
from recvmsg as the outgoing control information for sendmsg. The application need not
examine or modify the in6_pktinfo structure at all. But if the hop limit was contained in
this structure, the application would have to parse the received control information and
change the hop limit member, since the received hop limit is not the desired value for an
outgoing packet.

Specifying the Next-Hop Address
The IPV6_NEXTHOP ancillary data object specifies the next hop for the datagram as a socket
address structure. In the cmsghdr structure containing this ancillary data, the cmsg_level
member is IPPROTO_IPV6, the cmsg_type member is IPV6_NEXTHOP, and the first byte of
data is the first byte of the socket address structure.

In Figure 22.21, we show an example of this ancillary data object, assuming the socket
address structure is a 28-byte sockaddr_in6 structure. In this case, the node identified by
that address must be a neighbor of the sending host. If that address equals the destination
IPv6 address of the datagram, then this is equivalent to the existing SO_DONTROUTE socket
option. The next-hop address can be set for all packets on a socket by setting the 
IPv6_NEXTHOP socket option with the sockaddr_in6 as the option value, as described in
Section 27.7. Setting this option requires superuser privileges.

Specifying and Receiving the Traffic Class
The IPV6_TCLASS ancillary data object specifies the traffic class for the datagram. In the
cmsghdr structure containing this ancillary data, the cmsg_level member will be
IPPROTO_IPV6, the cmsg_type member will be IPV6_TCLASS, and the first byte of data will
be the first byte of the (4-byte) integer traffic class. We showed this in Figure 22.21. As
described in Section A.3, the traffic class is made up of the DSCP and ECN fields. These
fields must be set together. The kernel may mask or ignore the user-specified value if it
needs to control the value (e.g., if the kernel implements ECN, it may set the ECN bits to
its own desired value, ignoring the two bits specified with the IPV6_TCLASS option). The
traffic class specified may be in the normal range of 0 to 255, or -1 to allow the kernel to
use its default value.

To specify the traffic class for a given packet, include the ancillary data with that packet. To
specify the traffic class for all packets on a socket, specify the traffic class as an integer to
the IPV6_TCLASS socket option, as described in Section 27.7. The received traffic class is
returned as ancillary data by recvmsg only if the application has the IPV6_RECVTCLASS
socket option enabled.

[ Team LiB ]

Page 707

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


Page 708

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

22.9 IPv6 Path MTU Control
IPv6 gives applications several controls over path MTU discovery (Section 2.11). The
defaults are appropriate for the vast majority of applications, but special-purpose programs
may want to modify the path MTU discovery behavior. Four socket options are provided for
this purpose.

Sending with Minimum MTU
When performing path MTU discovery, packets are normally fragmented using the MTU of
the outgoing interface or the path MTU, whichever is smaller. IPv6 defines a minimum MTU
of 1,280 bytes, which must be supported by all paths. Fragmenting to this minimum MTU
wastes opportunities for sending larger packets (which is more efficient), but avoids the
drawbacks of path MTU discovery (dropped packets and delay while the MTU is being
discovered).

Two classes of applications may want to use the minimum MTU: those that use multicast
(to avoid an implosion of ICMP "packet too big" messages) and those that perform brief
transactions to lots of destinations (such as the DNS). Learning the MTU for a multicast
session may not be important enough to pay the cost of receiving and processing millions
of ICMP "packet too big" messages, and applications such as the DNS generally don't talk
to the same server often enough to make it worthwhile to risk the cost of dropped packets.

The use of the minimum MTU is controlled with the IPV6_USE_MIN_MTU socket option. It has
three defined values: -1, the default, uses the minimum MTU for multicast destinations but
performs path MTU discovery to unicast destinations; 0 performs path MTU discovery to all
destinations; and 1 uses the minimum MTU for all destinations.

IPV6_USE_MIN_MTU can also be sent as ancillary data. In the cmsghdr structure containing
this ancillary data, the cmsg_level member will be IPPROTO_IPV6, the cmsg_type member
will be IPV6_USE_MIN_MTU, and the first byte of data will be the first byte of the (4-byte)
integer value.

Receiving Path MTU Change Indications
To receive change notifications in the path MTU, an application can enable the 
IPV6_RECVPATHMTU socket option. This flag enables the reception of the path MTU as
ancillary data anytime it changes. recvmsg will return a zero-length datagram, but there
will be ancillary data indicating the path MTU. In the cmsghdr structure containing this
ancillary data, the cmsg_level member will be IPPROTO_IPV6, the cmsg_type member will
be IPV6_PATHMTU, and the first byte of data will be the first byte of an ip6_mtuinfo
structure. This structure contains the destination for which the path MTU has changed and
the new path MTU value in bytes.

struct ip6_mtuinfo {

  struct sockaddr_in6 ip6m_addr;   /* destination address */

  uint32_t            ip6m_mtu;    /* path MTU in host byte order */

};

This structure is defined by including the <netinet/in.h> header.

Determining the Current Path MTU
If an application has not been keeping track with the IPV6_RECVPATHMTU option, it can

Page 709

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


determine the current path MTU of a connected socket with the IPV6_PATHMTU socket
option. This is a get-only option, which returns an ip6_mtuinfo structure (see above)
containing the current path MTU. If no path MTU has been determined, it returns the MTU
of the outgoing interface. The value of the returned address is undefined.

Avoiding Fragmentation
By default, the IPv6 stack will fragment outgoing packets to the path MTU. An application
such as traceroute may not want this automatic fragmentation, to discover the path MTU
on its own. The IPV6_DONTFRAG socket option is used to turn off automatic fragmentation; a
value of 0 (the default) permits automatic fragmentation, while a value of 1 turns off
automatic fragmentation.

When automatic fragmentation is off, a send call providing a packet that requires
fragmentation may return EMSGSIZE; however, the implementation is not required to
provide this. The only way to determine whether a packet requires fragmentation is to use
the IPV6_RECVPATHMTU option, which was already described.

IPV6_DONTFRAG can also be sent as ancillary data. In the cmsghdr structure containing this
ancillary data, the cmsg_level member will be IPPROTO_IPV6, the cmsg_type member will
be IPV6_DONTFRAG, and the first byte of data will be the first byte of the (4-byte) integer
value.

[ Team LiB ]

Page 710

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

22.10 Summary
There are applications that want to know the destination IP address and the received
interface for a UDP datagram. The IP_RECVDSTADDR and IP_RECVIF socket options can be
enabled to return this information as ancillary data with each datagram. Similar
information, along with the received hop limit, can be returned for IPv6 sockets by
enabling the IPV6_RECVPKTINFO socket option.

Despite all the features provided by TCP that are not provided by UDP, there are times to
use UDP. UDP must be used for broadcasting or multicasting. UDP can be used for simple
request-reply scenarios, but some form of reliability must then be added to the application.
UDP should not be used for bulk data transfer.

We added reliability to our UDP client in Section 22.5 by detecting lost packets using a
timeout and retransmission. We modified our retransmission timeout dynamically by
adding a timestamp to each packet and kept track of two estimators: the RTT and its mean
deviation. We also added a sequence number to verify that a given reply was the one
expected. Our client still employed a simple stop-and-wait protocol, but that is the type of
application for which UDP can be used.

[ Team LiB ]

Page 711

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Exercises
22.1 In Figure 22.18, why are there two calls to printf?

22.2 Can dg_send_recv (Figures 22.8 and 22.9) ever return 0?

22.3 Recode dg_send_recv to use select and its timer instead of using
alarm, SIGALRM, sigsetjmp, and siglongjmp.

22.4 How can an IPv4 server guarantee that the source address of its reply
equals the destination address of the client's request (e.g., functionality
similar to that provided by the IPV6_PKTINFO socket option)?

22.5 The main function in Section 22.6 is protocol-dependent on IPv4.
Recode it to be protocolindependent. Require the user to specify one or
two command-line arguments, the first being an optional IP address
(e.g., 0.0.0.0 or 0::0) and the second being a required port number.
Then call udp_client just to obtain the address family, port number,
and length of the socket address structure.

What happens if you call udp_client, as suggested, without specifying
a hostname argument because udp_client does not specify the
AI_PASSIVE hint to getaddrinfo?

22.6 Run the client in Figure 22.6 to an echo server across the Internet after
modifying the RTT functions to print each RTT. Also, modify the 
dg_send_recv function to print each received sequence number. Plot
the resulting RTTs along with the estimators for the RTT and its mean
deviation.

[ Team LiB ]

Page 712

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Chapter 23. Advanced SCTP Sockets
Section 23.1.?Introduction

Section 23.2.?An Autoclosing One-to-Many-Style Server

Section 23.3.?Partial Delivery

Section 23.4.?Notifications

Section 23.5.?Unordered Data

Section 23.6.?Binding a Subset of Addresses

Section 23.7.?Determining Peer and Local Address Information

Section 23.8.?Finding an Association ID Given an IP Address

Section 23.9.?Heartbeating and Address Failure

Section 23.10.?Peeling Off an Association

Section 23.11.?Controlling Timing

Section 23.12.?When to Use SCTP Instead of TCP

Section 23.13.?Summary

Exercises

[ Team LiB ]

Page 713

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

23.1 Introduction
In this chapter, we will dig a bit deeper into SCTP, examining more of the features and
socket options that SCTP provides to its users. We will discuss a number of topics,
including control of failure detection, unordered data, and notifications. Throughout this
chapter, we will provide examples of code so that the reader can see how to use some of
SCTP's advanced features.

SCTP is a message-oriented protocol, delivering partial or complete messages to the user.
Partial messages will only be delivered if the application chooses to send large messages
(e.g., larger than half the socket buffer size) to its peer. When partial messages are
delivered, SCTP will never mix two partial messages together. An application will either
receive a whole message in one receive operation or it will receive a message in several
consecutive receive operations. We will illustrate a method of dealing with this partial
delivery mechanism through an example utility function.

SCTP servers can be either iterative or concurrent, depending on the style of interface the
application developer chooses. SCTP also provides a method to extract an association from
a one-to-many-style socket into a separate one-to-one-style socket. This method allows
the construction of a server that is both iterative and concurrent.

[ Team LiB ]

Page 714

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

23.2 An Autoclosing One-to-Many-Style Server
Recall the server program we wrote in Chapter 10. That program does not keep track of
any associations. The server depends on the client to close the association, thereby
removing the association state. But depending on the client to close the association leaves
a weakness: What happens if a client opens an association and never sends any data?
Resources would be allocated to a client that never uses them. This dependency could
introduce an accidental denial-of-service attack to our SCTP implementation from lazy
clients. To avoid this problem, an autoclose feature was added to SCTP.

Autoclose lets an SCTP endpoint specify a maximum number of seconds an association
may remain idle. An association is considered idle when it is not transmitting user data in
either direction. If an association is idle for more than this maximum time, the association
is automatically closed by the SCTP implementation.

When using this option, care should be taken in choosing a value for autoclose. The server
should not pick too small a value, otherwise it may find itself needing to send data on an
association that has been closed. There would be extra overhead in re-opening the
association to send back the data to the client, and it is unlikely that the client would have
performed a listen to enable inbound associations. Figure 23.1 revisits our server code
and inserts the necessary calls to make our server resistant to stale idle associations. As
described in Section 7.10, autoclose defaults to disabled and must be explicitly enabled
with the SCTP_AUTOCLOSE socket option.

Figure 23.1 A server enabling autoclose.

sctp/sctpserv04.c

14     if (argc == 2)

15         stream_increment = atoi(argv[1]);

16     sock_fd = Socket(AF_INET, SOCK_SEQPACKET, IPPROTO_SCTP);

17     close_time = 120;

18     Setsockopt(sock_fd, IPPROTO_SCTP, SCTP_AUTOCLOSE,

19                &close_time, sizeof(close_time));

20     bzero(&servaddr, sizeof(servaddr));

21     servaddr.sin_family = AF_INET;

22     servaddr.sin_addr.s_addr = htonl(INADDR_ANY);

23     servaddr.sin_port = htons(SERV_PORT);

Set autoclose option
17 19 The server selects a value of 120 seconds to shut down idle associations and places
this value in the variable close_time. Next, the server calls the socket option that
configures the autoclose time. All the remaining code in the server stays unchanged.

Now, SCTP will automatically close associations that remain idle for more than two
minutes. By forcing the association to close automatically, we reduce the amount of server
resources consumed by lazy clients.

[ Team LiB ]

Page 715

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

23.3 Partial Delivery
Partial delivery will be used by the SCTP implementation any time a "large" message is
being received, where "large" means the SCTP stack deems that it does not have the
resources to dedicate to the message. The following considerations will be made by the
receiving SCTP implementation before starting this API:

 The amount of buffer space being consumed by the message must meet or exceed
some threshold.

 The stack can only deliver from the beginning of the message sequentially up to the
first missing piece.

 Once invoked, no other messages may be made available for the user until the
current message has been completely received and passed to the user. This means
that the large message blocks all other messages that would normally be
deliverable, including those in other streams.

The KAME implementation of SCTP uses a threshold of one-half the socket receive buffer.
At this writing, the default receive buffer for the stack is 131,072 bytes. So, without
changing the SO_RCVBUF, a single message must be larger than 65,536 bytes before the
partial delivery API will be invoked. To further extend the new version of the server from 
Section 10.2, we write a utility function that wraps the sctp_recvmsg function call. We
then create a modified server to use our new function. Figure 23.2 shows our wrapper
function to handle the partial delivery API.

Prepare static buffer
12 15 If the function's static buffer has not been allocated, allocate it and set up the state
associated with it.

Read message
16 18 Read in the first message using the sctp_recvmsg function.

Handle initial read error
19 22 If sctp_recvmsg returns an error or an EOF, we pass it directly back to the caller.

While there is more data for this message
23 24 While the message flags show that the function has not received a complete
message, collect more data. The function starts by calculating how much is left in the
static buffer.

See if we need to grow static buffer
25 34 Whenever the function no longer has a minimum amount of room left in its receive
buffer, it must grow the buffer. We do this using the realloc function to allocate a new
buffer of the current size, plus an increment amount, and copy the old data. If for some
reason the function cannot grow its buffer any more, it exits with an error.

Receive more data
35 36 Gather more data with the sctp_recvmsg function.

Move forward

Page 716

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


37 38 The function increments the buffer index and goes back to test if it has read all of
the message.

At loop end
39 40 When the loop terminates, the function copies the number of bytes read into the
pointer provided by the caller and returns a pointer to the allocated buffer.

Figure 23.2 Handling the partial delivery API.

sctp/sctp_pdapircv.c

 1 #include    "unp.h"

 2 static uint8_t *sctp_pdapi_readbuf = NULL;

 3 static int sctp_pdapi_rdbuf_sz = 0;

 4 uint8_t *

 5 pdapi_recvmsg(int sock_fd,

 6               int *rdlen,

 7               SA *from,

 8               int *from_len, struct sctp_sndrcvinfo *sri, int *msg_flags)

 9 {

10     int     rdsz, left, at_in_buf;

11     int     frmlen = 0;

12     if (sctp_pdapi_readbuf == NULL) {

13         sctp_pdapi_readbuf = (uint8_t *) Malloc(SCTP_PDAPI_INCR_SZ);

14         sctp_pdapi_rdbuf_sz = SCTP_PDAPI_INCR_SZ;

15     }

16     at_in_buf =

17         Sctp_recvmsg(sock_fd, sctp_pdapi_readbuf, sctp_pdapi_rdbuf_sz, from,

18                      from_len, sri, msg_flags);

19     if (at_in_buf < 1) {

20         *rdlen = at_in_buf;

21         return (NULL);

22     }

23     while ((*msg_flags & MSG_EOR) == 0) {

24         left = sctp_pdapi_rdbuf_sz - at_in_buf;

25         if (left < SCTP_PDAPI_NEED_MORE_THRESHOLD) {

26             sctp_pdapi_readbuf =

27                 realloc(sctp_pdapi_readbuf,

28                         sctp_pdapi_rdbuf_sz + SCTP_PDAPI_INCR_SZ);

29             if (sctp_pdapi_readbuf == NULL) {

30                 err_quit("sctp_pdapi ran out of memory");

31             }

32             sctp_pdapi_rdbuf_sz += SCTP_PDAPI_INCR_SZ;

33             left = sctp_pdapi_rdbuf_sz - at_in_buf;

34         }

35         rdsz = Sctp_recvmsg(sock_fd, &sctp_pdapi_readbuf[at_in_buf],

36                             left, NULL, &frmlen, NULL, msg_flags);

37         at_in_buf += rdsz;

38      }

39      *rdlen = at_in_buf;

40      return (sctp_pdapi_readbuf);

41  }

We next modify our server in Figure 23.3 so that it uses the new function.

Read message

Page 717

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


29 30 Here the server calls the new partial delivery utility function. The server calls this
after nulling out any old data that may have been hanging around in the sri variable.

Figure 23.3 Our server using the partial delivery API.

sctp/sctpserv05.c

26     for ( ; ; ) {

27         len = sizeof(struct sockaddr_in);

28         bzero(&sri, sizeof(sri));

29         readbuf = pdapi_recvmsg(sock_fd, &rd_sz,

30                                 (SA *) &cliaddr, &len, &sri, &msg_flags);

31         if (readbuf == NULL)

32             continue;

Verify we read something
31 32 Note that now the server must test for NULL to see if the read was successful. If not,
the server just continues.

[ Team LiB ]

Page 718

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

23.4 Notifications
As we discussed in Section 9.14, an application can subscribe to seven notifications. Up to
now, our application has ignored all events that may occur other than the receipt of new
data. The examples in this section give an overview of how to receive and interpret SCTP's
notifications of additional transport-layer events. Figure 23.4 shows a function that will
display any notification that arrives from the transport. We will also modify our server to
enable all events and call this new function when a notification is received. Note that our
server is not really using the notification for any specific purpose.

Cast and switch
14 15 The function casts the incoming buffer to the overall union type. It dereferences the
generic sn_header structure and the generic type sn_type, and switches on this value.

Process association change
16 40 If the function finds an association change notification in the buffer, it prints the
type of association change that occurred.

Peer address change
41 66 If it was a peer address notification, the function prints the address event (after
decoding) and the address.

Remote error
67 71 If the function finds a remote error, it displays this fact and the association ID on
which it occurred. The function does not bother to decode and display the actual error
reported by the remote peer. The information is available in the sre_data field of the
sctp_remote_error structure.

Figure 23.4 A notifications display utility.

sctp/sctp_displayevents.c

 1 #include    "unp.h"

 2 void

 3 print_notification(char *notify_buf)

 4 {

 5     union sctp_notification *snp;

 6     struct sctp_assoc_change *sac;

 7     struct sctp_paddr_change *spc;

 8     struct sctp_remote_error *sre;

 9     struct sctp_send_failed *ssf;

10     struct sctp_shutdown_event *sse;

11     struct sctp_adaption_event *ae;

12     struct sctp_pdapi_event *pdapi;

13     const char *str;

14     snp = (union sctp_notification *) notify_buf;

15     switch (snp->sn_header.sn_type) {

16     case SCTP_ASSOC_CHANGE:

17        sac = &snp->sn_assoc_change;

18        switch (sac->sac_state) {

Page 719

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


19        case SCTP_COMM_UP:

20            str = "COMMUNICATION UP";

21            break;

22        case SCTP_COMM_LOST:

23            str = "COMMUNICATION LOST";

24            break;

25        case SCTP_RESTART:

26            str = "RESTART";

27            break;

28        case SCTP_SHUTDOWN_COMP:

29            str = "SHUTDOWN COMPLETE";

30            break;

31        case SCTP_CANT_STR_ASSOC:

32            str = "CAN'T START ASSOC";

33            break;

34        default:

35            str = "UNKNOWN";

36            break;

37        }                       /* end switch(sac->sac_state) */

38        printf("SCTP_ASSOC_CHANGE: %s, assoc=0x%x\n", str,

39               (uint32_t) sac->sac_assoc_id);

40        break;

41    case SCTP_PEER_ADDR_CHANGE:

42        spc = &snp->sn_paddr_change;

43        switch (spc->spc_state) {

44        case SCTP_ADDR_AVAILABLE:

45            str = "ADDRESS AVAILABLE";

46            break;

47        case SCTP_ADDR_UNREACHABLE:

48            str = "ADDRESS UNREACHABLE";

49            break;

50        case SCTP_ADDR_REMOVED:

51            str = "ADDRESS REMOVED";

52            break;

53        case SCTP_ADDR_ADDED:

54            str = "ADDRESS ADDED";

55            break;

56        case SCTP_ADDR_MADE_PRIM:

57            str = "ADDRESS MADE PRIMARY";

58            break;

59        default:

60            str = "UNKNOWN";

61            break;

62        }                       /* end switch(spc->spc_state) */

63        printf("SCTP_PEER_ADDR_CHANGE: %s, addr=%s, assoc=0x%x\n", str,

64               Sock_ntop((SA *) &spc->spc_aaddr, sizeof(spc->spc_aaddr)),

65               (uint32_t) spc->spc_assoc_id);

66        break;

67    case SCTP_REMOTE_ERROR:

68        sre = &snp->sn_remote_error;

69        printf("SCTP_REMOTE_ERROR: assoc=0x%x error=%d\n",

70               (uint32_t) sre->sre_assoc_id, sre->sre_error);

71        break;

72    case SCTP_SEND_FAILED:

73        ssf = &snp->sn_send_failed;

74        printf("SCTP_SEND_FAILED: assoc=0x%x error=%d\n",

75               (uint32_t) ssf->ssf_assoc_id, ssf->ssf_error);

76        break;

77    case SCTP_ADAPTION_INDICATION:

78        ae = &snp->sn_adaption_event;

Page 720

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


79        printf("SCTP_ADAPTION_INDICATION: 0x%x\n",

80               (u_int) ae->sai_adaption_ind);

81        break;

82    case SCTP_PARTIAL_DELIVERY_EVENT:

83        pdapi = &snp->sn_pdapi_event;

84        if (pdapi->pdapi_indication == SCTP_PARTIAL_DELIVERY_ABORTED)

85            printf("SCTP_PARTIAL_DELIEVERY_ABORTED\n");

86        else

87            printf("Unknown SCTP_PARTIAL_DELIVERY_EVENT 0x%x\n",

88                   pdapi->pdapi_indication);

89        break;

90    case SCTP_SHUTDOWN_EVENT:

91        sse = &snp->sn_shutdown_event;

92        printf("SCTP_SHUTDOWN_EVENT: assoc=0x%x\n",

93               (uint32_t) sse->sse_assoc_id);

94        break;

95    default:

96        printf("Unknown notification event type=0x%x\n",

97               snp->sn_header.sn_type);

98    }

99 }

Failed message
72 76 If the function decodes a send failed notification, it knows that a message was not
sent to the peer. This means that either: (i) the association is coming down, and an
association notification will soon follow (if it has not already arrived), or (ii) the server is
using the partial reliability extension and a message was not successfully sent (due to
constraints placed on the transfer). The data actually sent is available to the function in
the ssf_data field (which our function does not examine).

Adaption layer indication
77 81 If the function decodes an adaption layer indicator, it displays the 32-bit value
passed in the setup message (INIT or INIT-ACK).

Partial delivery notification
82 89 If a partial delivery notification arrives, the function announces it. The only event
defined as of this writing is that the partial delivery is aborted.

Shutdown notification
90 94 If the function decodes this notification, it knows that the peer has issued a graceful
shutdown. This notification is usually soon followed by an association change notification
when the shutdown sequence completes.

The modification to the server to use our new function can be seen in Figure 23.5.

Figure 23.5 A modified server that uses notifications.

sctp/sctpserv06.c

21     bzero(&evnts, sizeof(evnts));

22     evnts.sctp_data_io_event = 1;

23     evnts.sctp_association_event = 1;

24     evnts.sctp_address_event = 1;

25     evnts.sctp_send_failure_event = 1;

26     evnts.sctp_peer_error_event = 1;

27     evnts.sctp_shutdown_event = 1;

Page 721

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


28     evnts.sctp_partial_delivery_event = 1;

29     evnts.sctp_adaption_layer_event = 1;

30     Setsockopt(sock_fd, IPPROTO_SCTP, SCTP_EVENTS, &evnts, sizeof(evnts));

31     Listen(sock_fd, LISTENQ);

32     for ( ; ; ) {

33         len = sizeof(struct sockaddr_in);

34         rd_sz = Sctp_recvmsg(sock_fd, readbuf, sizeof(readbuf),

35                              (SA *) &cliaddr, &len, &sri, &msg_flags);

36         if (msg_flags & MSG_NOTIFICATION) {

37             print_notification(readbuf);

38             continue;

39         }

Set up to receive notifications
21 30 Here the server changes the event settings so that it will receive all notifications.

Normal receive code
31 35 This section of server code is unchanged.

Handle notification
36 39 Here the server checks the msg_flags field. If the server finds that the data is a
notification, it calls our display function sctp_print_notification and loops around to
read the next message.

Running the Code
We start the client and send one message as follows:

     FreeBSD-lap: ./sctpclient01 10.1.1.5

     [0] Hello

     From str:1 seq:0 (assoc:c99e15a0) : [0] Hello

     Control-D

     FreeBSD-lap:

When receiving the connection, message, and connection termination, our modified server
displays each event as it occurs.

     FreeBSD-lap: ./sctpserv06

     SCTP_ADAPTION_INDICATION: 0x504c5253

     SCTP_ASSOC_CHANGE: COMMUNICATION UP, assoc=c99e2680h

     SCTP_SHUTDOWN_EVENT: assoc=c99e2680h

     SCTP_ASSOC_CHANGE: SHUTDOWN COMPLETE, assoc=c99e2680h

     Control-C

As you can see, the server now announces the events as they occur on the transport.

[ Team LiB ]

Page 722

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

23.5 Unordered Data
SCTP normally provides reliable ordered delivery of data. SCTP also provides a reliable
unordered service. A message with the MSG_UNORDERED flag is sent with no order
constraints and is made deliverable as soon as it arrives. Unordered data can be sent in
any stream. No stream sequence number is assigned. Figure 23.6 shows the changes
needed to our client program to send the request to the echo server with the unordered
data service.

Figure 23.6 A sctp_strcli that sends unordered data.

sctp/sctp_strcli_un.c

18     out_sz = strlen(sendline);

19     Sctp_sendmsg(sock_fd, sendline, out_sz,

20                  to, tolen, 0, MSG_UNORDERED, sri.sinfo_stream, 0, 0);

Send data using unordered service
18 20 This is nearly the same as the sctpstr_cli function developed in Section 10.4. On
line 21, we see the single change made: The client explicitly passes the MSG_UNORDERED
flag to invoke the unordered service. Normally, all data within a given stream is ordered
with sequence numbers. The MSG_UNORDERED flag causes the data sent with this flag to be
sent unordered, with no sequence number, and can be delivered as soon as it arrives, even
if other unordered data that was sent earlier on the same stream has not yet arrived.

[ Team LiB ]

Page 723

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

23.6 Binding a Subset of Addresses
Some applications may want to bind a proper subset of the IP addresses of a machine to a
single socket. In TCP and UDP, traditionally, it was not possible to bind a subset of
addresses. The bind system call allows an application to bind a single address or the
wildcard address. Due to this restriction, the new function call sctp_bindx is provided to
allow an application to bind to more than one address. Note that all the addresses must
use the same port number, and if bind was called, the port number must be the same as
that provided to bind. The sctp_bindx call will fail if a different port is provided. Figure
23.7 shows a utility we will add to our server that will bind an argument list.

Figure 23.7 Function to bind a subset of addresses.

sctp/sctp_bindargs.c

 1 #include    "unp.h"

 2 int

 3 sctp_bind_arg_list(int sock_fd, char **argv, int argc)

 4 {

 5     struct addrinfo *addr;

 6     char     *bindbuf, *p, portbuf[10];

 7     int       addrcnt = 0;

 8     int       i;

 9     bindbuf = (char *) Calloc(argc, sizeof(struct sockaddr_storage));

10     p = bindbuf;

11     sprintf(portbuf, "%d", SERV_PORT);

12     for (i = 0; i < argc; i++) {

13         addr = Host_serv(argv[i], portbuf, AF_UNSPEC, SOCK_SEQPACKET);

14         memcpy(p, addr->ai_addr, addr->ai_addrlen);

15         freeaddrinfo(addr);

16         addrcnt++;

17         p += addr->ai_addrlen;

18     }

19     Sctp_bindx(sock_fd, (SA *) bindbuf, addrcnt, SCTP_BINDX_ADD_ADDR);

20     free(bindbuf);

21     return (0);

22 }

Allocate space for bind arguments
9 10 Our sctp_bind_arg_list function starts off by allocating space for the bind
arguments. Note that the sctp_bindx function can accept a mix of IPv6 and IPv4
addresses. We allocate enough space for a sockaddr_storage for each address, even
though the address list argument to sctp_bindx is a packed list of addresses (Figure 9.4).
This results in some memory waste but is simpler than calculating the exact space required
by processing the argument list twice.

Process arguments
11 18 We set up the portbuf to be an ASCII representation of the port number, to prepare
to call our getaddrinfo wrapper function, host_serv. We pass each address and the port
number to host_serv, along with AF_UNSPEC to allow IPv4 or IPv6, and SOCK_SEQPACKET to
specify that we're using SCTP. We copy the first sockaddr that is returned and ignore any
others. Since the arguments to this function are meant to be literal address strings, as

Page 724

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


opposed to names that could have multiple addresses associated with them, this is safe.
We free the return value from getaddrinfo, increment our count of addresses, and move
the pointer to the next element in our packed array of sockaddr structures.

Call binding function
19 The function now resets its pointer to the top of the bind buffer and calls sctp_bindx
with the subset of addresses decoded earlier.

Return success
20 21 If the function reaches here, we are successful, so clean up and return.

Figure 23.8 illustrates our modified echo server that now binds a list of addresses passed
on the command line. Note that we have modified the server slightly so it always returns
any echoed message on the stream on which it arrived.

Figure 23.8 Server using a variable set of addresses.

sctp/sctpserv07.c

12     if (argc < 2)

13         err_quit("Error, use %s [list of addresses to bind]\n", argv[0]);

14     sock_fd = Socket(AF_INET6, SOCK_SEQPACKET, IPPROTO_SCTP);

15     if (sctp_bind_arg_list(sock_fd, argv + 1, argc - 1))

16         err_sys("Can't bind the address set");

17     bzero(&evnts, sizeof(evnts));

18     evnts.sctp_data_io_event = 1;

Server code using IPv6
14 Here we see the server we have been working on throughout this chapter, but with a
slight modification. The server creates an AF_INET6 socket. This way, the server can use
both IPv4 and IPv6.

Use the new sctp_bind_arg_list function
15 16 The server calls the new sctp_bind_arg_list function, passing the argument list to
it for processing.

[ Team LiB ]

Page 725

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

23.7 Determining Peer and Local Address Information
Because SCTP is a multihomed protocol, different mechanisms are needed to find out what
addresses are in use at both the remote as well as the local endpoints of an association. In
this section, we will modify our client to receive the communication up notification. Our
client will then use this notification to display the addresses of both the local and remote
sides of the association. Figures 23.9 and 23.10 show the modifications to our client code.
Figures 23.11 and 23.12 show the new code we add to the client.

Figure 23.9 Client set up for notifications.

sctp/sctpclient04

16     bzero(&evnts, sizeof(evnts));

17     evnts.sctp_data_io_event = 1;

18     evnts.sctp_association_event = 1;

19     Setsockopt(sock_fd, IPPROTO_SCTP, SCTP_EVENTS, &evnts, sizeof(evnts));

20     sctpstr_cli(stdin, sock_fd, (SA *) &servaddr, sizeof(servaddr));

Set events and call echo function
16 20 We see a slight change to our client's main routine. The client explicitly subscribes
to association change notifications.

We now look at the modifications needed to sctpstr_cli so that it will use our new
notification processing routine.

Figure 23.10 sctp_strcli that handles notifications.

sctp/sctp_strcli1.c

21     do {

22         len = sizeof(peeraddr);

23         rd_sz = Sctp_recvmsg(sock_fd, recvline, sizeof(recvline),

24                              (SA *) &peeraddr, &len, &sri, &msg_flags);

25         if (msg_flags & MSG_NOTIFICATION)

26             check_notification(sock_fd, recvline, rd_sz);

27     } while (msg_flags & MSG_NOTIFICATION);

28     printf("From str:%d seq:%d (assoc:0x%x):",

29            sri.sinfo_stream, sri.sinfo_ssn, (u_int) sri.sinfo_assoc_id);

30     printf("%.*s", rd_sz, recvline);

Loop waiting for message
21 24 Here the client sets up the address length variable and calls the receive function to
get the echoed message from the server.

Check for notifications
25 26 The client now checks to see if the message it just read is a notification. If it is, the
client calls our notification processing routine shown in Figure 23.11.

Loop while waiting for data
27 If the message read was a notification, keep looping until we read actual data.

Page 726

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


Display message
28 30 Next, the client displays the message and goes back to the top of its processing
loop, waiting for user input.

Now let's look at the new function sctp_check_notification, which will display the
addresses of both endpoints when an association notification event arrives.

Figure 23.11 Process notifications.

sctp/sctp_check_notify.c

 1 #include    "unp.h"

 2 void

 3 check_notification(int sock_fd, char *recvline, int rd_len)

 4 {

 5     union sctp_notification *snp;

 6     struct sctp_assoc_change *sac;

 7     struct sockaddr_storage *sal, *sar;

 8     int     num_rem, num_loc;

 9     snp = (union sctp_notification *) recvline;

10     if (snp->sn_header.sn_type == SCTP_ASSOC_CHANGE) {

11         sac = &snp->sn_assoc_change;

12         if ((sac->sac_state == SCTP_COMM_UP) ||

13             (sac->sac_state == SCTP_RESTART)) {

14             num_rem = sctp_getpaddrs(sock_fd, sac->sac_assoc_id, &sar);

15             printf("There are %d remote addresses and they are:\n",

num_rem);

16             sctp_print_addresses(sar, num_rem);

17             sctp_freepaddrs(sar);

18             num_loc = sctp_getladdrs(sock_fd, sac->sac_assoc_id, &sal);

19             printf("There are %d local addresses and they are:\n", num_loc);

20             sctp_print_addresses(sal, num_loc);

21             sctp_freeladdrs(sal);

22         }

23     }

24 }

Check if it is notification we want
9 13 The function casts the receive buffer to our generic notification pointer to find the
notification type. If it is the notification the function is interested in, an association change
notification, it then tests if the notification is a new or restarted association (SCTP_COMM_UP
or SCTP_RESTART). We ignore all other notifications.

Gather and print peer addresses
14 17 We call sctp_getpaddrs to gather a list of remote addresses. We then print the
number of addresses and use the address printing routine, sctp_print_addresses, shown
in Figure 23.12, to display the addresses. When it finishes using the address pointer, the
function calls the sctp_freepaddrs function to release the resources allocated by
sctp_getpaddrs.

Gather and print local addresses

Page 727

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


18 21 We call sctp_getladdrs to gather a list of local addresses, plus print the number of
addresses and the addresses themselves. After the function finishes using the addresses, it
calls the sctp_freeladdrs function to release the resources allocated by sctp_getladdrs.

Finally, we look at one last new function, sctp_print_addresses, which will print a list of
addresses in the form that is returned by the sctp_getpaddrs and sctp_getladdrs
functions.

Figure 23.12 Print a list of addresses.

sctp/sctp_print_addrs.c

 1 #include    "unp.h"

 2 void

 3 sctp_print_addresses(struct sockaddr_storage *addrs, int num)

 4 {

 5     struct sockaddr_storage *ss;

 6     int     i, salen;

 7     ss = addrs;

 8     for (i = 0; i < num; i++) {

 9         printf("%s\n", Sock_ntop((SA *) ss, salen));

10 #ifdef HAVE_SOCKADDR_SA_LEN

11         salen = ss->ss_len;

12 #else

13         switch (ss->ss_family) {

14         case AF_INET:

15             salen = sizeof(struct sockaddr_in);

16             break;

17 #ifdef IPV6

18         case AF_INET6:

19             salen = sizeof(struct sockaddr_in6);

20             break;

21 #endif

22         default:

23             err_quit("sctp_print_addresses: unknown AF");

24             break;

25         }

26 #endif

27         ss = (struct sockaddr_storage *) ((char *) ss + salen);

28     }

29 }

Process each address
7 8 The function loops through each address based on the number of addresses our caller
specified.

Print address
9 We print the address using our sock_ntop function. Recall that this prints any socket
address structure format the system supports.

Determine address size
10 26 The list of addresses is a packed list, not a simple array of sockaddr_storage
structures. This is because the sockaddr_storage structure is quite large and it is too
wasteful to use in passing addresses back and forth between the kernel and user space. On

Page 728

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


systems on which the sockaddr structure contains its own length, this is trivial: just extract
the length from the current sockaddr_storage structure. On other systems, we choose the
length based on the address family and quit with an error if the address family is unknown.

Move address pointer
27 The function now adds the size of the address to the base pointer to move forward
through the list of addresses.

Running the Code
We run our modified client against the server as follows:

     FreeBSD-lap: ./sctpclient01 10.1.1.5

     [0]Hi

     There are 2 remote addresses and they are:

     10.1.1.5:9877

     127.0.0.1:9877

     There are 2 local addresses and they are:

     10.1.1.5:1025

     127.0.0.1:1025

     From str:0 seq:0 (assoc:c99e2680):[0]Hi

     Control-D

     FreeBSD-lap:

[ Team LiB ]

Page 729

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

23.8 Finding an Association ID Given an IP Address
In the recent changes we made to our client in Section 23.7, the client used the
association notification to trigger retrieving the list of addresses. This notification was quite
convenient since it held the association's identification in the sac_assoc_id field. But, if
the application is not tracking association identifications and only has an address of a peer,
how can it find an association's identification? In Figure 23.13, we illustrate a simple
function that translates a peer's address into an association ID. The server will use this
function later in Section 23.10.

Initialize
7 8 Our function first initializes its sctp_paddrparams structure.

Copy address
9 We copy the address, using the passed length, into the sctp_paddrparams structure.

Call socket option
10 The function now uses the SCTP_PEER_ADDR_PARAMS socket option to request peer
address parameters. Note that we use sctp_opt_info, instead of getsockopt, since the
SCTP_PEER_ADDR_PARAMS socket option requires copying arguments both into and out of the
kernel. This call will return the current heartbeat interval, the maximum number of
retransmissions before the SCTP implementation considers the peer address to have failed,
and most importantly, the association ID. Note that we do not check the return value,
since if the call fails, we want to return 0.

Figure 23.13 Translate an address to an association ID.

sctp/sctp_addr_to_associd.c

 1 #include    "unp.h"

 2 sctp_assoc_t

 3 sctp_address_to_associd(int sock_fd, struct sockaddr *sa, socklen_t salen)

 4 {

 5     struct sctp_paddrparams sp;

 6     int     siz;

 7     siz = sizeof(struct sctp_paddrparams);

 8     bzero(&sp, siz);

 9     memcpy(&sp.spp_address, sa, salen);

10     sctp_opt_info(sock_fd, 0, SCTP_PEER_ADDR_PARAMS, &sp, &siz);

11     return (sp.spp_assoc_id);

12 }

11 The function returns the association ID to the caller. Note that if the call fails, the earlier
clearing of the structure will assure our caller of getting a 0 as the returned association ID.
An association ID of 0 is not allowed and is used to indicate no association by the SCTP
implementation as well.

[ Team LiB ]

Page 730

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

23.9 Heartbeating and Address Failure
SCTP provides a heartbeat mechanism similar in concept to TCP's keep-alive option. In the
case of SCTP, however, the option is enabled by default. The application can control the
heartbeat and set the error threshold for an address by using the same socket option we
saw in Section 23.8. The error threshold is the number of missed heartbeats or
retransmission timeouts that must occur before a destination address is considered
unreachable. When the destination address becomes reachable again, detected by
heartbeats, the address becomes active.

The application can disable heartbeats, but without heartbeats, SCTP has no way to detect
if a failed peer address has become reachable again. Such addresses cannot come back to
an active state without user intervention.

The heartbeat parameter field of the sctp_paddrparams structure is spp_hbinterval. If an
application sets the spp_hbinterval field to SCTP_NO_HB (0), heartbeats are disabled. A
value of SCTP_ISSUE_HB (0xffffffff) requests an on-demand (immediate) heartbeat. Any
other value sets the heartbeat delay in milliseconds. The heartbeat delay provides a set
delay between heartbeats. This value, added to the current retransmission timer value plus
a random jitter, will become the amount of time between heartbeats. In Figure 23.14 we
show a small function that will either set the heartbeat delay, request an on-demand
heartbeat, or disable the heartbeat for the specified destination. Note that by leaving the
retransmissions parameter, the spp_pathmaxrxt field of the sctp_paddrparams structure,
set to 0, we leave the current value unchanged.

Figure 23.14 Heartbeat control utility function.

sctp/sctp_modify_hb.c

 1 #include    "unp.h"

 2 int

 3 heartbeat_action(int sock_fd, struct sockaddr *sa, socklen_t salen,

 4                  u_int value)

 5 {

 6     struct sctp_paddrparams sp;

 7     int     siz;

 8     bzero(&sp, sizeof(sp));

 9     sp.spp_hbinterval = value;

10     memcpy((caddr_t) & sp.spp_address, sa, salen);

11     Setsockopt(sock_fd, IPPROTO_SCTP,

12                SCTP_PEER_ADDR_PARAMS, &sp, sizeof(sp));

13     return (0);

14 }

Zero sctp_paddrparams struct and copy interval
8 9 We zero out struct sctp_paddrparams to ensure that we won't change any
parameters we don't want to. We then copy the user's desired heartbeat value: 
SCTP_ISSUE_HB, SCTP_NO_HB, or a heartbeat interval.

Set up address
10 The function sets up the address and copies it into the sctp_paddrparams structure so
that the SCTP implementation will know the address to which we wish to send a heartbeat.

Page 731

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


Perform action
11 12 Finally, the function issues the socket option call to cause the action the user has
requested.

[ Team LiB ]

Page 732

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

23.10 Peeling Off an Association
We have been focusing on the one-to-many-style interface provided by SCTP. This
interface has several advantages over the more classic one-to-one style:

 There is only one file descriptor to maintain.

 It allows us to write a simple iterative server.

 It lets an application send data on the third and fourth packet of the four-way
handshake by using sendmsg or sctp_sendmsg to implicitly establish the connection.

 There is no need to track transport state. In other words, the application just does a
receive call on the socket descriptor and does not need to do any of the traditional 
connect or accept function calls before receiving messages.

However, there is one major drawback to this style. It makes it difficult to build a
concurrent server (either using threads or by forking children). This drawback has brought
about the addition of the sctp_peeloff function. sctp_peeloff takes a one-to-many
socket descriptor and an association ID and returns a new socket descriptor with just that
association (plus any queued notifications and data on that association) attached in a
one-to-one style. The original socket remains open, and any other associations represented
by the one-to-many socket are left unaffected.

This socket can then be handed off to either a thread or a child process to execute a
concurrent server. Figure 23.15 illustrates a further modification to our server that
processes the first message of a client, extracts the client socket descriptor using 
sctp_peeloff, forks a child, and calls our original TCP str_echo function introduced in
Section 5.3. We use the address of the received message to call our function that gets us
the association ID (Section 23.8). The association ID is also available in
sri.sinfo_assoc_id; we show this method of determining the association ID from the IP
address to illustrate another method. After forking the child, our server loops back to
process the next message.

Figure 23.15 A concurrent SCTP server.

sctp/sctpserv_fork.c

23     for ( ; ; ) {

24         len = sizeof(struct sockaddr_in);

25         rd_sz = Sctp_recvmsg(sock_fd, readbuf, sizeof(readbuf),

26                              (SA *) &cliaddr, &len, &sri, &msg_flags);

27         Sctp_sendmsg(sock_fd, readbuf, rd_sz,

28                      (SA *) &cliaddr, len,

29                      sri.sinfo_ppid,

30                      sri.sinfo_flags, sri.sinfo_stream, 0, 0);

31         assoc = sctp_address_to_associd(sock_fd, (SA *) &cliaddr, len);

32         if ((int) assoc == 0) {

33             err_ret("Can't get association id");

34             continue;

35         }

36         connfd = sctp_peeloff(sock_fd, assoc);

37         if (connfd == -1) {

38             err_ret("sctp_peeloff fails");

39             continue;

40         }

41         if ( (childpid = fork()) == 0) {

Page 733

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


42             Close(sock_fd);

43             str_echo(connfd);

44             exit(0);

45         } else {

46             Close(connfd);

47         }

48   }

Receive and process first message from client
26 30 The server receives and processes the first message a client sends.

Translate address to association ID
31 35 The server next uses our function from Figure 23.13 to translate the address to an
association ID. If for some reason the server cannot get an association ID, it skips this
attempt to fork a child and instead will try with the next message.

Extract association
36 40 The server extracts the association into its own socket descriptor with sctp_peeloff.
This results in a one-to-one socket that can be passed to our earlier TCP version of 
str_echo.

Delegate work to child
41 47 The server forks a child and lets the child perform all future work on this new socket
descriptor.

[ Team LiB ]

Page 734

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

23.11 Controlling Timing
SCTP has many controls that are user-tunable. All of these advanced controls are accessed
via socket options we discussed in Section 7.10. In this section, we will highlight some of
the specific controls that influence how long an SCTP endpoint will take to declare either an
association or destination failure.

There are seven specific controls that dictate failure detection time in SCTP (Figure 23.16).

Figure 23.16. Fields that control timing in SCTP.

Each of these parameters influences how quickly SCTP will detect failure or attempt
retransmission. We can think of these as control knobs that either shorten or lengthen the
time it takes for an endpoint to detect failure. We first examine two scenarios:

1. An SCTP endpoint tries to open an association to a peer that has been disconnected
from the network.

2. Two multihomed SCTP endpoints are exchanging data, and one of them is powered
down during the middle of the communication. No ICMP messages are being
received due to filtering by a firewall.

In Scenario 1, the system trying to open the connection would first set its RTO timer to
the srto_initial value of 3,000 ms. After a timeout, it would retransmit the INIT
message and double the RTO timer to 6,000 ms. This behavior would continue until it had
sent sinit_max_attempts, or eight INIT messages, and had subsequently timed out on
each of the transmissions. The doubling of the RTO timer would be capped at 
sinit_max_init_timeo, or 60,000 ms. Therefore, it would take
3+6+12+24+48+60+60+60, or 273 seconds, to reach the point where the SCTP
implementation would declare the potential peer unreachable.

There are a number of knobs and combinations of knobs we can tune to shorten or
lengthen this time. First, let's focus on the influence of two specific parameters we can use
to shorten the time from 270 seconds. One change we can make is to decrease the number
of retransmissions by changing sinit_max_attempts. An alternative change that can also
be made is to reduce the maximum RTO value for the INIT by changing 
srto_max_init_timeo. If we lower the number of attempts to 4, our detection time to
failure drops drastically to 45 seconds, one-sixth of what the default value gives us. But
this method has a drawback: We may experience a case where our peer is available, but
due to loss in the network, or perhaps overload at the peer, we declare the peer to be
unreachable.

Another approach is to lower the srto_max_init_timeo to 20 seconds. This decreases our
failure detection time to 121 seconds, less than one-half of the original value, but this
change also carries with it a tradeoff. If we pick a value that is too low, it is possible that
excessive delay in the network would cause us to send many more INIT messages than
needed.

Now let's turn our attention to Scenario 2, in which there are two multihomed peers
communicating with each other. One endpoint has the addresses IP-A and IP-B, the other
IP-X and IP-Y. If one of them becomes unreachable (assuming data was being sent by the

Page 735

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


peer that was not powered down), the sending endpoint sees successive timeouts to each
destination starting at a value of srto_min (default 1 second) and doubling until both
destinations reach srto_max (default 60 seconds). The endpoint would retransmit until it
reached the association maximum sasoc_asocmaxrxt (default 10 retransmissions).

Now in our scenario, the sending endpoint would see timeouts at 1(IP-A) + 1(IP-B)+
2(IP-A) + 2(IP-B) + 4(IP-A) + 4(IP-B) + 8(IP-A) + 8(IP-B) + 16(IP-A) + 16(IP-B), for a
total of 62 seconds. The srto_max parameter does not influence a multihomed peer when
left to its default value since we reach the default value of sasoc_asocmaxrxt before we
reach srto_max. We again focus on two parameters we can use to affect these timeouts
and the resulting failure detection. We can decrease the number of attempts by changing
the sasoc_asocmaxrxt value (default 10), or we can decrease the maximum RTO by
changing srto_max (default 60 seconds). If we set our srto_max time to 10 seconds, we
can decrease the detection time by 12 seconds, reducing it to 50 seconds. An alternative,
decreasing the maximum retransmissions to 8, would drop our detection time to 30
seconds. The same concerns we mentioned before apply to this scenario as well: A brief,
survivable network problem or remote system overload could cause a working connection
to be torn down.

Among the many alternatives, we do not recommend lowering the minimum RTO (
srto_min). When communicating across the Internet, lowering this value could have dire
consequences in that we would retransmit much more rapidly, straining the Internet's
infrastructure. In a private network, it may be acceptable to tune this value lower, but for
most applications, this value should not be decreased.

Each application, when turning these timing knobs, must take into consideration several
factors before making adjustments:

 How quickly does your application need to detect failure?

 Will the application be run in private networks where the conditions on the overall
end-to-end path are well-known and less varying than the Internet?

 What are the consequences of false failure detection?

Only after carefully answering these questions will an application be able to properly tune
the timing parameters of SCTP.

[ Team LiB ]

Page 736

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

23.12 When to Use SCTP Instead of TCP
SCTP was originally developed for call control signaling to allow the transport of telephony
signals across the Internet. However, during its development, its scope was expanded
beyond that into a general-purpose transport protocol. It provides most of the features of
TCP, and adds to those a wide range of new transport-layer services. There are few
applications that could not benefit by the use of SCTP. So when should we use SCTP? Let's
start by listing the benefits of SCTP:

1. SCTP is a protocol that directly supports multihoming. An endpoint can take
advantage of multiple networks on a host to gain additional reliability. An added
bonus is that the application does not need to take any action, other than moving to
SCTP, to automatically take advantage of SCTP's multihomed service. For further
details on SCTP's multihoming, see Section 7.4 of [Stewart and Xie 2001].

2. Head-of-line blocking can be eliminated. An application can use a single SCTP
association and transport multiple data elements in parallel. A loss in one stream of
information will not influence any of the other parallel streams of information
flowing through the association (we discussed this concept in Section 10.5).

3. Application layer message boundaries are preserved. Many applications do not send
streams of bytes; instead, they send messages. SCTP preserves message
boundaries sent by an application and thus simplifies the application writer's task.
No longer is it necessary to mark message boundaries within a stream of bytes and
provide special handling code to deal with reconstructing messages from the
information flow at the receiver.

4. An unordered message service is provided. For some applications, no ordering is
needed. In the past, such an application may have used TCP for its reliability with
the drawback that all data, even though unordered, would have to be delivered in
order. Any loss would cause head-of-line blocking for all subsequent messages
flowing through the connection. With SCTP, an unordered service is available that
avoids this issue and allows an application to match its needs directly to the
transport.

5. A partially reliable service is available in some SCTP implementations. This feature
allows an SCTP sender to specify a lifetime on each message, using the 
sinfo_timetolive field of the struct sctp_sndrcvinfo. (This is different from the
IPv4 TTL or the IPv6 hop limit; it is actually a length of time.) When both endpoints
support this feature, time-sensitive data can be discarded by the transport instead
of the application, even if it has been transmitted and lost, thus optimizing data
transport in the face of congestion.

6. An easy migration path from TCP is provided by SCTP with its one-to-one-style
interface. This interface duplicates a typical TCP interface so that with one or two
slight changes, a TCP application can be migrated to SCTP.

7. Many of the features of TCP, such as positive acknowledgment, retransmission of
lost data, resequencing of data, windowed flow control, slow-start and congestion
avoidance, and selective acknowledgments, are included in SCTP with two notable
exceptions (the half-closed state and urgent data).

8. SCTP provides many hooks (as seen in this chapter and in Section 7.10) for an
application to configure and tune the transport to match its needs on an
association-by-association basis. This flexibility, along with a general set of good
defaults (for the application that does not wish to tune the transport), provide the
application with controls unavailable in TCP.

Page 737

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


SCTP does not provide two features that TCP does provide. One is the half-closed state.
This state is entered when an application closes its half of the connection but still allows
the peer to send data to it (we discussed this in Section 6.6). An application enters the
half-closed state to signal to the peer that it is finished transmitting data. Very few
applications use this feature, so during SCTP development, it was considered not worth
adding to the protocol. Applications that need this feature and want to move to SCTP will
need to change their application-layer protocol to provide this signal in the application data
stream. In some instances, this change may not be trivial.

Another TCP feature that SCTP does not provide is urgent data. Using a separate SCTP
stream for urgent data has somewhat similar semantics, but cannot replicate the feature
exactly.

Another type of application that may not benefit from SCTP is one that is truly byte
stream-oriented, like telnet, rlogin, rsh, and ssh. For such an application, TCP can
segment the stream of bytes into IP packets more efficiently than SCTP. SCTP will faithfully
preserve the message boundaries, which may equate to a size that does not fit efficiently
into IP datagrams, and thus may cause somewhat more overhead.

In summary, many applications could consider using SCTP as it becomes available on their
Unix platform. However, it takes an eye toward SCTP's special features to truly benefit from
them; until SCTP is ubiquitous, it could be advantageous to simply stick with TCP.

[ Team LiB ]

Page 738

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

23.13 Summary
In this chapter, we looked at the SCTP autoclose facility, exploring how it can be used to
limit idle associations in a one-to-many socket. We built a simple utility that an application
can use to receive large messages with the partial delivery API. We examined how an
application can decode events that occur on the transport with a simple utility that displays
notifications. We briefly looked at how a user can send unordered data and bind a subset of
addresses. We saw how to acquire the addresses of both the peer end of an association as
well as the local end. We also examined a simple method an application can use to
translate an address into an association ID.

Heartbeats (termed keep-alives in TCP) are exchanged by default on an SCTP association.
We examined how to control this feature through a small utility we built. We looked at how
to extract an association with the sctp_peeloff system call, and illustrated an example
server that was both iterative and concurrent using this call. We also discussed
considerations an application needs to make before tuning the SCTP timing parameters.
We concluded with a look at when an application should consider using SCTP.

[ Team LiB ]

Page 739

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Exercises
23.1 Write a client that can test our server's partial delivery API we

developed in Section 23.3.

23.2 Besides sending a very large message to the server illustrated in 
Section 23.3, what other method can be used to get the partial delivery
API invoked in our server?

23.3 Rewrite the partial delivery API server to handle partial delivery API
notifications.

23.4 What applications would benefit from the use of unordered data? What
applications would not benefit from unordered data? Explain your
choices.

23.5 How can you test the subset binding server?

23.6 Assume that your application is running on a private network where the
endpoints are all connected via a local LAN. Also assume that all of your
servers and clients are running on multihomed hosts. What parameters
do you need to adjust to assure that you detect failure in two seconds
or less?

[ Team LiB ]

Page 740

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Chapter 24. Out-of-Band Data
Section 24.1.?Introduction

Section 24.2.?TCP Out-of-Band Data

Section 24.3.?sockatmark Function

Section 24.4.?TCP Out-of-Band Data Recap

Section 24.5.?Summary

Exercises

[ Team LiB ]

Page 741

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

24.1 Introduction
Many transport layers have the concept of out-of-band data, which is sometimes called
expedited data. The idea is that something important occurs at one end of a connection
and that end wants to tell its peer quickly. By "quickly" we mean that this notification
should be sent before any "normal" (sometimes called "in-band") data that is already
queued to be sent, and should be sent regardless of any flow control or blocking issues.
That is, out-of-band data is considered higher priority than normal data. Instead of using
two connections between the client and server, out-of-band data is mapped onto the
existing connection.

Unfortunately, once we get beyond the general concepts and down to the real world,
almost every transport layer has a different implementation of out-of-band data. As an
extreme example, UDP has no implementation of out-of-band data. In this chapter, we will
focus on TCP's model of out-of-band data, provide numerous small examples of how it is
handled by the sockets API, and describe how it is used by applications like telnet, rlogin
, and FTP. Other than remote interactive applications like these, it is rare to find any use
for out-of-band data.

[ Team LiB ]

Page 742

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

24.2 TCP Out-of-Band Data
TCP does not have true out-of-band data. Instead, TCP provides an urgent mode. Assume a
process has written N bytes of data to a TCP socket and that data is queued by TCP in the
socket send buffer, waiting to be sent to the peer. We show this in Figure 24.1 and have
labeled the data bytes 1 through N.

Figure 24.1. Socket send buffer containing data to send.

The process now writes a single byte of out-of-band data, containing the ASCII character a
, using the send function and the MSG_OOB flag.

send(fd, "a", 1, MSG_OOB);

TCP places the data in the next available position in the socket send buffer and sets its 
urgent pointer for this connection to be the next available location. We show this in Figure
24.2 and have labeled the out-of-band byte "OOB."

Figure 24.2. Socket send buffer after one byte of out-of-band data is
written by application.

TCP's urgent pointer has a sequence number one greater than the byte of data that is
written with the MSG_OOB flag. As discussed on pp. 292 296 of TCPv1, this is an historical
artifact that is now emulated by all implementations. As long as the sending TCP and the
receiving TCP agree on the interpretation of TCP's urgent pointer, all is fine.

Given the state of the TCP socket send buffer shown in Figure 24.2, the next segment sent
by TCP will have its URG flag set in the TCP header and the urgent offset field in the TCP
header will point to the byte following the out-of-band byte. But this segment may or may
not contain the byte that we have labeled as OOB. Whether the OOB byte is sent depends
on the number of bytes ahead of it in the socket send buffer, the segment size that TCP is
sending to the peer, and the current window advertised by the peer.

We have used the terms urgent pointer and urgent offset. At the TCP level, the two are
different. The 16-bit value in the TCP header is called the urgent offset and it must be
added to the sequence number field in the header to obtain the 32-bit urgent pointer. TCP
looks at the urgent offset only if another bit in the header is set, and this bit is called the 
URG flag. From a programming perspective, we need not worry about this detail and just
refer to TCP's urgent pointer.

Page 743

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


This is an important characteristic of TCP's urgent mode: The TCP header indicates that the
sender has entered urgent mode (i.e., the URG flag is set along with the urgent offset), but
the actual byte of data referred to by the urgent pointer need not be sent. Indeed, if the
sending TCP is stopped by flow control (the receiver's socket receive buffer is full, so its
TCP has advertised a window of 0 to the sending TCP), the urgent notification is sent
without any data (pp. 1016 1017 of TCPv2), as we will show in Figures 24.10 and 24.11.
This is one reason why applications use TCP's urgent mode (i.e., out-of-band data): The
urgent notification is always sent to the peer TCP, even if the flow of data is stopped by
TCP's flow control.

What happens if we send multiple bytes of out-of-band data, as in

send(fd, "abc", 3, MSG_OOB);

In this example, TCP's urgent pointer points one beyond the final byte; that is, the final
byte (the c) is considered the out-of-band byte.

Now that we have covered the sending of out-of-band data, let's look at it from the
receiver's side:

1. When TCP receives a segment with the URG flag set, the urgent pointer is examined
to see whether it refers to new out-of-band data, that is, whether this is the first
time TCP's urgent mode has referenced this particular byte in the stream of data
from the sender to the receiver. It is common for the sending TCP to send multiple
segments (typically over a short period of time) containing the URG flag, but with
the urgent pointer pointing to the same byte of data. Only the first of these
segments causes the receiving process to be notified that new out-of-band data has
arrived.

2. The receiving process is notified when a new urgent pointer arrives. First the SIGURG
signal is sent to the owner of the socket, assuming either fcntl or ioctl has been
called to establish an owner for the socket (Figure 7.20). Second, if the process is
blocked in a call to select waiting for this socket descriptor to have an exception
condition, select returns.

These two potential notifications to the receiving process take place when a new
urgent pointer arrives, regardless of whether the actual byte of data pointed to by
the urgent pointer has arrived at the receiving TCP.

There is only one OOB mark; if a new OOB byte arrives before the old OOB byte was
read, the old byte is discarded.

3. When the actual byte of data pointed to by the urgent pointer arrives at the
receiving TCP, the data byte can be pulled out-of-band or left inline. By default, the 
SO_OOBINLINE socket option is not set for a socket, so the single byte of data is not
placed into the socket receive buffer. Instead, the data byte is placed into a
separate one-byte out-of-band buffer for this connection (pp. 986 988 of TCPv2).
The only way for the process to read from this special one-byte buffer is to call recv,
recvfrom, or recvmsg and specify the MSG_OOB flag. If a new OOB byte arrives before
the old byte is read, the previous value in this buffer is discarded.

If, however, the process sets the SO_OOBINLINE socket option, then the single byte
of data referred to by TCP's urgent pointer is left in the normal socket receive buffer.
The process cannot specify the MSG_OOB flag to read the data byte in this case. The
process will know when it reaches this byte of data by checking the out-of-band
mark for this connection, as we will describe in Section 24.3.

Some of the following errors are possible:

Page 744

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


1. If the process asks for out-of-band data (e.g., specifying the MSG_OOB flag), but the
peer has not sent any, EINVAL is returned.

2. If the process has been notified that the peer has sent an out-of-band byte (e.g.,
by SIGURG or select), and the process tries to read it but that byte has not yet
arrived, EWOULDBLOCK is returned. All the process can do at this point is read from
the socket receive buffer (possibly discarding the data if it has no room to store the
data), to make space in the buffer so that the peer TCP can send the out-of-band
byte.

3. If the process tries to read the same out-of-band byte multiple times, EINVAL is
returned.

4. If the process has set the SO_OOBINLINE socket option and then tries to read the
out-of-band data by specifying MSG_OOB, EINVAL is returned.

Simple Example Using SIGURG

We now show a trivial example of sending and receiving out-of-band data. Figure 24.3
shows the sending program.

Nine bytes are sent, with a one-second sleep between each output operation. The purpose
of the pause is to let each write or send be transmitted as a single TCP segment and
received as such by the other end. We'll talk later about some of the timing considerations
with out-of-band data. When we run this program, we see the expected output.

macosx % tcpsend01 freebsd4 9999

wrote 3 bytes of normal data

wrote 1 byte of OOB data

wrote 2 bytes of normal data

wrote 1 byte of OOB data

wrote 2 bytes of normal data

Figure 24.3 Simple out-of-band sending program.

oob/tcpsend01.c

 1 #include    "unp.h"

 2 int

 3 main(int argc, char **argv)

 4 {

 5     int     sockfd;

 6     if (argc != 3)

 7         err_quit("usage: tcpsend01 <host> <port#>");

 8     sockfd = Tcp_connect(argv[1], argv[2]);

 9     Write(sockfd, "123", 3);

10     printf("wrote 3 bytes of normal data\n");

11     sleep(1);

12     Send(sockfd, "4", 1, MSG_OOB);

13     printf("wrote 1 byte of OOB data\n");

14     sleep(1);

Page 745

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


15     Write(sockfd, "56", 2);

16     printf("wrote 2 bytes of normal data\n");

17     sleep(1);

18     Send(sockfd, "7", 1, MSG_OOB);

19     printf("wrote 1 byte of OOB data\n");

20     sleep(1);

21     Write(sockfd, "89", 2);

22     printf("wrote 2 bytes of normal data\n");

23     sleep(1);

24     exit(0);

25 }

Figure 24.4 is the receiving program.

Establish signal handler and socket owner

16 17 The signal handler for SIGURG is established, and fcntl sets the owner of the
connected socket.

Notice that we do not establish the signal handler until accept returns. There is a small
probability that out-of-band data can arrive after our TCP completes the three-way
handshake, but before accept returns, which we would miss. But if we established the
signal handler before calling accept and also set the owner of the listening socket (which
carries over to the connected socket), then if out-of-band data arrives before accept
returns, our signal handler won't yet have a value for connfd. If this scenario is important
for the application, it should initialize connfd to  1, check for this value in the signal
handler, and if true, just set a flag for the main loop to check after accept returns.
Alternately, it could block the signal around the call to accept, but this is subject to all the
signal race conditions we discussed in Section 20.5.

Figure 24.4 Simple out-of-band receiving program.

oob/tcprecv01.c

 1 #include    "unp.h"

 2 int     listenfd, connfd;

 3 void    sig_urg(int);

 4 int

 5 main(int argc, char **argv)

 6 {

 7     int     n;

 8     char    buff[100];

 9     if (argc == 2)

10         listenfd = Tcp_listen(NULL, argv[1], NULL);

11     else if (argc == 3)

12         listenfd = Tcp_listen(argv[1], argv[2], NULL);

13     else

14         err_quit("usage: tcprecv01 [ <host> ] <port#>");

15     connfd = Accept(listenfd, NULL, NULL);

16     Signal(SIGURG, sig_urg);

17     Fcntl(connfd, F_SETOWN, getpid());

Page 746

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


18     for ( ; ; ) {

19         if ( (n = Read(connfd, buff, sizeof(buff) - 1)) == 0) {

20             printf("received EOF\n");

21             exit(0);

22         }

23         buff[n] = 0;            /* null terminate */

24         printf("read %d bytes: %s\n", n, buff);

25     }

26 }

27 void

28 sig_urg(int signo)

29 {

30     int     n;

31     char    buff[100];

32     printf("SIGURG received\n");

33     n = Recv(connfd, buff, sizeof(buff) - 1, MSG_OOB);

34     buff[n] = 0;                /* null terminate */

35     printf("read %d OOB byte: %s\n", n, buff);

36 }

18 25 The process reads from the socket, printing each string that is returned by read.
When the sender terminates the connection, the receiver then terminates.

SIGURG handler

27 36 Our signal handler calls printf, reads the out-of-band byte by specifying the
MSG_OOB flag, and then prints the returned data. Notice that we ask for up to 100 bytes in
the call to recv, but as we will see shortly, only 1 byte is ever returned as out-of-band
data.

As stated earlier, calling the unsafe printf function from a signal handler is not
recommended. We do it just to see what's happening with our programs.

Here is the output when we run the receiving program, and then run the sending program
from Figure 24.3:

freebsd4 % tcprecv01 9999

read 3 bytes: 123

SIGURG received

read 1 OOB byte: 4

read 2 bytes: 56

SIGURG received

read 1 OOB byte: 7

read 2 bytes: 89

received EOF

The results are as we expect. Each sending of out-of-band data by the sender generates 
SIGURG for the receiver, which then reads the single out-of-band byte.

Simple Example Using select

We now redo our out-of-band receiver to use select instead of the SIGURG signal. Figure
24.5 is the receiving program.

15 20 The process calls select while waiting for either normal data (the read set, rset) or

Page 747

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


out-of-band data (the exception set, xset). In each case, the received data is printed.

When we run this program and then run the same sending program as earlier (Figure 24.3
), we encounter the following error:

freebsd4 % tcprecv02 9999

read 3 bytes: 123

read 1 OOB byte: 4

recv error: Invalid argument

The problem is that select indicates an exception condition until the process reads beyond
the out-of-band data (pp. 530 531 of TCPv2). We cannot read the out-of-band data more
than once because after we read it the first time, the kernel clears the one-byte
out-of-band buffer. When we call recv specifying the MSG_OOB flag the second time, it
returns EINVAL.

Figure 24.5 Receiving program that (incorrectly) uses select to be
notified of out-of-band data.

oob/tcprecv02.c

 1 #include    "unp.h"

 2 int

 3 main(int argc, char **argv)

 4 {

 5     int     listenfd, connfd, n;

 6     char    buff[100];

 7     fd_set  rset, xset;

 8     if (argc == 2)

 9         listenfd = Tcp_listen(NULL, argv[1], NULL);

10     else if (argc == 3)

11         listenfd = Tcp_listen(argv[1], argv[2], NULL);

12     else

13         err_quit("usage: tcprecv02 [ <host> ] <port#>");

14     connfd = Accept(listenfd, NULL, NULL);

15     FD_ZERO(&rset);

16     FD_ZERO(&xset);

17     for ( ; ; ) {

18         FD_SET(connfd, &rset);

19         FD_SET(connfd, &xset);

20         Select(connfd + 1, &rset, NULL, &xset, NULL);

21         if (FD_ISSET(connfd, &xset)) {

22             n = Recv(connfd, buff, sizeof(buff) - 1, MSG_OOB);

23             buff[n] = 0;        /* null terminate */

24             printf("read %d OOB byte: %s\n", n, buff);

25         }

26         if (FD_ISSET(connfd, &rset)) {

27             if ( (n = Read(connfd, buff, sizeof(buff) - 1)) == 0) {

28                 printf("received EOF\n");

29                 exit(0);

Page 748

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


30             }

31             buff[n] = 0;        /* null terminate */

32             printf("read %d bytes: %s\n", n, buff);

33         }

34     }

35 }

The solution is to select for an exception condition only after reading normal data. Figure
24.6 is a modification of Figure 24.5 that handles this scenario correctly.

5 We declare a new variable named justreadoob, which indicates whether we just read
out-of-band data or not. This flag determines whether or not to select for an exception
condition.

26 27 When we set the justreadoob flag, we must also clear the bit for this descriptor in
the exception set.

The program now works as expected.

Figure 24.6 Modification of Figure 24.5 to select for an exception
condition correctly.

oob/tcprecv03.c

 1 #include    "unp.h"

 2 int

 3 main(int argc, char **argv)

 4 {

 5     int     listenfd, connfd, n, justreadoob = 0;

 6     char    buff[100];

 7     fd_set  rset, xset;

 8     if (argc == 2)

 9         listenfd = Tcp_listen(NULL, argv[1], NULL);

10     else if (argc == 3)

11         listenfd = Tcp_listen(argv[1], argv[2], NULL);

12     else

13         err_quit("usage: tcprecv03 [ <host> ] <port#>");

14     connfd = Accept(listenfd, NULL, NULL);

15     FD_ZERO(&rset);

16     FD_ZERO(&xset);

17     for ( ; ; ) {

18         FD_SET(connfd, &rset);

19         if (justreadoob == 0)

20             FD_SET(connfd, &xset);

21         Select(connfd + 1, &rset, NULL, &xset, NULL);

22         if (FD_ISSET(connfd, &xset)) {

23             n = Recv(connfd, buff, sizeof(buff) - 1, MSG_OOB);

24             buff[n] = 0;        /* null terminate */

25             printf("read %d OOB byte: %s\n", n, buff);

26             justreadoob = 1;

27             FD_CLR(connfd, &xset);

28         }

29         if (FD_ISSET(connfd, &rset)) {

30             if ( (n = Read(connfd, buff, sizeof(buff) - 1) ) == 0) {

Page 749

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


31                 printf("received EOF\n");

32                 exit(0);

33             }

34             buff[n] = 0;        /* null terminate */

35             printf("read %d bytes: %s\n", n, buff);

36             justreadoob = 0;

37         }

38     }

39 }

[ Team LiB ]

Page 750

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

24.3 sockatmark Function
Whenever out-of-band data is received, there is an associated out-of-band mark. This is
the position in the normal stream of data at the sender when the sending process sent the
out-of-band byte. The receiving process determines whether or not it is at the out-of-band
mark by calling the sockatmark function while it reads from the socket.

#include <sys/socket.h>

int sockatmark(int sockfd) ;

Returns: 1 if at out-of-band mark, 0 if not at mark,  1 on error

This function is an invention of POSIX. POSIX is replacing many ioctls with functions.

Figure 24.7 shows an implementation of this function using the commonly found
SIOCATMARK ioctl.

Figure 24.7 sockatmark function implemented using ioctl.

lib/sockatmark.c

1 #include    "unp.h"

2 int

3 sockatmark(int fd)

4 {

5     int     flag;

6     if (ioctl(fd, SIOCATMARK, &flag) < 0)

7         return (-1);

8     return (flag != 0);

9 }

The out-of-band mark applies regardless of whether the receiving process is receiving the
out-of-band data inline (the SO_OOBINLINE socket option) or out-of-band (the MSG_OOB
flag). One common use of the out-of-band mark is for the receiver to treat all the data as
special until the mark is passed.

Example
We now show a simple example to illustrate the following two features of the out-of-band
mark:

1. The out-of-band mark always points one beyond the final byte of normal data. This
means that, if the out-of-band data is received inline, sockatmark returns true if the
next byte to be read is the byte that was sent with the MSG_OOB flag. Alternately, if
the SO_OOBINLINE socket option is not enabled, then sockatmark returns true if the
next byte of data is the first byte that was sent following the out-of-band data.

2. A read operation always stops at the out-of-band mark (pp. 519 520 of TCPv2).
That is, if there are 100 bytes in the socket receive buffer, but only 5 bytes until the
out-of-band mark, and the process performs a read asking for 100 bytes, only the 5
bytes up to the mark are returned. This forced stop at the mark is to allow the
process to call sockatmark to determine if the buffer pointer is at the mark.

Page 751

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


Figure 24.8 is our sending program. It sends three bytes of normal data, one byte of
out-of-band data, followed by another byte of normal data. There are no pauses between
each output operation.

Figure 24.9 is the receiving program. This program does not use the SIGURG signal or
select. Instead, it calls sockatmark to determine when the out-of-band byte is
encountered.

Figure 24.8 Sending program.

oob/tcpsend04.c

 1 #include    "unp.h"

 2 int

 3 main(int argc, char **argv)

 4 {

 5     int     sockfd;

 6     if (argc != 3)

 7         err_quit("usage: tcpsend04 <host> <port#>");

 8     sockfd = Tcp_connect(argv[1], argv[2]);

 9     Write(sockfd, "123", 3);

10     printf("wrote 3 bytes of normal data\n");

11     Send(sockfd, "4", 1, MSG_OOB);

12     printf("wrote 1 byte of OOB data\n");

13     Write(sockfd, "5", 1);

14     printf("wrote 1 byte of normal data\n");

15     exit(0);

16 }

Figure 24.9 Receiving program that calls sockatmark.

oob/tcprecv04.c

 1 #include    "unp.h"

 2 int

 3 main(int argc, char **argv)

 4 {

 5     int     listenfd, connfd, n, on = 1;

 6     char    buff[100];

 7     if (argc == 2)

 8         listenfd = Tcp_listen(NULL, argv[1], NULL);

 9     else if (argc == 3)

10         listenfd = Tcp_listen(argv[1], argv[2], NULL);

11     else

12         err_quit("usage: tcprecv04 [ <host> ] <port#>");

13     Setsockopt(listenfd, SOL_SOCKET, SO_OOBINLINE, &on, sizeof(on));

14     connfd = Accept(listenfd, NULL, NULL);

15     sleep(5);

Page 752

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


16     for ( ; ; ) {

17         if (Sockatmark(connfd))

18             printf("at OOB mark\n");

19         if ( (n = Read(connfd, buff, sizeof(buff) - 1)) == 0) {

20             printf("received EOF\n");

21             exit(0);

22         }

23         buff[n] = 0;            /* null terminate */

24         printf("read %d bytes: %s\n", n, buff);

25     }

26 }

Set SO_OOBINLINE socket option

13 We want to receive the out-of-band data inline, so we must set the SO_OOBINLINE
socket option. But if we wait until accept returns and set the option on the connected
socket, the three-way handshake is complete and out-of-band data may have already
arrived. Therefore, we must set this option for the listening socket, knowing that all socket
options carry over from the listening socket to the connected socket (Section 7.4).

sleep after connection accepted

14 15 The receiver sleeps after the connection is accepted to let all the data from the
sender be received. This allows us to demonstrate that a read stops at the out-of-band
mark, even though additional data is in the socket receive buffer.

Read all data from sender

16 25 The program calls read in a loop, printing the received data. But before calling read,
sockatmark checks if the buffer pointer is at the out-of-band mark.

When we run this program, we get the following output:

freebsd4 % tcprecv04 6666

read 3 bytes: 123

at OOB mark

read 2 bytes: 45

received EOF

Even though all the data has been received by the receiving TCP when read is called the
first time (because the receiving process calls sleep), only three bytes are returned
because the mark is encountered. The next byte read is the out-of-band byte (with a value
of 4), because we told the kernel to place the out-of-band data inline.

Example
We now show another simple example to illustrate two additional features of out-of-band
data, both of which we mentioned earlier.

1. TCP sends notification of out-of-band data (its urgent pointer), even though it is
stopped by flow control from sending data.

2. A receiving process can be notified that the sender has sent out-of-band data (with
the SIGURG signal or by select) before the out-of-band data arrives. If the process
then calls recv specifying MSG_OOB and the out-of-band data has not arrived, an
error of EWOULDBLOCK is returned.

Page 753

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


Figure 24.10 is the sending program.

9 19 This process sets the size of its socket send buffer to 32,768, writes 16,384 bytes of
normal data, and then sleeps for 5 seconds. We will see shortly that the receiver sets the
size of its socket receive buffer to 4,096, so these operations by the sender guarantee that
the sending TCP fills the receiver's socket receive buffer. The sender then sends 1 byte of
out-of-band data, followed by 1,024 bytes of normal data, and terminates.

Figure 24.10 Sending program.

oob/tcpsend05.c

 1 #include    "unp.h"

 2 int

 3 main(int argc, char **argv)

 4 {

 5     int     sockfd, size;

 6     char    buff[16384];

 7     if (argc != 3)

 8         err_quit("usage: tcpsend05 <host> <port#>");

 9     sockfd = Tcp_connect(argv[1], argv[2]);

10     size = 32768;

11     Setsockopt(sockfd, SOL_SOCKET, SO_SNDBUF, &size, sizeof(size));

12     Write(sockfd, buff, 16384);

13     printf("wrote 16384 bytes of normal data\n");

14     sleep(5);

15     Send(sockfd, "a", 1, MSG_OOB);

16     printf("wrote 1 byte of OOB data\n");

17     Write(sockfd, buff, 1024);

18     printf("wrote 1024 bytes of normal data\n");

19     exit(0);

20 }

Figure 24.11 shows the receiving program.

14 20 The receiving process sets the size of the listening socket's receive buffer to 4,096.
This size will carry over to the connected socket after the connection is established. The
process then accepts the connection, establishes a signal handler for SIGURG, and
establishes the owner of the socket. The main loop calls pause in an infinite loop.

22 31 The signal handler calls recv to read the out-of-band data.

When we start the receiver and then the sender, here is the output from the sender:

macosx % tcpsend05 freebsd4 5555

wrote 16384 bytes of normal data

wrote 1 byte of OOB data

wrote 1024 bytes of normal data

As expected, all the data fits into the sender's socket send buffer, and then it terminates.

Page 754

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


Here is the output from the receiver:

freebsd4 % tcprecv05 5555

SIGURG received

recv error: Resource temporarily unavailable

The error string printed by our err_sys function corresponds to EAGAIN, which is the same
as EWOULDBLOCK in FreeBSD. TCP sends the out-of-band notification to the receiving TCP,
which then generates the SIGURG signal for the receiving process. But when recv is called
specifying the MSG_OOB flag, the out-of-band byte cannot be read.

Figure 24.11 Receiving program.

oob/tcprecv05.c

 1 #include    "unp.h"

 2 int     listenfd, connfd;

 3 void    sig_urg(int);

 4 int

 5 main(int argc, char **argv)

 6 {

 7     int     size;

 8     if (argc == 2)

 9         listenfd = Tcp_listen(NULL, argv[1], NULL);

10     else if (argc == 3)

11         listenfd = Tcp_listen(argv[1], argv[2], NULL);

12     else

13         err_quit("usage: tcprecv05 [ <host> ] <port#>");

14     size = 4096;

15     Setsockopt(listenfd, SOL_SOCKET, SO_RCVBUF, &size, sizeof(size));

16     connfd = Accept(listenfd, NULL, NULL);

17     Signal(SIGURG, sig_urg);

18     Fcntl(connfd, F_SETOWN, getpid());

19     for ( ;  ; )

20         pause();

21 }

22 void

23 sig_urg(int signo)

24 {

25     int     n;

26     char    buff[2048];

27     printf("SIGURG received\n");

28     n = Recv(connfd, buff, sizeof(buff) - 1, MSG_OOB);

29     buff[n] = 0;                /* null terminate */

30     printf("read %d OOB byte\n", n);

31 }

Page 755

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


The solution is for the receiver to make room in its socket receive buffer by reading the
normal data that is available. This will cause its TCP to advertise a nonzero window to the
sender, which will eventually let the sender transmit the out-of-band byte.

We note two related issues in Berkeley-derived implementations (pp. 1016 1017 of
TCPv2). First, even if the socket send buffer is full, an out-of-band byte is always accepted
by the kernel from the process for sending to the peer. Second, when the process sends an
out-of-band byte, a TCP segment is immediately sent that contains the urgent notification.
All the normal TCP output checks (Nagle algorithm, silly-window avoidance, etc.) are
bypassed.

Example
Our next example demonstrates that there is only a single out-of-band mark for a given
TCP connection, and if new out-of-band data arrives before the receiving process reads
some existing out-of-band data, the previous mark is lost.

Figure 24.12 is the sending program, which is similar to Figure 24.8 with the addition of
another send of out-of-band data, followed by one more write of normal data.

Figure 24.12 Sending two out-of-band bytes in rapid succession.

oob/tcpsend06.c

 1 #include    "unp.h"

 2 int

 3 main(int argc, char **argv)

 4 {

 5     int     sockfd;

 6     if (argc != 3)

 7         err_quit("usage: tcpsend06 <host> <port#>");

 8     sockfd = Tcp_connect(argv[1], argv[2]);

 9     Write(sockfd, "123", 3);

10     printf("wrote 3 bytes of normal data\n");

11     Send(sockfd, "4", 1, MSG_OOB);

12     printf("wrote 1 byte of OOB data\n");

13     Write(sockfd, "5", 1);

14     printf("wrote 1 byte of normal data\n");

15     Send(sockfd, "6", 1, MSG_OOB);

16     printf("wrote 1 byte of OOB data\n");

17     Write(sockfd, "7", 1);

18     printf("wrote 1 byte of normal data\n");

19     exit(0);

20 }

There are no pauses in the sending, allowing all the data to be sent to the receiving TCP
quickly.

The receiving program is identical to Figure 24.9, which sleeps for five seconds after
accepting the connection to allow the data to arrive at its TCP. Here is the receiving
program's output:

Page 756

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


freebsd4 % tcprecv06 5555

read 5 bytes: 12345

at OOB mark

read 2 bytes: 67

received EOF

The arrival of the second out-of-band byte (the 6) overwrites the mark that was stored
when the first out-of-band byte arrived (the 4). As we said, there is at most one
out-of-band mark per TCP connection.

[ Team LiB ]

Page 757

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

24.4 TCP Out-of-Band Data Recap
All our examples using out-of-band data so far have been trivial. Unfortunately,
out-of-band data gets messy when we consider the timing problems that may arise. The
first point to consider is that the concept of out-of-band data really conveys three different
pieces of information to the receiver:

1. The fact that the sender went into urgent mode. The receiving process can be
notified of this with either the SIGURG signal or with select. This notification is
transmitted immediately after the sender sends the out-of-band byte, because we
saw in Figure 24.11 that TCP sends the notification even if it is stopped by flow
control from sending any data to the receiver. This notification might cause the
receiver to go into some special mode of processing for any subsequent data that it
receives.

2. The position of the out-of-band byte, that is, where it was sent with regard to the
rest of data from the sender: the out-of-band mark.

3. The actual value of the out-of-band byte. Since TCP is a byte stream protocol that
does not interpret the data sent by the application, this can be any 8-bit value.

With TCP's urgent mode, we can think of the URG flag as being the notification, the urgent
pointer as being the mark, and the byte of data as itself.

The problems with this concept of out-of-band data are that: (i) there is only one TCP
urgent pointer per connection; (ii) there is only one out-of-band mark per connection; and
(iii) there is only a single one-byte out-of-band buffer per connection (which is an issue
only if the data is not being read inline). We saw with Figure 24.12 that an arriving mark
overwrites any previous mark that the process has not yet encountered. If the data is
being read inline, previous out-of-band bytes are not lost when new out-of-band data
arrives, but the mark is lost.

One common use of out-of-band data is with rlogin, when the client interrupts the
program that it is running on the server (pp. 393 394 of TCPv1). The server needs to tell
the client to discard all queued output because up to one window's worth of output may be
queued to send from the server to the client. The server sends a special byte to the client,
telling it to flush all output, and this byte is sent as out-of-band data. When the client
receives the SIGURG signal, it just reads from the socket until it encounters the mark,
discarding everything up through the mark. (Pages 398 401 of TCPv1 contain an example
of this use of out-of-band data, along with the corresponding tcpdump output.) In this
scenario, if the server sent multiple out-of-band bytes in quick succession, it wouldn't
affect the client, as the client just reads up through the final mark, discarding all the data.

In summary, the usefulness of out-of-band data depends on why it is being used by the
application. If the purpose is to tell the peer to discard the normal data up through the
mark, then losing an intermediate out-of-band byte and its corresponding mark is of no
consequence. But if it is important that no out-of-band bytes be lost, then the data must
be received inline. Furthermore, the data bytes that are sent as out-of-band data should be
differentiated from normal data since intermediate marks can be overwritten when a new
mark is received, effectively mixing out-of-band bytes with the normal data. telnet, for
example, sends its own commands in the normal stream of data between the client and
server, prefixing its commands with a byte of 255. (To send this value as data then
requires two successive bytes of 255.) This lets it differentiate its commands from normal
user data, but requires that the client and server process each byte of data looking for
commands.

[ Team LiB ]

Page 758

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


Page 759

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

24.5 Summary
TCP does not have true out-of-band data. It provides an urgent pointer that is sent in the
TCP header to the peer as soon as the sender goes into urgent mode. The receipt of this
pointer by the other end of the connection tells that process that the sender has gone into
urgent mode, and the pointer points to the final byte of urgent data. But all the data is still
subject to TCP's normal flow control.

The sockets API maps TCP's urgent mode into what it calls out-of-band data. The sender
goes into urgent mode by specifying the MSG_OOB flag in a call to send. The final byte of
data in this call is considered the out-of-band byte. The receiver is notified when its TCP
receives a new urgent pointer by either the SIGURG signal, or by an indication from select
that the socket has an exception condition pending. By default, TCP takes the out-of-band
byte out of the normal stream of data and places it into its own one-byte out-of-band
buffer that the process reads by calling recv with the MSG_OOB flag. Alternately, the
receiver can set the SO_OOBINLINE socket option, in which case, the out-of-band byte is left
in the normal stream of data. Regardless of which method is used by the receiver, the
socket layer maintains an out-of-band mark in the data stream and will not read through
the mark with a single input operation. The receiver determines if it has reached the mark
by calling the sockatmark function.

Out-of-band data is not heavily used. telnet and rlogin use it, as does FTP; they all use it
to notify the remote end of an exceptional condition (e.g., client interrupt), and the servers
discard all input received before the out-of-band mark.

[ Team LiB ]

Page 760

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Exercises
24.1 Is there a difference between the single function call

     send(fd, "ab", 2, MSG_OOB);

and the two function calls

     send(fd, "a", 1, MSG_OOB);

     send(fd, "b", 1, MSG_OOB);

24.2 Redo Figure 24.6 to use poll instead of select.

[ Team LiB ]

Page 761

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Chapter 25. Signal-Driven I/O
Section 25.1.?Introduction

Section 25.2.?Signal-Driven I/O for Sockets

Section 25.3.?UDP Echo Server Using SIGIO

Section 25.4.?Summary

Exercises

[ Team LiB ]

Page 762

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

25.1 Introduction
When using signal-driven I/O, the kernel notifies us with a signal when something happens
on a descriptor. Historically, this has been called asynchronous I/O, but the signal-driven
I/O that we will describe is not true asynchronous I/O. The latter is normally defined as the
process performing the I/O operation (say a read or write), with the kernel returning
immediately after the kernel initiates the I/O operation. The process continues executing
while the I/O takes place. Some form of notification is then provided to the process when
the operation is complete or encounters an error. We compared the various types of I/O
that are normally available in Section 6.2 and showed the difference between signal-driven
I/O and asynchronous I/O.

The nonblocking I/O we described in Chapter 16 is not asynchronous I/O either. With
nonblocking I/O, the kernel does not return after initiating the I/O operation; the kernel
returns immediately only if the operation cannot be completed without putting the process
to sleep.

POSIX provides true asynchronous I/O with its aio_XXX functions. These functions let the
process specify whether or not a signal is generated when the I/O completes, and which
signal to generate.

Berkeley-derived implementations support signal-driven I/O for sockets and terminal
devices using the SIGIO signal. SVR4 supports signal-driven I/O for STREAMS devices
using the SIGPOLL signal, which is then equated to SIGIO.

[ Team LiB ]

Page 763

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

25.2 Signal-Driven I/O for Sockets
To use signal-driven I/O with a socket (SIGIO) requires the process to perform the
following three steps:

1. A signal handler must be established for the SIGIO signal.

2. The socket owner must be set, normally with the F_SETOWN command of fcntl (
Figure 7.20).

3. Signal-driven I/O must be enabled for the socket, normally with the F_SETFL
command of fcntl to turn on the O_ASYNC flag (Figure 7.20).

The O_ASYNC flag is a relatively late addition to the POSIX specification. Very few
systems have implemented support for the flag. In Figure 25.4, we will enable
signal-driven I/O with the FIOASYNC ioctl instead. Notice the bad choice of names
by POSIX: The name O_SIGIO would have been a better choice for the new flag.

We should establish the signal handler before setting the owner of the socket. Under
Berkeley-derived implementations, the order of the two function calls does not
matter because the default action is to ignore SIGIO. Therefore, if we were to
reverse the order of the two function calls, there is a small chance that a signal
could be generated after the call to fcntl but before the call to signal; if that
happens, the signal is just discarded. Under SVR4, however, SIGIO is defined to be
SIGPOLL in the <sys/signal.h> header and the default action of SIGPOLL is to
terminate the process. Therefore, under SVR4, we want to be certain the signal
handler is installed before setting the owner of the socket.

Although setting a socket for signal-driven I/O is easy, the hard part is determining what
conditions cause SIGIO to be generated for the socket owner. This depends on the
underlying protocol.

SIGIO with UDP Sockets
Using signal-driven I/O with UDP is simple. The signal is generated whenever

 A datagram arrives for the socket

 An asynchronous error occurs on the socket

Hence, when we catch SIGIO for a UDP socket, we call recvfrom to either read the
datagram that arrived or to obtain the asynchronous error. We talked about asynchronous
errors with regard to UDP sockets in Section 8.9. Recall that these are generated only if the
UDP socket is connected.

SIGIO is generated for these two conditions by the calls to sorwakeup on pp. 775, 779, and
784 of TCPv2.

SIGIO with TCP Sockets
Unfortunately, signal-driven I/O is next to useless with a TCP socket. The problem is that
the signal is generated too often, and the occurrence of the signal does not tell us what
happened. As noted on p. 439 of TCPv2, the following conditions all cause SIGIO to be
generated for a TCP socket (assuming signal-driven I/O is enabled):

 A connection request has completed on a listening socket

Page 764

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


 A disconnect request has been initiated

 A disconnect request has completed

 Half of a connection has been shut down

 Data has arrived on a socket

 Data has been sent from a socket (i.e., the output buffer has free space)

 An asynchronous error occurred

For example, if one is both reading from and writing to a TCP socket, SIGIO is generated
when new data arrives and when data previously written is acknowledged, and there is no
way to distinguish between the two in the signal handler. If SIGIO is used in this scenario,
the TCP socket should be set to nonblocking to prevent a read or write from blocking. We
should consider using SIGIO only with a listening TCP socket, because the only condition
that generates SIGIO for a listening socket is the completion of a new connection.

The only real-world use of signal-driven I/O with sockets that the authors were able to find
is the NTP server, which uses UDP. The main loop of the server receives a datagram from a
client and sends a response. But, there is a non-negligible amount of processing to do for
each client's request (more than our trivial echo server). It is important for the server to
record accurate timestamps for each received datagram, since that value is returned to the
client and then used by the client to calculate the RTT to the server. Figure 25.1 shows two
ways to build such a UDP server.

Figure 25.1. Two different ways to build a UDP server.

Most UDP servers (including our echo server from Chapter 8) are designed as shown at the
left of this figure. But the NTP server uses the technique shown on the right side: When a
new datagram arrives, it is read by the SIGIO handler, which also records the time at which
the datagram arrived. The datagram is then placed on another queue within the process
from which it will be removed by and processed by the main server loop. Although this
complicates the server code, it provides accurate timestamps of arriving datagrams.

Recall from Figure 22.4 that the process can set the IP_RECVDSTADDR socket option to
receive the destination address of a received UDP datagram. One could argue that two
additional pieces of information that should also be returned for a received UDP datagram
are an indication of the received interface (which can differ from the destination address, if
the host employs the common weak end system model) and the time at which the
datagram arrived.

For IPv6, the IPV6_PKTINFO socket option (Section 22.8) returns the received interface. For

Page 765

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


IPv4, we discussed the IP_RECVIF socket option in Section 22.2.

FreeBSD also provides the SO_TIMESTAMP socket option, which returns the time at which
the datagram was received as ancillary data in a timeval structure. Linux provides an
SIOCGSTAMP ioctl that returns a timeval structure containing the time at which the
datagram was received.

[ Team LiB ]

Page 766

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

25.3 UDP Echo Server Using SIGIO
We now provide an example similar to the right side of Figure 25.1: a UDP server that uses
the SIGIO signal to receive arriving datagrams. This example also illustrates the use of
POSIX reliable signals.

We do not change the client at all from Figure 8.7 and 8.8, and the server main function
does not change from Figure 8.3. The only changes that we make are to the dg_echo
function, which we show in the next four figures. Figure 25.2 shows the global
declarations.

Figure 25.2 Global declarations.

sigio/dgecho01.c

 1 #include    "unp.h"

 2 static int sockfd;

 3 #define QSIZE     8             /* size of input queue */

 4 #define MAXDG  4096             /* max datagram size */

 5 typedef struct {

 6     void   *dg_data;            /* ptr to actual datagram */

 7     size_t  dg_len;             /* length of datagram */

 8     struct sockaddr *dg_sa;     /* ptr to sockaddr{} w/client's address */

 9     socklen_t dg_salen;         /* length of sockaddr{} */

10 } DG;

11 static DG dg[QSIZE];            /* queue of datagrams to process */

12 static long cntread[QSIZE + 1]; /* diagnostic counter */

13 static int iget;                /* next one for main loop to process */

14 static int iput;                /* next one for signal handler to read into

*/

15 static int nqueue;              /* # on queue for main loop to process */

16 static socklen_t clilen;        /* max length of sockaddr{} */

17 static void sig_io(int);

18 static void sig_hup(int);

Queue of received datagrams
3 12 The SIGIO signal handler places arriving datagrams onto a queue. This queue is an
array of DG structures that we treat as a circular buffer. Each structure contains a pointer to
the received datagram, its length, a pointer to a socket address structure containing the
protocol address of the client, and the size of the protocol address. QSIZE of these
structures are allocated, and we will see in Figure 25.4 that the dg_echo function calls
malloc to allocate memory for all the datagrams and socket address structures. We also
allocate a diagnostic counter, cntread, that we will examine shortly. Figure 25.3 shows the
array of structures, assuming the first entry points to a 150-byte datagram and the length
of its associated socket address structure is 16.

Figure 25.3. Data structures used to hold received datagrams and
their socket address structures.

Page 767

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


Array indexes
13 15 iget is the index of the next array entry for the main loop to process, and iput is
the index of the next array entry for the signal handler to store into. nqueue is the total
number of datagrams on the queue for the main loop to process.

Figure 25.4 shows the main server loop, the dg_echo function.

Figure 25.4 dg_echo function: server main processing loop.

sigio/dgecho01.c

19 void

20 dg_echo(int sockfd_arg, SA *pcliaddr, socklen_t clilen_arg)

21 {

22     int     i;

23     const int on = 1;

24     sigset_t zeromask, newmask, oldmask;

25     sockfd = sockfd_arg;

26     clilen = clilen_arg;

27     for (i = 0; i < QSIZE; i++) {    /* init queue of buffers */

28         dg[i].dg_data = Malloc(MAXDG);

29         dg[i].dg_sa = Malloc(clilen);

30         dg[i].dg_salen = clilen;

31     }

32     iget = iput = nqueue = 0;

33     Signal(SIGHUP, sig_hup);

34     Signal(SIGIO, sig_io);

35     Fcntl(sockfd, F_SETOWN, getpid());

36     Ioctl(sockfd, FIOASYNC, &on);

37     Ioctl(sockfd, FIONBIO, &on);

38     Sigemptyset(&zeromask);     /* init three signal sets */

39     Sigemptyset(&oldmask);

40     Sigemptyset(&newmask);

41     Sigaddset(&newmask, SIGIO); /* signal we want to block */

42     Sigprocmask(SIG_BLOCK, &newmask, &oldmask);

43     for ( ; ; ) {

44         while (nqueue == 0)

45             sigsuspend(&zeromask); /* wait for datagram to process */

Page 768

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


46             /* unblock SIGIO */

47         Sigprocmask(SIG_SETMASK, &oldmask, NULL);

48         Sendto(sockfd, dg[iget].dg_data, dg[iget].dg_len, 0,

49                dg[iget].dg_sa, dg[iget].dg_salen);

50         if (++iget >= QSIZE)

51             iget = 0;

52             /* block SIGIO */

53         Sigprocmask(SIG_BLOCK, &newmask, &oldmask);

54         nqueue--;

55     }

56 }

Initialize queue of received datagrams
27 32 The socket descriptor is saved in a global variable since the signal handler needs it.
The queue of received datagrams is initialized.

Establish signal handlers and set socket flags
33 37 Signal handlers are established for SIGHUP (which we use for diagnostic purposes)
and SIGIO. The socket owner is set using fcntl and the signal-driven and non-blocking I/O
flags are set using ioctl.

We mentioned earlier that the O_ASYNC flag with fcntl is the POSIX way to specify
signal-driven I/O, but since most systems do not yet support it, we use ioctl instead.
While most systems do support the O_NONBLOCK flag to set nonblocking, we show the ioctl
method here.

Initialize signal sets
38 41 Three signal sets are initialized: zeromask (which never changes), oldmask (which
contains the old signal mask when we block SIGIO), and newmask. sigaddset turns on the
bit corresponding to SIGIO in newmask.

Block SIGIO and wait for something to do
42 45 sigprocmask stores the current signal mask of the process in oldmask and then
logically ORs newmask into the current signal mask. This blocks SIGIO and returns the
current signal mask. We then enter the for loop and test the nqueue counter. As long as
this counter is 0, there is nothing to do and we can call sigsuspend. This POSIX function
saves the current signal mask internally and then sets the current signal mask to the
argument (zeromask). Since zeromask is an empty signal set, this enables all signals.
sigsuspend returns after a signal has been caught and the signal handler returns. (It is an
unusual function because it always returns an error, EINTR.) Before returning, sigsuspend
always sets the signal mask to its value when the function was called, which in this case is
the value of newmask, so we are guaranteed that when sigsuspend returns, SIGIO is
blocked. That is why we can test the counter nqueue, knowing that while we are testing it,
a SIGIO signal cannot be delivered.

Consider what would happen if SIGIO was not blocked while we tested the variable nqueue,
which is shared between the main loop and the signal handler. We could test nqueue and
find it 0, but immediately after this test, the signal is delivered and nqueue gets set to 1.
We then call sigsuspend and go to sleep, effectively missing the signal. We are never
awakened from the call to sigsuspend unless another signal occurs. This is similar to the
race condition we described in Section 20.5.

Page 769

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


Unblock SIGIO and send reply
46 51 We unblock SIGIO by calling sigprocmask to set the signal mask of the process to
the value that was saved earlier (oldmask). The reply is then sent by sendto. The iget
index is incremented, and if its value is the number of elements in the array, its value is
set back to 0. We treat the array as a circular buffer. Notice that we do not need SIGIO
blocked while modifying iget, because this index is used only by the main loop; it is never
modified by the signal handler.

Block SIGIO
52 54 SIGIO is blocked and the value of nqueue is decremented. We must block the signal
while modifying this variable since it is shared between the main loop and the signal
handler. Also, we need SIGIO blocked when we test nqueue at the top of the loop.

An alternate technique is to remove both calls to sigprocmask that are within the for loop,
which avoids unblocking the signal and then blocking it later. The problem, however, is
that this executes the entire loop with the signal blocked, which decreases the
responsiveness of the signal handler. Datagrams should not get lost because of this change
(assuming the socket receive buffer is large enough), but the delivery of the signal to the
process will be delayed the entire time that the signal is blocked. One goal when coding
applications that perform signal handling should be to block the signal for the minimum
amount of time.

Figure 25.5 shows the SIGIO signal handler.

Figure 25.5 SIGIO handler.

sigio/dgecho01.c

57 static void

58 sig_io(int signo)

59 {

60     ssize_t len;

61     int     nread;

62     DG     *ptr;

63     for (nread = 0;;) {

64         if (nqueue >= QSIZE)

65             err_quit("receive overflow");

66         ptr = &dg[iput];

67         ptr->dg_salen = clilen;

68         len = recvfrom(sockfd, ptr->dg_data, MAXDG, 0,

69                        ptr->dg_sa, &ptr->dg_salen);

70         if (len < 0) {

71             if (errno == EWOULDBLOCK)

72                 break;          /* all done; no more queued to read */

73             else

74                 err_sys("recvfrom error");

75          }

76          ptr->dg_len = len;

77          nread++;

78          nqueue++;

79          if (++iput >= QSIZE)

80              iput = 0;

81     }

Page 770

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


82     cntread[nread]++;            /* histogram of # datagrams read per signal

*/

83 }

The problem that we encounter when coding this signal handler is that POSIX signals are
normally not queued. This means that, if we are in the signal handler, which guarantees
that the signal is blocked, and the signal occurs two more times, the signal is delivered
only one more time.

POSIX provides some real-time signals that are queued, but other signals such as SIGIO
are normally not queued.

Consider the following scenario: A datagram arrives and the signal is delivered. The signal
handler reads the datagram and places it onto the queue for the main loop. But while the
signal handler is executing, two more datagrams arrive, causing the signal to be generated
two more times. Since the signal is blocked, when the signal handler returns, it is called
only one more time. The second time the signal handler executes, it reads the second
datagram, but the third datagram is left on the socket receive queue. This third datagram
will be read only if and when a fourth datagram arrives. When a fourth datagram arrives, it
is the third datagram that is read and placed on the queue for the main loop, not the
fourth one.

Because signals are not queued, the descriptor that is set for signal-driven I/O is normally
set to nonblocking also. We then code our SIGIO handler to read in a loop, terminating only
when the read returns EWOULDBLOCK.

Check for queue overflow
64 65 If the queue is full, we terminate. There are other ways to handle this (e.g.,
additional buffers could be allocated), but for our simple example, we just terminate.

Read datagram
66 76 recvfrom is called on the nonblocking socket. The array entry indexed by iput is
where the datagram is stored. If there are no datagrams to read, break jumps out of the
for loop.

Increment counters and index
77 80 nread is a diagnostic counter of the number of datagrams read per signal. nqueue is
the number of datagrams for the main loop to process.

82 Before the signal handler returns, it increments the counter corresponding to the
number of datagrams read per signal. We print this array in Figure 25.6 when the SIGHUP
signal is delivered as diagnostic information.

The final function (Figure 25.6) is the SIGHUP signal handler, which prints the cntread
array. This counts the number of datagrams read per signal.

Figure 25.6 SIGHUP handler.

sigio/dgecho01.c

84 static void

85 sig_hup(int signo)

86 {

87     int     i;

88     for (i = 0; i <= QSIZE; i++)

89         printf("cntread[%d] = %ld\n", i, cntread[i]);

90 }

Page 771

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


To illustrate that signals are not queued and that we must set the socket to nonblocking in
addition to setting the signal-driven I/O flag, we will run this server with six clients
simultaneously. Each client sends 3,645 lines for the server to echo, and each client is
started from a shell script in the background so that all clients are started at about the
same time. When all the clients have terminated, we send the SIGHUP signal to the server,
causing it to print its cntread array.

     linux % udpserv01

     cntread[0] = 0

     cntread[1] = 15899

     cntread[2] = 2099

     cntread[3] = 515

     cntread[4] = 57

     cntread[5] = 0

     cntread[6] = 0

     cntread[7] = 0

     cntread[8] = 0

Most of the time, the signal handler reads only one datagram, but there are times when
more than one is ready. The nonzero counter for cntread[0] is when the signal is
generated while the signal handler is executing, but before the signal handler returns, it
reads all pending datagrams. When the signal handler is called again, there are no
datagrams left to read. Finally, we can verify that the weighted sum of the array elements
(15899 x 1 + 2099 x 2 + 515 x 3 + 57 x 4 = 21870) equals 6 (the number of clients)
times 3,645 lines per client.

[ Team LiB ]

Page 772

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

25.4 Summary
Signal-driven I/O has the kernel notify us with the SIGIO signal when "something"
happens on a socket.

 With a connected TCP socket, numerous conditions can cause this notification,
making this feature of little use.

 With a listening TCP socket, this notification occurs when a new connection is ready
to be accepted.

 With UDP, this notification means either a datagram has arrived or an asynchronous
error has arrived; in both cases, we call recvfrom.

We modified our UDP echo server to use signal-driven I/O, using a technique similar to
that used by NTP: read a datagram as soon as possible after it arrives to obtain an accurate
timestamp for its arrival and then queue it for later processing.

[ Team LiB ]

Page 773

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Exercises
25.1 An alternate design for the loop in Figure 25.4 is the following:

for ( ; ; ) {

    Sigprocmask(SIG_BLOCK, &newmask, &oldmask);

    while (nqueue == 0)

        sigsuspend(&zeromask);  /* wait for datagram to

process */

    nqueue--;

        /* unblock SIGGIO */

    Sigprocmask(SIG_SETMASK, &oldmask, NULL);

    Sendto(sockfd, dg[iget].dg_data, dg[iget].dg_len, 0,

           dg[iget].dg_sa, dg[iget].dg_salen);

    if (++iget >= QSIZE)

        iget = 0;

}

Is this modification acceptable?

[ Team LiB ]

Page 774

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Chapter 26. Threads
Section 26.1.?Introduction

Section 26.2.?Basic Thread Functions: Creation and Termination

Section 26.3.?str_cli Function Using Threads

Section 26.4.?TCP Echo Server Using Threads

Section 26.5.?Thread-Specific Data

Section 26.6.?Web Client and Simultaneous Connections (Continued)

Section 26.7.?Mutexes: Mutual Exclusion

Section 26.8.?Condition Variables

Section 26.9.?Web Client and Simultaneous Connections (Continued)

Section 26.10.?Summary

Exercises

[ Team LiB ]

Page 775

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

26.1 Introduction
In the traditional Unix model, when a process needs something performed by another
entity, it forks a child process and lets the child perform the processing. Most network
servers under Unix are written this way, as we have seen in our concurrent server
examples: The parent accepts the connection, forks a child, and the child handles the
client.

While this paradigm has served well for many years, there are problems with fork:

 fork is expensive. Memory is copied from the parent to the child, all descriptors are
duplicated in the child, and so on. Current implementations use a technique called 
copy-on-write, which avoids a copy of the parent's data space to the child until the
child needs its own copy. But, regardless of this optimization, fork is expensive.

 IPC is required to pass information between the parent and child after the fork.
Passing information from the parent to the child before the fork is easy, since the
child starts with a copy of the parent's data space and with a copy of all the parent's
descriptors. But, returning information from the child to the parent takes more
work.

Threads help with both problems. Threads are sometimes called lightweight processes
since a thread is "lighter weight" than a process. That is, thread creation can be 10 100
times faster than process creation.

All threads within a process share the same global memory. This makes the sharing of
information easy between the threads, but along with this simplicity comes the problem of 
synchronization.

More than just the global variables are shared. All threads within a process share the
following:

 Process instructions

 Most data

 Open files (e.g., descriptors)

 Signal handlers and signal dispositions

 Current working directory

 User and group IDs

But each thread has its own

 Thread ID

 Set of registers, including program counter and stack pointer

 Stack (for local variables and return addresses)

 errno

 Signal mask

 Priority

One analogy is to think of signal handlers as a type of thread as we discussed in 

Page 776

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


Section 11.18. That is, in the traditional Unix model, we have the main flow of
execution (one thread) and a signal handler (another thread). If the main flow is in
the middle of updating a linked list when a signal occurs, and the signal handler
also tries to update the linked list, havoc normally results. The main flow and signal
handler share the same global variables, but each has its own stack.

In this text, we cover POSIX threads, also called Pthreads. These were standardized in
1995 as part of the POSIX.1c standard and most versions of Unix will support them in the
future. We will see that all the Pthread functions begin with pthread_. This chapter is an
introduction to threads, so that we can use threads in our network programs. For additional
details see [Butenhof 1997].

[ Team LiB ]

Page 777

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

26.2 Basic Thread Functions: Creation and Termination
In this section, we will cover five basic thread functions and then use these in the next two
sections to recode our TCP client/server using threads instead of fork.

pthread_create Function
When a program is started by exec, a single thread is created, called the initial thread or
main thread. Additional threads are created by pthread_create.

#include <pthread.h>

int pthread_create(pthread_t *tid, const pthread_attr_t *attr, void *(*func)
(void *), void *arg);

Returns: 0 if OK, positive Exxx value on error

Each thread within a process is identified by a thread ID, whose datatype is pthread_t
(often an unsigned int). On successful creation of a new thread, its ID is returned through
the pointer tid.

Each thread has numerous attributes: its priority, its initial stack size, whether it should be
a daemon thread or not, and so on. When a thread is created, we can specify these
attributes by initializing a pthread_attr_t variable that overrides the default. We normally
take the default, in which case, we specify the attr argument as a null pointer.

Finally, when we create a thread, we specify a function for it to execute. The thread starts
by calling this function and then terminates either explicitly (by calling pthread_exit) or
implicitly (by letting the function return). The address of the function is specified as the 
func argument, and this function is called with a single pointer argument, arg. If we need
multiple arguments to the function, we must package them into a structure and then pass
the address of this structure as the single argument to the start function.

Notice the declarations of func and arg. The function takes one argument, a generic pointer
(void *), and returns a generic pointer (void *). This lets us pass one pointer (to anything
we want) to the thread, and lets the thread return one pointer (again, to anything we
want).

The return value from the Pthread functions is normally 0 if successful or nonzero on an
error. But unlike the socket functions, and most system calls, which return  1 on an error
and set errno to a positive value, the Pthread functions return the positive error indication
as the function's return value. For example, if pthread_create cannot create a new thread
because of exceeding some system limit on the number of threads, the function return
value is EAGAIN. The Pthread functions do not set errno. The convention of 0 for success or
nonzero for an error is fine since all the Exxx values in <sys/errno.h> are positive. A value
of 0 is never assigned to one of the Exxx names.

pthread_join Function
We can wait for a given thread to terminate by calling pthread_join. Comparing threads to
Unix processes, pthread_create is similar to fork, and pthread_join is similar to waitpid.

Page 778

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


#include <pthread.h>

int pthread_join (pthread_t tid, void ** status);

Returns: 0 if OK, positive Exxx value on error

We must specify the tid of the thread that we want to wait for. Unfortunately, there is no
way to wait for any of our threads (similar to waitpid with a process ID argument of  1).
We will return to this problem when we discuss Figure 26.14.

If the status pointer is non-null, the return value from the thread (a pointer to some
object) is stored in the location pointed to by status.

pthread_self Function
Each thread has an ID that identifies it within a given process. The thread ID is returned
by pthread_create and we saw it was used by pthread_join. A thread fetches this value
for itself using pthread_self.

#include <pthread.h>

pthread_t pthread_self (void);

Returns: thread ID of calling thread

Comparing threads to Unix processes, pthread_self is similar to getpid.

pthread_detach Function
A thread is either joinable (the default) or detached. When a joinable thread terminates, its
thread ID and exit status are retained until another thread calls pthread_join. But a
detached thread is like a daemon process: When it terminates, all its resources are
released and we cannot wait for it to terminate. If one thread needs to know when another
thread terminates, it is best to leave the thread as joinable.

The pthread_detach function changes the specified thread so that it is detached.

#include <pthread.h>

int pthread_detach (pthread_t tid);

Returns: 0 if OK, positive Exxx value on error

This function is commonly called by the thread that wants to detach itself, as in

pthread_detach (pthread_self());

pthread_exit Function
One way for a thread to terminate is to call pthread_exit.

Page 779

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


#include <pthread.h>

void pthread_exit (void *status);

Does not return to caller

If the thread is not detached, its thread ID and exit status are retained for a later 
pthread_join by some other thread in the calling process.

The pointer status must not point to an object that is local to the calling thread since that
object disappears when the thread terminates.

There are two other ways for a thread to terminate:

 The function that started the thread (the third argument to pthread_create) can
return. Since this function must be declared as returning a void pointer, that return
value is the exit status of the thread.

 If the main function of the process returns or if any thread calls exit, the process
terminates, including any threads.

[ Team LiB ]

Page 780

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

26.3 str_cli Function Using Threads
Our first example using threads is to recode the str_cli function from Figure 16.10, which
uses fork, to use threads. Recall that we have provided numerous other versions of this
function: The original in Figure 5.5 used a stop-and-wait protocol, which we showed was
far from optimal for batch input; Figure 6.13 used blocking I/O and the select function;
and the version starting with Figure 16.3 used nonblocking I/O. Figure 26.1 shows the
design of our threads version.

Figure 26.1. Recoding str_cli to use threads.

Figure 26.2 shows the str_cli function using threads.

unpthread.h header
1 This is the first time we have encountered the unpthread.h header. It includes our
normal unp.h header, followed by the POSIX <pthread.h> header, and then defines the
function prototypes for our wrapper versions of the pthread_XXX functions (Section 1.4),
which all begin with pthread_.

Save arguments in externals
10 11 The thread that we are about to create needs the values of the two arguments to
str_cli: fp, the standard I/O FILE pointer for the input file, and sockfd, the TCP socket
connected to the server. For simplicity, we store these two values in external variables. An
alternative technique is to put the two values into a structure and then pass a pointer to
the structure as the argument to the thread we are about to create.

Figure 26.2 str_cli function using threads.

threads/strclithread.c

 1 #include     "unpthread.h"

 2 void   *copyto (void *);

 3 static int sockfd;               /* global for both threads to access */

 4 static FILE *fp;

 5 void

 6 str_cli(FILE *fp_arg, int sockfd_arg)

 7 {

 8     char    recvline[MAXLINE];

 9     pthread_t tid;

10     sockfd = sockfd_arg;        /* copy arguments to externals */

11     fp = fp_arg;

Page 781

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


12     Pthread_create(&tid, NULL, copyto, NULL);

13     while (Readline(sockfd, recvline, MAXLINE) > 0)

14         Fputs(recvline, stdout);

15 }

16 void *

17 copyto(void *arg)

18 {

19     char     sendline[MAXLINE];

20     while (Fgets(sendline, MAXLINE, fp) ! = NULL)

21         Writen(sockfd, sendline, strlen(sendline));

22     Shutdown(sockfd, SHUT_WR); /* EOF on stdin, send FIN */

23     return (NULL);

24         /* return (i.e., thread terminates) when EOF on stdin */

25 }

Create new thread
12 The thread is created and the new thread ID is saved in tid. The function executed by
the new thread is copyto. No arguments are passed to the thread.

Main thread loop: copy socket to standard output
13 14 The main thread calls readline and fputs, copying from the socket to the standard
output.

Terminate
15 When the str_cli function returns, the main function terminates by calling exit (
Section 5.4). When this happens, all threads in the process are terminated. Normally, the
copyto thread will have already terminated by the time the server's main function
completes. But in the case where the server terminates prematurely (Section 5.12),
calling exit when the server's main function completes will terminate the copyto thread,
which is what we want.

copyto thread
16 25 This thread just copies from standard input to the socket. When it reads an EOF on
standard input, a FIN is sent across the socket by shutdown and the thread returns. The
return from this function (which started the thread) terminates the thread.

At the end of Section 16.2, we provided measurements for the five different
implementation techniques that we have used with our str_cli function. The threads
version we just presented took 8.5 seconds, which is slightly faster than the version using 
fork (which we expect), but slower than the nonblocking I/O version. Nevertheless,
comparing the complexity of the nonblocking I/O version (Section 16.2) versus the
simplicity of the threads version, we still recommend using threads instead of nonblocking
I/O.

[ Team LiB ]

Page 782

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

26.4 TCP Echo Server Using Threads
We now redo our TCP echo server from Figure 5.2 using one thread per client instead of
one child process per client. We also make it protocol-independent, using our tcp_listen
function. Figure 26.3 shows the server.

Create thread
17 21 When accept returns, we call pthread_create instead of fork. The single argument
that we pass to the doit function is the connected socket descriptor, connfd.

We cast the integer descriptor connfd to be a void pointer. ANSI C does not guarantee
that this works. It works only on systems on which the size of an integer is less than or
equal to the size of a pointer. Fortunately, most Unix implementations have this property (
Figure 1.17). We will talk more about this shortly.

Thread function
23 30 doit is the function executed by the thread. The thread detaches itself since there is
no reason for the main thread to wait for each thread it creates. The function str_echo
does not change from Figure 5.3. When this function returns, we must close the
connected socket since the thread shares all descriptors with the main thread. With fork,
the child did not need to close the connected socket because when the child terminated,
all open descriptors were closed on process termination (see Exercise 26.2).

Also notice that the main thread does not close the connected socket, which we always did
with a concurrent server that calls fork. This is because all threads within a process share
the descriptors, so if the main thread called close, it would terminate the connection.
Creating a new thread does not affect the reference counts for open descriptors, which is
different from fork.

There is a subtle error in this program, which we will describe in detail in Section 26.5. Can
you spot the error (see Exercise 26.5)?

Figure 26.3 TCP echo server using threads (see also Exercise 26.5).

threads/tcpserv01.c

 1 #include     "unpthread.h"

 2 static void *doit(void *);      /* each thread executes this function */

 3 int

 4 main(int argc, char **argv)

 5 {

 6     int     listenfd, connfd;

 7     pthread_t tid;

 8     socklen_t addrlen, len;

 9     struct sockaddr *cliaddr;

10     if (argc == 2)

11         listenfd = Tcp_listen(NULL, argv[1], &addrlen);

12     else if (argc == 3)

13         listenfd = Tcp_listen(argv[1], argv[2], &addrlen);

14     else

15         err_quit("usage: tcpserv01 [ <host> ] <service or port>");

Page 783

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


16     cliaddr = Malloc(addrlen);

17     for (; ; ) {

18         len = addrlen;

19         connfd = Accept(listenfd, cliaddr, &len);

20         Pthread_create(&tid, NULL, &doit, (void *) connfd);

21     }

22 }

23 static void *

24 doit(void *arg)

25 {

26     Pthread_detach(pthread_self());

27     str_echo((int) arg);        /* same function as before */

28     Close((int) arg);           /* done with connected socket */

29     return (NULL);

30 }

Passing Arguments to New Threads
We mentioned that in Figure 26.3, we cast the integer variable connfd to be a void
pointer, but this is not guaranteed to work on all systems. To handle this correctly requires
additional work.

First, notice that we cannot just pass the address of connfd to the new thread. That is, the
following does not work:

     int

     main(int argc, char **argv)

     {

         int   listenfd, connfd;

         ...

         for ( ; ; ) {

             len = addrlen;

             connfd = Accept(listenfd, cliaddr, &len);

             Pthread_create(&tid, NULL, &doit, &connfd);

         }

    }

    static void *

    doit(void *arg)

    {

        int     connfd;

        connfd = * ((int *) arg);

        pthread_detach (pthread_self());

        str_echo (connfd);    /* same function as before */

        Close (connfd);       /* done with connected socket */

        return (NULL);

    }

From an ANSI C perspective this is acceptable: We are guaranteed that we can cast the
integer pointer to be a void * and then cast this pointer back to an integer pointer. The
problem is what this pointer points to.

There is one integer variable, connfd in the main thread, and each call to accept overwrites
this variable with a new value (the connected descriptor). The following scenario can occur:

Page 784

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


 accept returns, connfd is stored into (say the new descriptor is 5), and the main
thread calls pthread_create. The pointer to connfd (not its contents) is the final
argument to pthread_create.

 A thread is created and the doit function is scheduled to start executing.

 Another connection is ready and the main thread runs again (before the newly
created thread). accept returns, connfd is stored into (say the new descriptor is
now 6), and the main thread calls pthread_create.

Even though two threads are created, both will operate on the final value stored in connfd,
which we assume is 6. The problem is that multiple threads are accessing a shared variable
(the integer value in connfd) with no synchronization. In Figure 26.3, we solved this
problem by passing the value of connfd to pthread_create instead of a pointer to the
value. This is fine, given the way that C passes integer values to a called function (a copy
of the value is pushed onto the stack for the called function).

Figure 26.4 shows a better solution to this problem.

Figure 26.4 TCP echo server using threads with more portable
argument passing.

threads/tcpserv02.c

 1 #include    "unpthread.h"

 2 static void *doit(void *);          /* each thread executes this function */

 3 int

 4 main(int argc, char **argv)

 5 {

 6     int     listenfd, *iptr;

 7     thread_t tid;

 8     socklen_t addrlen, len;

 9     struct sockaddr *cliaddr;

10     if (argc == 2)

11         listenfd = Tcp_listen(NULL, argv[1], &addrlen);

12     else if (argc == 3)

13         listenfd = Tcp_listen(argv[1], argv[2], &addrlen);

14     else

15         err_quit("usage: tcpserv01 [ <host> ] <service or port>");

16     cliaddr = Malloc(addrlen);

17     for ( ; ; ) {

18         len = addrlen;

19         iptr = Malloc(sizeof(int));

20         *iptr = Accept(listenfd, cliaddr, &len);

21         Pthread_create(&tid, NULL, &doit, iptr);

22     }

23 }

24 static void *

25 doit(void *arg)

26 {

27     int     connfd;

28     connfd = *((int *) arg);

29     free(arg);

Page 785

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


30     Pthread_detach(pthread_self());

31     str_echo(confd);            /* same function as before */

32     Close(confd);               /* done with connected socket */

33     return (NULL);

34 }

17 22 Each time we call accept, we first call malloc and allocate space for an integer
variable, the connected descriptor. This gives each thread its own copy of the connected
descriptor.

28 29 The thread fetches the value of the connected descriptor and then calls free to
release the memory.

Historically, the malloc and free functions have been nonre-entrant. That is, calling either
function from a signal handler while the main thread is in the middle of one of these two
functions has been a recipe for disaster, because of static data structures that are
manipulated by these two functions. How can we call these two functions in Figure 26.4?
POSIX requires that these two functions, along with many others, be thread-safe. This is
normally done by some form of synchronization performed within the library functions that
is transparent to us.

Thread-Safe Functions
POSIX.1 requires that all the functions defined by POSIX.1 and by the ANSI C standard be
thread-safe, with the exceptions listed in Figure 26.5.

Figure 26.5. Thread-safe functions.

Unfortunately, POSIX says nothing about thread safety with regard to the networking API
functions. The last five lines in this table are from Unix 98. We talked about the
nonre-entrant property of gethostbyname and gethostbyaddr in Section 11.18. We
mentioned that even though some vendors have defined thread-safe versions whose
names end in _r, there is no standard for these functions and they should be avoided. All
of the nonre-entrant getXXX functions were summarized in Figure 11.21.

We see from Figure 26.5 that the common technique for making a function thread-safe is

Page 786

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


to define a new function whose name ends in _r. Two of the functions are thread-safe only
if the caller allocates space for the result and passes that pointer as the argument to the
function.

[ Team LiB ]

Page 787

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

26.5 Thread-Specific Data
When converting existing functions to run in a threads environment, a common problem
encountered is due to static variables. A function that keeps state in a private buffer, or
one that returns a result in the form of a pointer to a static buffer, is not thread-safe
because multiple threads cannot use the buffer to hold different things at the same time.
When faced with this problem, there are various solutions:

 Use thread-specific data. This is nontrivial and then converts the function into one
that works only on systems with threads support. The advantage to this approach is
that the calling sequence does not change and all the changes go into the library
function and not the applications that call the function. We show a version of 
readline that is thread-safe by using thread-specific data later in this section.

 Change the calling sequence so that the caller packages all the arguments into a
structure, and also store in that structure the static variables from Figure 3.18. This
was also done, and Figure 26.6 shows the new structure and new function
prototypes.

Figure 26.6 Data structure and function prototype for re-entrant
version of readline.

          typedef struct {

            int       read_fd;        /* caller's descriptor to read from */

            char     *read_ptr;       /* caller's buffer to read into */

            size_t    read_maxlen;    /* caller's max # bytes to read */

                          /* next three are used internally by the function */

            int       rl_cnt;         /* initialize to 0 */

            char     *rl_bufptr;      /* initialize to rl_buf */

            char      rl_buf[MAXLINE];

          } Rline;

          void    readline_rinit(int, void *, size_t, Rline *);

          ssize_t readline_r(Rline *);

          ssize_t Readline_r(Rline *);

These new functions can be used on threaded and nonthreaded systems, but all
applications that call readline must change.

 Restructure the interface to avoid any static variables so that the function is
thread-safe. For the readline example, this would be the equivalent of ignoring the
speedups introduced in Figure 3.18 and going back to the older version in Figure
3.17. Since we said the older version was "painfully slow," taking this option is not
always viable.

Thread-specific data is a common technique for making an existing function thread-safe.
Before describing the Pthread functions that work with thread-specific data, we describe
the concept and a possible implementation, because the functions appear more
complicated than they really are.

Part of the complication in many texts on using threads is that their descriptions of
thread-specific data read like the Pthreads standard, talking about key-value pairs and
keys being opaque objects. We describe thread-specific data in terms of indexes and
pointers because common implementations use a small integer index for the key, and the
value associated with the index is just a pointer to a region that the thread mallocs.

Each system supports a limited number of thread-specific data items. POSIX requires this

Page 788

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


limit be no less than 128 (per process), and we assume this limit in the following example.
The system (probably the threads library) maintains one array of structures per process,
which we call key structures, as we show in Figure 26.7.

Figure 26.7. Possible implementation of thread-specific data.

The flag in the Key structure indicates whether this array element is currently in use, and
all the flags are initialized to be "not in use." When a thread calls pthread_key_create to
create a new thread-specific data item, the system searches through its array of Key
structures and finds the first one not in use. Its index, 0 through 127, is called the key,
and this index is returned to the calling thread. We will talk about the "destructor pointer,"
the other member of the Key structure, shortly.

In addition to the process-wide array of Key structures, the system maintains numerous
pieces of information about each thread within a process. We call this a Pthread structure
and part of this information is a 128-element array of pointers, which we call the pkey
array. We show this in Figure 26.8.

Figure 26.8. Information maintained by the system about each thread.

All entries in the pkey array are initialized to null pointers. These 128 pointers are the
"values" associated with each of the possible 128 "keys" in the process.

When we create a key with pthread_key_create, the system tells us its key (index). Each
thread can then store a value (pointer) for the key, and each thread normally obtains the
pointer by calling malloc. Part of the confusion with thread-specific data is that the pointer
is the value in the key-value pair, but the real thread-specific data is whatever this pointer
points to.

We now go through an example of how thread-specific data is used, assuming that our 
readline function uses thread-specific data to maintain the per-thread state across
successive calls to the function. Shortly we will show the code for this, modifying our 
readline function to follow these steps:

1. A process is started and multiple threads are created.

2. One of the threads will be the first to call readline, and it in turn calls
pthread_key_create. The system finds the first unused Key structure in Figure 26.7

Page 789

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


and returns its index (0 127) to the caller. We assume an index of 1 in this
example.

We will use the pthread_once function to guarantee that pthread_key_create is
called only by the first thread to call readline.

3. readline calls pthread_getspecific to get the pkey[1] value (the "pointer" in
Figure 26.8 for this key of 1) for this thread, and the returned value is a null
pointer. Therefore, readline calls malloc to allocate the memory that it needs to
keep the per-thread information across successive calls to readline for this thread.
readline initializes this memory as needed and calls pthread_setspecific to set
the thread-specific data pointer (pkey[1]) for this key to point to the memory it just
allocated. We show this in Figure 26.9, assuming that the calling thread is thread 0
in the process.

Figure 26.9. Associating malloced region with thread-specific data
pointer.

In this figure, we note that the Pthread structure is maintained by the system
(probably the thread library), but the actual thread-specific data that we malloc is
maintained by our function (readline, in this case). All that pthread_setspecific
does is set the pointer for this key in the Pthread structure to point to our allocated
memory. Similarly, all that pthread_getspecific does is return that pointer to us.

4. Another thread, say thread n, calls readline, perhaps while thread 0 is still
executing within readline.

readline calls pthread_once to initialize the key for this thread-specific data item,
but since it has already been called, it is not called again.

5. readline calls pthread_getspecific to fetch the pkey [1] pointer for this thread,
and a null pointer is returned. This thread then calls malloc, followed by
pthread_setspecific, just like thread 0, initializing its thread-specific data for this
key (1). We show this in Figure 26.10.

Figure 26.10. Data structures after thread n initializes its
thread-specific data.

Page 790

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


6. Thread n continues executing in readline, using and modifying its own
thread-specific data.

One item we have not addressed is: What happens when a thread terminates? If the
thread has called our readline function, that function has allocated a region of memory
that needs to be freed. This is where the "destructor pointer" from Figure 26.7 is used.
When the thread that creates the thread-specific data item calls pthread_key_create, one
argument to this function is a pointer to a destructor function. When a thread terminates,
the system goes through that thread's pkey array, calling the corresponding destructor
function for each non-null pkey pointer. What we mean by "corresponding destructor" is
the function pointer stored in the Key array in Figure 26.7. This is how the thread-specific
data is freed when a thread terminates.

The first two functions that are normally called when dealing with thread-specific data are 
pthread_once and pthread_key_create.

#include <pthread.h>

int pthread_once(pthread_once_t *onceptr, void (*init) (void));

int pthread_key_create(pthread_key_t *keyptr, void (*destructor) (void *value));

Both return: 0 if OK, positive Exxx value on error

pthread_once is normally called every time a function that uses thread-specific data is
called, but pthread_once uses the value in the variable pointed to by onceptr to guarantee
that the init function is called only one time per process.

pthread_key_create must be called only one time for a given key within a process. The
key is returned through the keyptr pointer, and the destructor function, if the argument is
a non-null pointer, will be called by each thread on termination if that thread has stored a
value for this key.

Typical usage of these two functions (ignoring error returns) is as follows:

     pthread_key_t   rl_key;

     pthread_once_t  rl_once = PTHREAD_ONCE_INIT;

Page 791

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


     void

     readline_destructor(void *ptr)

     {

         free(ptr);

     }

     void

     readline_once(void)

     {

         pthread_key_create(&rl_key, readline_destructor);

     }

     ssize_t

     readline( ... )

     {

         ...

         pthread_once(&rl_once, readline_once);

         if ( (ptr = pthread_getspecific(rl_key)) == NULL) {

             ptr = Malloc( ... );

             pthread_setspecific(rl_key, ptr);

             /* initialize memory pointed to by ptr */

         }

         ...

         /* use values pointed to by ptr */

     }

Every time readline is called, it calls pthread_once. This function uses the value pointed
to by its onceptr argument (the contents of the variable rl_once) to make certain that its
init function is called only one time. This initialization function, readline_once, creates the
thread-specific data key that is stored in rl_key, and which readline then uses in calls to
pthread_getspecific and pthread_setspecific.

The pthread_getspecific and pthread_setspecific functions are used to fetch and store
the value associated with a key. This value is what we called the "pointer" in Figure 26.8.
What this pointer points to is up to the application, but normally, it points to dynamically
allocated memory.

#include <pthread.h>

void *pthread_getspecific(pthread_key_t key);

Returns: pointer to thread-specific data (possibly a null pointer)

int pthread_setspecific(pthread_key_t key, const void *value);

Returns: 0 if OK, positive Exxx value on error

Notice that the argument to pthread_key_create is a pointer to the key (because this
function stores the value assigned to the key), while the arguments to the get and set
functions are the key itself (probably a small integer index as discussed earlier).

Example: readline Function Using Thread-Specific Data
We now show a complete example of thread-specific data by converting the optimized

Page 792

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


version of our readline function from Figure 3.18 to be thread-safe, without changing the
calling sequence.

Figure 26.11 shows the first part of the function: the pthread_key_t variable, the
pthread_once_t variable, the readline_destructor function, the readline_once function,
and our Rline structure that contains all the information we must maintain on a per-thread
basis.

Figure 26.11 First part of thread-safe readline function.

threads/readline.c

 1 #include    "unpthread.h"

 2 static pthread_key_t rl_key;

 3 static pthread_once_t rl_once = PTHREAD_ONCE_INIT;

 4 static void

 5 readline_destructor(void *ptr)

 6 {

 7     free(ptr);

 8 }

 9 static void

10 readline_once(void)

11 {

12     Pthread_key_creat(&rl_key, readline_destructor);

13 }

14 typedef struct {

15     int     rl_cnt;                /* initialize to 0 */

16     char   *rl_bufptr;             /* initialize to rl_buf */

17     char    rl_buf[MAXLINE];

18 } Rline;

Destructor

4 8 Our destructor function just frees the memory that was allocated for this thread.

One-time function

9 13 We will see that our one-time function is called one time by pthread_once, and it just
creates the key that is used by readline.

Rline structure

14 18 Our Rline structure contains the three variables that caused the problem by being
declared static in Figure 3.18. One of these structures will be dynamically allocated per
thread and then released by our destructor function.

Figure 26.12 shows the actual readline function, plus the function my_read it calls. This
figure is a modification of Figure 3.18.

my_read function

19 35 The first argument to the function is now a pointer to the Rline structure that was
allocated for this thread (the actual thread-specific data).

Allocate thread-specific data

42 We first call pthread_once so that the first thread that calls readline in this process

Page 793

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


calls readline_once to create the thread-specific data key.

Fetch thread-specific data pointer

43 46 pthread_getspecific returns the pointer to the Rline structure for this thread. But
if this is the first time this thread has called readline, the return value is a null pointer. In
this case, we allocate space for an Rline structure and the rl_cnt member is initialized to
0 by calloc. We then store the pointer for this thread by calling pthread_setspecific.
The next time this thread calls readline, pthread_getspecific will return this pointer that
was just stored.

Figure 26.12 Second part of thread-safe readline function.

threads/readline.c

19 static ssize_t

20 my_read(Rline *tsd, int fd, char *ptr)

21 {

22     if (tsd->rl_cnt < = 0 {

23       again:

24         if ( (tsd->rl_cnt = read(fd, tsd->rl_buf, MAXLINE)) < 0) {

25             if (error == EINTR)

26                 goto again;

27             return (-1);

28         } else if (tsd->rl_cnt == 0)

29             return (0);

30         tsd->rl_bufptr = tsd->rl_buf;

31     }

32     tsd->rl_cnt--;

33     *ptr = *tsd->rl_bufptr++;

34     return (1);

35 }

36 ssize_t

37 readline(int fd, void *vptr, size_t maxlen)

38 {

39     size_t n, rc;

40     char     c, *ptr;

41     Rline *tsd;

42     Pthread_once(&rl_once, readline_once);

43     if ( (tsd = pthread_getspecific(rl_key)) == NULL) {

44         tsd = Calloc(1, sizeof(Rline)); /* init to 0 */

45         Pthread_setspecific(rl_key, tsd);

46     }

47     ptr = vptr;

48     for (n = 1; n < maxlen; n++) {

49         if ( (rc = my_read(tsd, fd, &c)) == 1) {

50             *ptr++ = c;

51             if (c == '\n')

52                 break;

53         } else if (rc == 0) {

54             *ptr = 0;

55             return (n - 1);     /* EOF, n - 1 bytes read */

56         } else

57             return (-1);       /* error, errno set by read() */

58     }

59     *ptr = 0;

Page 794

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


60     return (n);

61 }

[ Team LiB ]

Page 795

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

26.6 Web Client and Simultaneous Connections
(Continued)
We now revisit the Web client example from Section 16.5 and recode it using threads
instead of nonblocking connects. With threads, we can leave the sockets in their default
blocking mode and create one thread per connection. Each thread can block in its call to 
connect, as the kernel will just run some other thread that is ready.

Figure 26.13 shows the first part of the program, the globals, and the start of the main
function.

Globals
1 16 We #include <thread.h>, in addition to the normal <pthread.h>, because we need
to use Solaris threads in addition to Pthreads, as we will describe shortly.

10 We have added one member to the file structure: f_tid, the thread ID. The remainder
of this code is similar to Figure 16.15. With this threads version, we do not use select and
therefore do not need any descriptor sets or the variable maxfd.

36 The home_page function that is called is unchanged from Figure 16.16.

Figure 26.13 Globals and start of main function.

threads/web01.c

 1 #include     "unpthread.h"

 2 #include     <thread.h>           /* Solaris threads */

 3 #define MAXFILES        20

 4 #define SERV            "80"      /* port number or service name */

 5 struct file {

 6     char   *f_name;               /* filename */

 7     char   *f_host;               /* hostname or IP address */

 8     int     f_fd;                 /* descriptor */

 9     int     f_flags;              /* F_xxx below */

10     pthread_t f_tid;              /* thread ID */

11 } file [MAXFILES];

12 #define F_CONNECTING       1      /* connect() in progress */

13 #define F_READING          2      /* connect() complete; now reading */

14 #define F_DONE             4      /* all done */

15 #define GET_CMD       "GET %s HTTP/1.0\r\n\r\n"

16 int     nconn, nfiles, nlefttoconn, nlefttoread;

17 void   *do_get_read(void *);

18 void    home_page(const char *, const char *);

19 void    write_get_cmd(struct file *);

20 int

21 main(int argc, char **argv)

22 {

23     int     i, n, maxnconn;

24     pthread_t tid;

Page 796

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


25     struct file *fptr;

26     if (argc < 5)

27         err_quit("usage: web <#conns> <IPaddr> <homepage> file1 ...");

28     maxnconn = atoi(argv[1]);

29     nfiles = min(argc - 4, MAXFILES);

30     for (i = 0; i < nfiles; i++) {

31         file[i].f_name = argv[i + 4];

32         file[i].f_host = argv[2];

33         file[i].f_flags = 0;

34     }

35     printf("nflies = %d\n", nfiles);

36     home_page(argv[2], argv[3]);

37     nlefttoread = nlefttoconn = nfiles;

38     nconn = 0;

Figure 26.14 shows the main processing loop of the main thread.

Figure 26.14 Main processing loop of main function.

threads/web01.c

39     while (nlefttoread > 0) {

40         while (nconn < maxnconn && nlefttoconn > 0) {

41                 /* find a file to read */

42             for (i = 0; i < nfiles; i++)

43                 if (file[i].f_flags == 0)

44                     break;

45             if (i == nfiles)

46                 err_quit("nlefttoconn = %d but nothing found", nlefttoconn);

47             file[i].f_flags = F_CONNECTING;

48             Pthread_create(&tid, NULL, &do_get_read, &file[i]);

49             file[i].f_tid = tid;

50             nconn++;

51             nlefttoconn--;

52          }

53          if ( (n = thr_join(0, &tid, (void **) &fptr)) != 0)

54              errno = n, err_sys("thr_join error");

55          nconn--;

56          nlefttoread--;

57          printf("thread id %d for %s done\n", tid, fptr->f_name);

58     }

59     exit(0);

60 }

If possible, create another thread
40 52 If we are allowed to create another thread (nconn is less than maxnconn), we do so.
The function that each new thread executes is do_get_read and the argument is the
pointer to the file structure.

Wait for any thread to terminate
53 54 We call the Solaris thread function thr_join with a first argument of 0 to wait for

Page 797

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


any one of our threads to terminate. Unfortunately, Pthreads does not provide a way to
wait for any one of our threads to terminate; the pthread_join function makes us specify
exactly which thread we want to wait for. We will see in Section 26.9 that the Pthreads
solution for this problem is more complicated, requiring us to use a condition variable for
the terminating thread to notify the main thread when it is done.

The solution that we show, using the Solaris thread thr_join function, is not portable to all
environments. Nevertheless, we want to show this version of our Web client example using
threads without having to complicate the discussion with condition variables and mutexes.
Fortunately, we can mix Pthreads with Solaris threads under Solaris.

Figure 26.15 shows the do_get_read function, which is executed by each thread. This
function establishes the TCP connection, sends an HTTP GET command to the server, and
reads the server's reply.

Figure 26.15 do_get_read function.

threads/web01.c

61 void *

62 do_get_read(void *vptr)

63 {

64     int     fd, n;

65     char    line[MAXLINE];

66     struct file *fptr;

67     fptr = (struct file *) vptr;

68     fd = Tcp_connect(fptr->f_host, SERV);

69     fptr->f_fd = fd;

70     printf("do_get_read for %s, fd %d, thread %d\n",

71            fptr->f_name, fd, fptr->f_tid);

72     write_get_cmd(fptr);         /* write() the GET command */

73         /* Read server's reply  */

74     for ( ; ;) {

75         if ( (n = Read(fd, line, MAXLINE)) == 0)

76             break;              /* server closed connection */

77         printf("read %d bytes from %s\n", n, fptr->f_name);

78     }

79     printf("end-of-file on %s\n", fptr->f_name);

80     Close(fd);

81     fptr->f_flags = F_DONE;  /* clears F_READING */

82     return (fptr);              /* terminate thread */

83 }

Create TCP socket, establish connection
68 71 A TCP socket is created and a connection is established by our tcp_connect function.
The socket is a normal blocking socket, so the thread will block in the call to connect until
the connection is established.

Write request to server
72 write_get_cmd builds the HTTP GET command and sends it to the server. We do not
show this function again as the only difference from Figure 16.18 is that the threads

Page 798

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


version does not call FD_SET and does not use maxfd.

Read server's reply
73 82 The server's reply is then read. When the connection is closed by the server, the
F_DONE flag is set and the function returns, terminating the thread.

We also do not show the home_page function, as it is identical to the version shown in
Figure 16.16.

We will return to this example, replacing the Solaris thr_join function with the more
portable Pthreads solution, but we must first discuss mutexes and condition variables.

[ Team LiB ]

Page 799

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

26.7 Mutexes: Mutual Exclusion
Notice in Figure 26.14 that when a thread terminates, the main loop decrements both
nconn and nlefttoread. We could have placed these two decrements in the function
do_get_read, letting each thread decrement these two counters immediately before the
thread terminates. But this would be a subtle, yet significant, concurrent programming
error.

The problem with placing the code in the function that each thread executes is that these
two variables are global, not thread-specific. If one thread is in the middle of decrementing
a variable, that thread is suspended, and if another thread executes and decrements the
same variable, an error can result. For example, assume that the C compiler turns the
decrement operator into three instructions: load from memory into a register, decrement
the register, and store from the register into memory. Consider the following possible
scenario:

1. Thread A is running and it loads the value of nconn (3) into a register.

2. The system switches threads from A to B. A's registers are saved, and B's registers
are restored.

3. Thread B executes the three instructions corresponding to the C expression nconn--,
storing the new value of 2.

4. Sometime later, the system switches threads from B to A. A's registers are restored
and A continues where it left off, at the second machine instruction in the
three-instruction sequence. The value of the register is decremented from 3 to 2,
and the value of 2 is stored in nconn.

The end result is that nconn is 2 when it should be 1. This is wrong.

These types of concurrent programming errors are hard to find for numerous reasons. First,
they occur rarely. Nevertheless, it is an error and it will fail (Murphy's Law). Second, the
error is hard to duplicate since it depends on the nondeterministic timing of many events.
Lastly, on some systems, the hardware instructions might be atomic; that is, there might
be a hardware instruction to decrement an integer in memory (instead of the
three-instruction sequence we assumed above) and the hardware cannot be interrupted
during this instruction. But, this is not guaranteed by all systems, so the code works on
one system but not on another.

We call threads programming concurrent programming, or parallel programming, since
multiple threads can be running concurrently (in parallel), accessing the same variables.
While the error scenario we just discussed assumes a single-CPU system, the potential for
error also exists if threads A and B are running at the same time on different CPUs on a
multiprocessor system. With normal Unix programming, we do not encounter these
concurrent programming problems because with fork, nothing besides descriptors is
shared between the parent and child. We will, however, encounter this same type of
problem when we discuss shared memory between processes.

We can easily demonstrate this problem with threads. Figure 26.17 is a simple program
that creates two threads and then has each thread increment a global variable 5,000
times.

We exacerbate the potential for a problem by fetching the current value of counter,
printing the new value, and then storing the new value. If we run this program, we have
the output shown in Figure 26.16.

Figure 26.16. Output from program in Figure 26.17.

Page 800

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


Figure 26.17 Two threads that increment a global variable incorrectly.

threads/example01.c

 1 #include    "unpthread.h"

 2 #define NLOOP 5000

 3 int     counter;                /* incremented by threads */

 4 void   *doit(void *);

 5 int

 6 main(int argc, char **argv)

 7 {

 8     pthread_t tidA, tidB;

 9     Pthread_create(&tidA, NULL, &doit, NULL);

10     Pthread_create(&tidB, NULL, &doit, NULL);

11         /* wait for both threads to terminate */

12     Pthread_join(tidA, NULL);

13     Pthread_join(tidB, NULL);

14     exit(0);

15 }

16 void *

17 doit(void *vptr)

18 {

19      int    i, val;

20      /*

21       * Each thread fetches, prints, and increments the counter NLOOP times.

22       * The value of the counter should increase monotonically.

23       */

24      for (i = 0; i < NLOOP; i++) {

25          val = counter;

26          printf("%d: %d\n", pthread_self(), val + 1);

27          counter = val + 1;

28      }

29      return (NULL);

30 }

Notice the error the first time the system switches from thread 4 to thread 5: The value

Page 801

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


518 is stored by each thread. This happens numerous times through the 10,000 lines of
output.

The nondeterministic nature of this type of problem is also evident if we run the program a
few times: Each time, the end result is different from the previous run of the program.
Also, if we redirect the output to a disk file, sometimes the error does not occur since the
program runs faster, providing fewer opportunities to switch between the threads. The
greatest number of errors occurs when we run the program interactively, writing the output
to the (slow) terminal, but saving the output in a file using the Unix script program
(discussed in detail in Chapter 19 of APUE).

The problem we just discussed, multiple threads updating a shared variable, is the
simplest problem. The solution is to protect the shared variable with a mutex (which
stands for "mutual exclusion") and access the variable only when we hold the mutex. In
terms of Pthreads, a mutex is a variable of type pthread_mutex_t. We lock and unlock a
mutex using the following two functions:

#include <pthread.h>

int pthread_mutex_lock(pthread_mutex_t * mptr);

int pthread_mutex_unlock(pthread_mutex_t * mptr);

Both return: 0 if OK, positive Exxx value on error

If we try to lock a mutex that is already locked by some other thread, we are blocked until
the mutex is unlocked.

If a mutex variable is statically allocated, we must initialize it to the constant 
PTHREAD_MUTEX_INITIALIZER. We will see in Section 30.8 that if we allocate a mutex in
shared memory, we must initialize it at runtime by calling the pthread_mutex_init
function.

Some systems (e.g., Solaris) define PTHREAD_MUTEX_INITIALIZER to be 0, so omitting this
initialization is acceptable, since statically allocated variables are automatically initialized
to 0. But there is no guarantee that this is acceptable and other systems (e.g., Digital
Unix) define the initializer to be nonzero.

Figure 26.18 is a corrected version of Figure 26.17 that uses a single mutex to lock the
counter between the two threads.

Figure 26.18 Corrected version of Figure 26.17 using a mutex to
protect the shared variable.

threads/example02.c

 1 #include    "unpthread.h"

 2 #define NLOOP 5000

 3 int     counter;                /* incremented by threads */

 4 pthread_mutex_t counter_mutex = PTHREAD_MUTEX_INITIALIZER;

 5 void   *doit(void *);

 6 int

 7 main(int argc, char **argv)

 8 {

Page 802

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


 9     pthread_t tidA, tidB;

10     Pthread_create(&tidA, NULL, &doit, NULL);

11     Pthread_create(&tidB, NULL, &doit, NULL);

12         /* wait for both threads to terminate */

13     Pthread_join(tidA, NULL);

14     Pthread_join(tidB, NULL);

15     exit(0);

16 }

17 void *

18 doit(void *vptr)

19 {

20     int     i, val;

21     /*

22      * Each thread fetches, prints, and increments the counter NLOOP times.

23      * The value of the counter should increase monotonically.

24      */

25     for (i = 0; i < NLOOP; i++) {

26         Pthread_mutex_lock(&counter_mutex);

27         val = counter;

28         printf("%d: %d\n", pthread_self(), val + 1);

29         counter = val + 1;

30         Pthread_mutex_unlock(&counter_mutex);

31     }

32     return (NULL);

33 }

We declare a mutex named counter_mutex and this mutex must be locked by the thread
before the thread manipulates the counter variable. When we run this program, the output
is always correct: The value is incremented monotonically and the final value printed is
always 10,000.

How much overhead is involved with mutex locking? The programs in Figures 26.17 and
26.18 were changed to loop 50,000 times and were timed while the output was directed
to /dev/null. The difference in CPU time from the incorrect version with no mutex to the
correct version that used a mutex was 10%. This tells us that mutex locking is not a large
overhead.

[ Team LiB ]

Page 803

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

26.8 Condition Variables
A mutex is fine to prevent simultaneous access to a shared variable, but we need
something else to let us go to sleep waiting for some condition to occur. Let's demonstrate
this with an example. We return to our Web client in Section 26.6 and replace the Solaris
thr_join with pthread_join. But, we cannot call the Pthread function until we know that a
thread has terminated. We first declare a global variable that counts the number of
terminated threads and protect it with a mutex.

     int             ndone;        /* number of terminated threads */

     pthread_mutex_t ndone_mutex = PTHREAD_MUTEX_INITIALIZER;

We then require that each thread increment this counter when it terminates, being careful
to use the associated mutex.

     void *

     do_get_read (void *vptr)

     {

         ...

         Pthread_mutex_lock(&ndone_mutex);

         ndone++;

         Pthread_mutex_unlock(&ndone_mutex);

         return(fptr);       /* terminate thread */

     }

This is fine, but how do we code the main loop? It needs to lock the mutex continually and
check if any threads have terminated.

          while (nlefttoread > 0) {

              while (nconn < maxnconn && nlefttoconn > 0) {

                      /* find a file to read */

                  ...

              }

                  /* See if one of the threads is done */

              Pthread_mutex_lock(&ndone_mutex);

              if (ndone > 0) {

                  for (i = 0; i < nfiles; i++) {

                      if (file[i].f_flags & F_DONE) {

                          Pthread_join(file[i].f_tid, (void **) &fptr);

                          /* update file[i] for terminated thread */

                          ...

                      }

                  }

              }

              Pthread_mutex_unlock(&ndone_mutex);

          }

Page 804

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


While this is okay, it means the main loop never goes to sleep; it just loops, checking
ndone every time around the loop. This is called polling and is considered a waste of CPU
time.

We want a method for the main loop to go to sleep until one of its threads notifies it that
something is ready. A condition variable, in conjunction with a mutex, provides this facility.
The mutex provides mutual exclusion and the condition variable provides a signaling
mechanism.

In terms of Pthreads, a condition variable is a variable of type pthread_cond_t. They are
used with the following two functions:

#include <pthread.h>

int pthread_cond_wait(pthread_cond_t *cptr, pthread_mutex_t *mptr);

int pthread_cond_signal(pthread_cond_t *cptr);

Both return: 0 if OK, positive Exxx value on error

The term "signal" in the second function's name does not refer to a Unix SIGxxx signal.

An example is the easiest way to explain these functions. Returning to our Web client
example, the counter ndone is now associated with both a condition variable and a mutex.

     int             ndone;

     pthread_mutex_t ndone_mutex = PTHREAD_MUTEX_INITIALIZER;

     pthread_cond_t  ndone_cond  = PTHREAD_COND_INITIALIZER;

A thread notifies the main loop that it is terminating by incrementing the counter while its
mutex lock is held and by signaling the condition variable.

          Pthread_mutex_lock(&ndone_mutex);

          ndone++;

          Pthread_cond_signal(&ndone_cond);

          Pthread_mutex_unlock(&ndone_mutex);

The main loop then blocks in a call to pthread_cond_wait, waiting to be signaled by a
terminating thread.

          while (nlefttoread > 0) {

              while (nconn < maxnconn && nlefttoconn > 0) {

                      /* find file to read */

                  ...

              }

                  /* Wait for thread to terminate */

              Pthread_mutex_lock(&ndone_mutex);

              while (ndone == 0)

                  Pthread_cond_wait (&ndone_cond, &ndone_mutex);

Page 805

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


              for (i = 0; i < nfiles; i++) {

                  if (file[i].f_flags & F_DONE) {

                      Pthread_join(file[i].f_tid, (void **) &fptr);

                      /* update file[i] for terminated thread */

                      ...

                  }

               }

               Pthread_mutex_unlock (&ndone_mutex);

          }

Notice that the variable ndone is still checked only while the mutex is held. Then, if there is
nothing to do, pthread_cond_wait is called. This puts the calling thread to sleep and
releases the mutex lock it holds. Furthermore, when the thread returns from 
pthread_cond_wait (after some other thread has signaled it), the thread again holds the
mutex.

Why is a mutex always associated with a condition variable? The "condition" is normally
the value of some variable that is shared between the threads. The mutex is required to
allow this variable to be set and tested by the different threads. For example, if we did not
have the mutex in the example code just shown, the main loop would test it as follows:

              /* Wait for thread to terminate */

          while (ndone == 0)

              Pthread_cond_wait(&ndone_cond, &ndone_mutex);

But, there is a possibility that the last of the threads increments ndone after the test of
ndone == 0, but before the call to pthread_cond_wait. If this happens, this last "signal" is
lost and the main loop would block forever, waiting for something that will never occur
again.

This is the same reason that pthread_cond_wait must be called with the associated mutex
locked, and why this function unlocks the mutex and puts the calling thread to sleep as a
single, atomic operation. If this function did not unlock the mutex and then lock it again
when it returns, the thread would have to unlock and lock the mutex and the code would
look like the following:

              /* Wait for thread to terminate */

          Pthread_mutex_lock(&ndone_mutex);

          while (ndone == 0) {

              Pthread_mutex_unlock(&ndone_mutex);

              Pthread_cond_wait(&ndone_cond, &ndone_mutex);

              Pthread_mutex_lock(&ndone_mutex);

          }

But again, there is a possibility that the final thread could terminate and increment the
value of ndone between the call to pthread_mutex_unlock and pthread_cond_wait.

Normally, pthread_cond_signal awakens one thread that is waiting on the condition
variable. There are instances when a thread knows that multiple threads should be
awakened, in which case, pthread_cond_broadcast will wake up all threads that are
blocked on the condition variable.

Page 806

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


#include <pthread.h>

int pthread_cond_broadcast (pthread_cond_t * cptr);

int pthread_cond_timedwait (pthread_cond_t * cptr, pthread_mutex_t *mptr, const
struct timespec *abstime);

Both return: 0 if OK, positive Exxx value on error

pthread_cond_timedwait lets a thread place a limit on how long it will block. abstime is a
timespec structure (as we defined with the pselect function, Section 6.9) that specifies
the system time when the function must return, even if the condition variable has not been
signaled yet. If this timeout occurs, ETIME is returned.

This time value is an absolute time; it is not a time delta. That is, abstime is the system
time the number of seconds and nanoseconds past January 1, 1970, UTC when the
function should return. This differs from both select and pselect, which specify the
number of seconds and microseconds (nanoseconds for pselect) until some time in the
future when the function should return. The normal procedure is to call gettimeofday to
obtain the current time (as a timeval structure!), and copy this into a timespec structure,
adding in the desired time limit. For example,

     struct timeval tv;

     struct timespec ts;

     if (gettimeofday(&tv, NULL) < 0)

         err_sys("gettimeofday error");

     ts.tv_sec = tv.tv_sec + 5;     /* 5 seconds in future */

     ts.tv_nsec = tv.tv_usec * 1000; /* microsec to nanosec */

     pthread_cond_timedwait( ..., &ts);

The advantage in using an absolute time instead of a delta time is if the function
prematurely returns (perhaps because of a caught signal), the function can be called again,
without having to change the contents of the timespec structure. The disadvantage,
however, is having to call gettimeofday before the function can be called the first time.

The POSIX specification defines a clock_gettime function that returns the current time as
a timespec structure.

[ Team LiB ]

Page 807

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

26.9 Web Client and Simultaneous Connections
(Continued)
We now recode our Web client from Section 26.6, removing the call to the Solaris thr_join
function and replacing it with a call to pthread_join. As discussed in that section, we now
must specify exactly which thread we are waiting for. To do this we will use a condition
variable, as described in Section 26.8

The only change to the globals (Figure 26.13) is to add one new flag and the condition
variable.

     #define   F_JOINED        8   /* main has pthread_join'ed */

     int              ndone;       /* number of terminated threads */

     pthread_mutex_t  ndone_mutex = PTHREAD_MUTEX_INITIALIZER;

     pthread_cond_t   ndone_cond  = PTHREAD_COND_INITIALIZER;

The only change to the do_get_read function (Figure 26.15) is to increment ndone and
signal the main loop before the thread terminates.

          printf("end-of-file on %s\n", fptr->f_name);

          Close(fd);

          Pthread_mutex_lock(&ndone_mutex);

          fptr->f_flags = F_DONE;     /* clears F_READING */

          ndone++;

          Pthread_cond_signal(&ndone_cond);

          Pthread_mutex_unlock(&ndone_mutex);

          return(fptr);       /* terminate thread */

  }

Most changes are in the main loop, Figure 26.14, the new version of which we show in
Figure 26.19.

Figure 26.19 Main processing loop of main function.

threads/web03.c

43     while (nlefttoread > 0) {

44         while (nconn < maxnconn && nlefttoconn > 0) {

45                 /* find a file to read */

46             for (i = 0; i < nfiles; i++)

47                 if (file[i].f_flags == 0)

48                     break;

49             if (i == nfiles)

50                 err_quit("nlefttoconn = %d but nothing found", nlefttoconn);

51             file[i].f_flags = F_CONNECTING;

52             Pthread_create(&tid, NULL, &do_get_read, &file[i]);

53             file[i].f_tid = tid;

Page 808

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


54             nconn++;

55             nlefttoconn--;

56          }

57              /* Wait for thread to terminate */

58          Pthread_mutex_lock(&ndone_mutex);

59          while (ndone == 0)

60              Pthread_cond_wait(&ndone_cond, &ndone_mutex);

61          for (i = 0; i < nfiles; i++) {

62              if (file[i].f_flags & F_DONE) {

63                  Pthread_join(file[i].f_tid, (void **) &fptr);

64                  if (&file[i] != fptr)

65                      err_quit("file[i]!= fptr");

66                  fptr->f_flags = F_JOINED;  /* clears F_DONE */

67                  ndone--;

68                  nconn--;

69                  nlefttoread--;

70                  printf("thread %d for %s done\n", fptr->f_tid,

fptr->f_name);

71               }

72          }

73          Pthread_mutex_unlock(&ndone_mutex);

74     }

75     exit(0);

76 }

If possible, create another thread
44 56 This code has not changed.

Wait for thread to terminate
57 60 To wait for one of the threads to terminate, we wait for ndone to be nonzero. As
discussed in Section 26.8, the test must be done while the mutex is locked. The sleep is
performed by pthread_cond_wait.

Handle terminated thread
61 73 When a thread has terminated, we go through all the file structures to find the
appropriate thread, call pthread_join, and then set the new F_JOINED flag.

Figure 16.20 shows the timing for this version, along with the timing of the version using
nonblocking connects.

[ Team LiB ]

Page 809

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

26.10 Summary
The creation of a new thread is normally faster than the creation of a new process with 
fork. This alone can be an advantage in heavily used network servers. Threads
programming, however, is a new paradigm that requires more discipline.

All threads in a process share global variables and descriptors, allowing this information to
be shared between different threads. But this sharing introduces synchronization problems
and the Pthread synchronization primitives that we must use are mutexes and condition
variables. Synchronization of shared data is a required part of almost every threaded
application.

When writing functions that can be called by threaded applications, these functions must
be thread-safe. Thread-specific data is one technique that helps with this, and we showed
an example with our readline function.

We return to the threads model in Chapter 30 with another server design in which the
server creates a pool of threads when it starts. An available thread from this pool handles
the next client request.

[ Team LiB ]

Page 810

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Exercises
26.1 Compare the descriptor usage in a server using fork versus a server

using a thread, assuming 100 clients are being serviced at the same
time.

26.2 What happens in Figure 26.3 if the thread does not close the
connected socket when str_echo returns?

26.3 In Figures 5.5 and 6.13, we print "server terminated prematurely" when
we expect an echoed line from the server but receive an EOF instead
(recall Section 5.12). Modify Figure 26.2 to print this message too,
when appropriate.

26.4 Modify Figures 26.11 and 26.12 so that they can compile on a system
that does not support threads.

26.5 To see the error with the readline function that is used in Figure 26.3,
build that program and start the server. Then, build the TCP echo client
from Figure 6.13 that works in a batch mode correctly. Find a large text
file on your system and start the client three times in a batch mode,
reading from the large text file and writing its output to a temporary
file. If possible, run the clients on a different host from the server. If
the three clients terminate correctly (often they hang), look at their
temporary output files and compare them to the input file.

Now build a version of the server using the correct readline function
from Section 26.5. Rerun the test with three clients; all three clients
should now work. You should also put a printf in the
readline_destructor function, the readline_once function, and in the
call to malloc in readline. This shows that the key is created only one
time, but the memory is allocated for every thread, and that the
destructor function is called for every thread.

[ Team LiB ]

Page 811

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Chapter 27. IP Options
Section 27.1.?Introduction

Section 27.2.?IPv4 Options

Section 27.3.?IPv4 Source Route Options

Section 27.4.?IPv6 Extension Headers

Section 27.5.?IPv6 Hop-by-Hop Options and Destination Options

Section 27.6.?IPv6 Routing Header

Section 27.7.?IPv6 Sticky Options

Section 27.8.?Historical IPv6 Advanced API

Section 27.9.?Summary

Exercises

[ Team LiB ]

Page 812

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

27.1 Introduction
IPv4 allows up to 40 bytes of options to follow the fixed 20-byte header. Although 10
different options are defined, the most commonly used is the source route option. Access
to these options is through the IP_OPTIONS socket option and we will demonstrate this with
an example that uses source routing.

IPv6 allows extension headers to occur between the fixed 40-byte IPv6 header and the
transport-layer header (e.g., ICMPv6, TCP, or UDP). Six different extension headers are
currently defined. Unlike the IPv4 approach, access to the IPv6 extension headers is
through a functional interface instead of forcing the user to understand the actual details of
how the headers appear in the IPv6 packet.

[ Team LiB ]

Page 813

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

27.2 IPv4 Options
In Figure A.1, we show options following the 20-byte IPv4 header. As noted there, the
4-bit header length field limits the total size of the IPv4 header to 15 32-bit words (60
bytes), so the size of the IP options is limited to 40 bytes. Ten different options are defined
for IPv4:

1. NOP: no-operation A one-byte option typically used for padding to make a later
option fall on a four-byte boundary.

2. EOL: end-of-list A one-byte option that terminates option processing. Since the
total size of the IP options must be a multiple of four bytes, EOL bytes follow the
final option.

3. LSRR: loose source and record route (Section 8.5 of TCPv1) We will show an
example of this shortly.

4. SSRR: strict source and record route (Section 8.5 of TCPv1) We will show an
example of this shortly.

5. Timestamp (Section 7.4 of TCPv1).

6. Record route (Section 7.3 of TCPv1).

7. Basic security (obsolete).

8. Extended security (obsolete).

9. Stream identifier (obsolete).

10. Router alert This option is described in RFC 2113 [Katz 1997]. This option is
included in IP datagrams that should be examined by all routers that forward the
datagram.

Chapter 9 of TCPv2 provides further details on the kernel processing of the first six options,
and the indicated sections in TCPv1 provide examples of their use.

The getsockopt and setsockopt functions (with a level of IPPROTO_IP and an optname of
IP_OPTIONS) fetch and set the IP options. The fourth argument to getsockopt and
setsockopt is a pointer to a buffer (whose size is 44 bytes or less), and the fifth argument
is the size of this buffer. The reason that the size of this buffer for getsockopt can be four
bytes larger than the maximum size of the options is because of the way the source route
option is handled, as we will describe shortly. Other than the two source route options, the
format of what goes into the buffer is the format of the options when placed into the IP
datagram.

When the IP options are set using setsockopt, the specified options will then be sent on all
IP datagrams on that socket. This works for TCP, UDP, and raw IP sockets. To clear these
options, call setsockopt and specify either a null pointer as the fourth argument or a value
of 0 as the fifth argument (the length).

Setting the IP options for a raw IP socket does not work on all implementations if the 
IP_HDRINCL socket option (which we will describe in the next chapter) is also set. Many
Berkeley-derived implementations do not send the options set with IP_OPTIONS when
IP_HDRINCL is enabled, because the application can set its own IP options in the IP header
it builds (pp. 1056 1057 of TCPv2). Other systems (e.g., FreeBSD) allow the application
to specify IP options using either the IP_OPTIONS socket option or by setting IP_HDRINCL
and including them in the IP header that it builds, but not both.

Page 814

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


When getsockopt is called to fetch the IP options for a connected TCP socket that was
created by accept, all that is returned is the reversal of the source route option received
with the client's SYN for the listening socket (p. 931 of TCPv2). The source route is
automatically reversed by TCP because the source route specified by the client was from
the client to the server, but the server needs to use the reverse of this route in datagrams
it sends to the client. If no source route accompanied the SYN, then the value-result length
returned by getsockopt through its fifth argument will be 0. For all other TCP sockets and
for all UDP sockets and raw IP sockets, calling getsockopt to fetch the IP options just
returns a copy of whatever IP options have been set by setsockopt for the socket. Note
that for a raw IP socket, the received IP header, including any IP options, is always
returned by the input functions, so the received IP options are always available.

Berkeley-derived kernels have never returned a received source route, or any other IP
options, for a UDP socket. The code shown on p. 775 of TCPv2 to return the IP options has
existed since 4.3BSD Reno, but has always been commented out since it does not work.
This makes it impossible for a UDP application to use the reverse of a received route for
datagrams back to the sender.

[ Team LiB ]

Page 815

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

27.3 IPv4 Source Route Options
A source route is a list of IP addresses specified by the sender of the IP datagram. If the
source route is strict, then the datagram must pass through each listed node and only the
listed nodes. That is, all the nodes listed in the source route must be neighbors. But if the
source route is loose, the datagram must pass through each listed node, but can also pass
through other nodes that do not appear in the source route.

IPv4 source routing is controversial. While it can be very useful for network debugging, it
can be used for "source address spoofing" and other types of attacks. [Cheswick, Bellovin,
and Rubin 2003] advocate disabling the feature on all your routers, and many
organizations and service providers do this. One legitimate use for source routing is to
detect asymmetric routes using the traceroute program, as demonstrated on pp. 108 
109 of TCPv1, although as more and more routers on the Internet disable source routing,
even this use disappears. Nevertheless, specifying and receiving source routes is part of
the sockets API and needs to be described.

IPv4 source routes are called source and record routes (LSRR for the loose option and SSRR
for the strict option), because as a datagram passes through all the listed nodes, each one
replaces its listed address with the address of the outgoing interface. This allows the
receiver to take this new list and reverse it to follow the reverse path back to the sender.
Examples of these two source routes, along with the corresponding tcpdump output, are
found in Section 8.5 of TCPv1.

We specify a source route as an array of IPv4 addresses, prefixed by three one-byte fields,
as shown in Figure 27.1. This is the format of the buffer that we will pass to setsockopt.

Figure 27.1. Passing a source route to the kernel.

We place an NOP before the source route option, which causes all the IP addresses to be
aligned on a four-byte boundary. This is not required, but takes no additional space (the IP
options are always padded to be a multiple of four bytes) and aligns the addresses.

In this figure, we show up to 10 IP addresses in the route, but the first listed address is
removed from the source route option and becomes the destination address of the IP
datagram when it leaves the source host. Although there is room for only 9 IP addresses in
the 40-byte IP option space (do not forget the 3-byte option header that we are about to
describe), there are actually 10 IP addresses in an IPv4 header when the destination
address is included.

The code is either 0x83 for an LSRR option or 0x89 for an SSRR option. The len that we
specify is the size of the option in bytes, including the three-byte header, and including the
extra destination address at the end. It will be 11 for a route consisting of one IP address,
15 for a route consisting of two IP addresses, and so on, up to a maximum of 43. The NOP
is not part of the option and is not included in the len field, but is included in the size of
the buffer that we specify to setsockopt. When the first address in the list is removed from
the source route option and placed into the destination address field of the IP header, this 
len value is decremented by four (Figures 9.32 and 9.3 of TCPv2). ptr is a pointer which
contains the offset of the next IP address to be processed in the route, and we initialize it
to 4, which points to the first IP address. The value of this field increases by four as the
datagram is processed by each listed node.

We now develop three functions to initialize, create, and process a source route option. Our

Page 816

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


functions handle only a source route option. While it is possible to combine a source route
with other IP options (such as router alert), such a combination is rare. Figure 27.2 is the
first function, inet_srcrt_init, along with some static variables that are used as an
option is being built.

Figure 27.2 inet_srcrt_init function: initializes before storing a source
route.

ipopts/sourceroute.c

 1 #include    "unp.h"

 2 #include    <netinet/in_systm.h>

 3 #include    <netinet/ip.h>

 4 static u_char *optr;            /* pointer into options being formed */

 5 static u_char *lenptr;          /* pointer to length byte in SRR option */

 6 static int ocnt;                /* count of # addresses */

 7 u_char *

 8 inet_srcrt_init(int type)

 9 {

10     optr = Malloc(44);          /* NOP, code, len, ptr, up to 10 addresses

*/

11     bzero(optr, 44);            /* guarantees EOLs at end */

12     ocnt = 0;

13     *optr++ = IPOPT_NOP;        /* NOP for alignment */

14     *optr++ = type ? IPOPT_SSRR : IPOPT_LSRR;

15     lenptr = optr++;            /* we fill in length later */

16     *optr++ = 4;                /* offset to first address */

17     return (optr - 4);          /* pointer for setsockopt() */

18 }

Initialize
10 17 We allocate a maximum sized buffer of 44 bytes and set it to 0. The value of the EOL
option is 0, so this initializes the entire option to EOL bytes. We then set up the source
route header. As shown in Figure 27.1, we first use an NOP for alignment, then the type of
source route (loose or strict), the length, and the pointer. We save a pointer to the len field
and will store this value as each address is added to the list. The pointer to the option is
returned to the caller and will be passed as the fourth argument to setsockopt.

The next function, inet_srcrt_add, adds one IPv4 address to the source route being
constructed.

Figure 27.3 inet_srcrt_add function: adds one IPv4 address to a source
route.

ipopts/sourceroute.c

19 int

20 inet_srcrt_add(char *hostptr)

21 {

22     int     len;

23     struct addrinfo *ai;

24     struct sockaddr_in *sin;

25     if (ocnt > 9)

26         err_quit("too many source routes with: %s", hostptr);

Page 817

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


27     ai = Host_serv(hostptr, NULL, AF_INET, 0);

28     sin = (struct sockaddr_in *) ai->ai_addr;

29     memcpy(optr, &sin->sin_addr, sizeof(struct in_addr));

30     freeaddrinfo(ai);

31     optr += sizeof(struct in_addr);

32     ocnt++;

33     len = 3 + (ocnt * sizeof(struct in_addr));

34     *lenptr = len;

35     return (len + 1);           /* size for setsockopt() */

36 }

Argument
19 20 The argument points to either a hostname or a dotted-decimal IP address.

Check for overflow
25 26 We check that too many addresses are not specified and then initialize if this is the
first address.

Obtain binary IP address and store in route
27 35 Our host_serv function handles either a hostname or a dotted-decimal string and
we store the resulting binary address in the list. We update the len field and return the
total size of the buffer (including the NOP) that the caller must pass to setsockopt.

When a received source route is returned to the application by getsockopt, the format is
different from Figure 27.1. We show the received format in Figure 27.4.

Figure 27.4. Format of source route option returned by getsockopt.

First, the order of the addresses has been reversed by the kernel from the ordering in the
received source route. What we mean by "reversed" is that if the received source route
contains the four addresses A, B, C, and D, in that order, the reverse of this route is D, C,
B, and then A. The first 4 bytes contain the first IP address in the list, followed by a 1-byte
NOP (for alignment), followed by the 3-byte source route option header, followed by the
remaining IP addresses. Up to 9 IP addresses can follow the 3-byte header, and the len
field in the returned header will have a maximum value of 39. Since the NOP is always
present, the length returned by getsockopt will always be a multiple of 4 bytes.

The format shown in Figure 27.4 is defined in <netinet/ip_var.h> as the following
structure:

#define MAX_IPOPTLEN    40

struct ipoption {

  struct in_addr ipopt_dst;  /* first-hop dst if source routed */

  char           ipopt_list[MAX_IPOPTLEN];   /* options proper */

};

In Figure 27.5, we find it just as easy to parse the data ourselves, instead of using this

Page 818

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


structure.

This returned format differs from the format that we pass to setsockopt. If we wanted to
convert the format in Figure 27.4 to the format in Figure 27.1, we would have to swap the
first 4 bytes with the following 4 bytes and add 4 to the length field. Fortunately, we do
not have to do this, as Berkeley-derived implementations automatically use the reverse of
a received source route for a TCP socket. That is, the information shown in Figure 27.4 is
returned by getsockopt for our information only. We do not have to call setsockopt to tell
the kernel to use this route for IP datagrams sent on the TCP connection; the kernel does
that automatically. We will see an example of this shortly with our TCP server.

The next of our source route functions takes a received source route, in the format shown
in Figure 27.4, and prints the information. We show our inet_srcrt_print function in
Figure 27.5.

Save first IP address, skip any NOPs
43 45 The first IP address in the buffer is saved and any NOPs that follow are skipped.

Figure 27.5 inet_srcrt_print function: prints a received source route.

ipopts/sourceroute.c

37 void

38 inet_srcrt_print(u_char *ptr, int len)

39 {

40     u_char  c;

41     char    str[INET_ADDRSTRLEN];

42     struct in_addr hop1;

43     memcpy(&hop1, ptr, sizeof(struct in_addr));

44     ptr += sizeof(struct in_addr);

45     while ( (c = *ptr++) == IPOPT_NOP) ; /* skip any leading NOPs */

46     if (c == IPOPT_LSRR)

47         printf("received LSRR: ");

48     else if (c == IPOPT_SSRR)

49         printf("received SSRR: ");

50     else {

51         printf("received option type %d\n", c);

52         return;

53     }

54     printf("%s ", Inet_ntop(AF_INET, &hop1, str, sizeof(str)));

55     len = *ptr++ - sizeof(struct in_addr); /* subtract dest IP addr */

56     ptr++;                      /* skip over pointer */

57     while (len > 0) {

58         printf("%s ", Inet_ntop(AF_INET, ptr, str, sizeof(str)));

59         ptr += sizeof(struct in_addr);

60         len -= sizeof(struct in_addr);

61     }

62     printf("\n");

63 }

Check for source route option
46 62 We only print the information for a source route, and from the three-byte header, we
check the code, fetch the len, and skip over the ptr. We then print all the IP addresses that
follow the three-byte header, except the destination IP address.

Page 819

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


Example
We now modify our TCP echo client to specify a source route and our TCP echo server to
print a received source route. Figure 27.6 is our client.

Process command-line arguments

12 26 We call our inet_srcrt_init function to initialize the source route, with the type of
route specified by either the -g option (loose) or the -G option (strict).

27 33 If the ptr pointer is set, a source route option was specified and we add all the
specified intermediate hops to the source route that we allocated above with our 
inet_srcrt_add function. If ptr is not set, but there is more than one argument remaining
on the command line, the user specified a route without specifying whether it is loose or
strict, so we exit with an error.

Figure 27.6 TCP echo client that specifies a source route.

ipopts/tcpcli01.c

 1 #include     "unp.h"

 2 int

 3 main(int argc, char **argv)

 4 {

 5     int     c, sockfd, len = 0;

 6     u_char *ptr = NULL;

 7     struct addrinfo *ai;

 8     if (argc < 2)

 9         err_quit("usage: tcpcli01 [ -[gG] <hostname> ... ] <hostname>");

10     opterr = 0;                 /* don't want getopt() writing to stderr */

11     while ( (c = getopt(argc, argv, "gG")) != -1) {

12         switch (c) {

13         case 'g':               /* loose source route */

14             if (ptr)

15                 err_quit("can't use both -g and -G");

16             ptr = inet_srcrt_init(0);

17             break;

18         case 'G':               /* strict source route */

19             if (ptr)

20                 err_quit("can't use both -g and -G");

21             ptr = inet_srcrt_init(1);

22             break;

23         case '?':

24             err_quit("unrecognized option: %c", c);

25         }

26     }

27     if (ptr)

28         while (optind < argc - 1)

29             len = inet_srcrt_add(argv[optind++]);

30     else if (optind < argc - 1)

31         err_quit("need -g or -G to specify route");

32     if (optind != argc - 1)

33         err_quit("missing <hostname>");

Page 820

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


34     ai = Host_serv(argv[optind], SERV_PORT_STR, AF_INET, SOCK_STREAM);

35     sockfd = Socket(ai->ai_family, ai->ai_socktype, ai->ai_protocol);

36     if (ptr) {

37         len = inet_srcrt_add(argv[optind]); /* dest at end */

38         Setsockopt(sockfd, IPPROTO_IP, IP_OPTIONS, ptr, len);

39         free(ptr);

40     }

41     Connect(sockfd, ai->ai_addr, ai->ai_addrlen);

42     str_cli(stdin, sockfd);     /* do it all */

43     exit(0);

44 }

Handle destination address and create socket

34 35 The final command-line argument is the hostname or dotted-decimal address of the
server and our host_serv function processes it. We are not able to call our tcp_connect
function because we must specify the source route between the calls to socket and
connect. The latter initiates the three-way handshake and we want the initial SYN and all
subsequent packets to use this source route.

36 42 If a source route is specified, we must add the server's IP address to the end of the
list of IP addresses (Figure 27.1). setsockopt installs the source route for this socket. We
then call connect, followed by our str_cli function (Figure 5.5).

Our TCP server is almost identical to the code shown in Figure 5.12, with the following
changes. First, we allocate space for the options.

int      len;

u_char   *opts;

opts = Malloc(44);

We then fetch the IP options after the call to accept, but before the call to fork.

len = 44;

Getsockopt(connfd, IPPROTO_IP, IP_OPTIONS, opts, &len);

if (len > 0) {

    printf("received IP options, len = %d\n", len);

    inet_srcrt_print(opts, len);

}

If the received SYN from the client does not contain any IP options, the len variable will
contain 0 on return from getsockopt (it is a value-result argument). As mentioned earlier,
we do not have to do anything to cause TCP to use the reverse of the received source
route: That is done automatically by TCP (p. 931 of TCPv2). All we are doing by calling 
getsockopt is obtaining a copy of the reversed source route. If we do not want TCP to use
this route, we call setsockopt after accept returns, specifying a fifth argument (the
length) of 0, and this removes any IP options currently in use. The source route has
already been used by TCP for the second segment of the three-way handshake (Figure 2.5

Page 821

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


), but if we remove the options, IP will use whatever route it calculates for future packets
to this client.

We now show an example of our client/server when we specify a source route. We run our
client on the host freebsd as follows:

freebsd4 % tcpcli01 -g macosx freebsd4 macosx

After the appropriate configuration to handle source routes and forward IP, this sends the
IP datagrams from freebsd4 to the host macosx, back to freebsd4, and then finally to the
host macosx, which is running the server. The two systems, freebsd4 and macosx, must
forward and accept source-routed datagrams for this example to work.

When the connection is established at the server, it outputs the following:

macosx % tcpserv01

received IP options, len = 16

received LSRR: 172.24.37.94 172.24.37.78 172.24.37.94

The first IP address printed is the first hop of the reverse path (freebsd4, as shown in
Figure 27.4), and the next two addresses are in the order used by the server to send
datagrams back to the client. If we watch the client/server exchange using tcpdump, we
can see the source route option on every datagram in both directions.

Unfortunately, the operation of the IP_OPTIONS socket option has never been documented,
so you may encounter variations on systems that are not derived from the Berkeley source
code. For example, under Solaris 2.5, the first address returned in the buffer by 
getsockopt (Figure 27.4) is not the first-hop address for the return route, but the address
of the peer. Nevertheless, the reversed route used by TCP is correct. Also, Solaris 2.5
precedes all source route options with four NOPs, limiting the option to eight IP addresses
instead of the real limit of nine.

Deleting Received Source Route
Unfortunately, source routes present a security hole to programs that perform
authentication using only IP addresses (now known to be inadequate). If a hacker sends
packets with a trusted address as the source, but his or her own address in the source
route, the return packets using the reverse source route will get to the hacker without
involving the system listed as the original source at all. Starting with the Net/1 release
(1989), the rlogind and rshd servers had code similar to the following:

u_char  buf[44];

char    lbuf[BUFSIZ];

int     optsize;

optsize = sizeof(buf);

if (getsockopt(0, IPPROTO_IP, IP_OPTIONS, 

                buf, &optsize) == 0 && optsize ! = 0) {

    /* format the options as hex numbers to print in lbuf [] */

    syslog(LOG_NOTICE,

           "Connection received using IP options (ignored) :%s", lbuf);

    setsockopt (0, IPPROTO_IP, IP_OPTIONS, NULL, 0);

Page 822

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


}

If a connection arrives with any IP options (the value of optsize returned by getsockopt is
nonzero), a message is logged using syslog and setsockopt is called to clear the options.
This prevents any future TCP segments sent on this connection from using the reverse of
the received source route. This technique is now known to be inadequate, because by the
time the application receives the connection, the TCP three-way handshake is complete,
and the second segment (the server's SYN-ACK in Figure 2.5) has already followed the
reverse of the source route back to the client (or at least to one of the intermediate hops
listed in the source route, which is where the hacker is located). Since the hacker has seen
TCP's sequence numbers in both directions, even if no more packets are sent with the
source route, the hacker can still send packets to the server with the correct sequence
number.

The only solution for this potential problem is to forbid all TCP connections that arrive with
a source route when you are using the source IP address for some form of validation (as
do rlogind and rshd). Replace the call to setsockopt in the code fragment just shown
with a closing of the just-accepted connection and a termination of the newly spawned
server. This way, the second segment of the three-way handshake has already been sent,
but the connection should not be left open.

[ Team LiB ]

Page 823

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

27.4 IPv6 Extension Headers
We do not show any options with the IPv6 header in Figure A.2 (it is always 40 bytes in
length), but an IPv6 header can be followed by the following optional extension headers:

1. Hop-by-hop options must immediately follow the 40-byte IPv6 header. There are no
hop-by-hop options currently defined that are usable by an application.

2. No destination options are currently defined that are usable by an application.

3. The routing header is a source routing option, similar in concept to what we
described for IPv4 in Section 27.3.

4. The fragmentation header is automatically generated by a host that fragments an
IPv6 datagram and then processed by the final destination when it reassembles the
fragments.

5. The use of the authentication header (AH) is documented in RFC 2402 [Kent and
Atkinson 1998b].

6. The use of the encapsulating security payload (ESP) header is documented in RFC
2406 [Kent and Atkinson 1998c].

We said the fragmentation header is handled entirely by the kernel, and the AH and ESP
headers are automatically handled by the kernel based on the SADB and SPDB, which are
maintained using PF_KEY sockets (Chapter 19). This leaves the first three options, which
we will discuss in the next two sections. The API to specify these options is defined by RFC
3542 [Stevens et al. 2003].

[ Team LiB ]

Page 824

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

27.5 IPv6 Hop-by-Hop Options and Destination Options
The hop-by-hop and destination options have a similar format, shown in Figure 27.7. The
8-bit next header field identifies the next header that follows this extension header. The
8-bit header extension length is the length of this extension header, in units of 8 bytes,
but not including the first 8 bytes. For example, if this extension header occupies 8 bytes,
then its header extension length is 0; if this extension header occupies 16 bytes, then its
header extension length is 1, and so on. These two headers are padded to be a multiple of
8 bytes with either the pad1 option or the padN option, which will be described shortly.

Figure 27.7. Format of hop-by-hop and destination options.

The hop-by-hop options header and destination options header each hold any number of
individual options, which have the format shown in Figure 27.8.

Figure 27.8. Format of individual hop-by-hop and destination options.

This is called TLV coding because each option appears with its type, length, and value. The
8-bit type field identifies the option type. Additionally, the two high-order bits specify what
an IPv6 node does with this option if it does not understand the option:

00 Skip over this option and continue processing the header.

01 Discard the packet.

10 Discard the packet and send an ICMP parameter problem type 2 error (Figure A.16) to
the sender, regardless of whether or not the packet's destination is a multicast
address.

11 Discard the packet and send an ICMP parameter problem type 2 error (Figure A.16) to
the sender. This error is sent only if the packet's destination is not a multicast
address.

The next high-order bit specifies whether or not the option data changes en route:

0 The option data does not change en route.

1 The option data may change en route.

The low-order 5 bits then specify the option. Note that all 8 bits make up the option code;
the low-order 5 bits do not by themselves identify the option. However, option value
assignments are made to keep the low-order 5 bits unique for as long as possible.

Page 825

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


The 8-bit length field specifies the length of the option data in bytes. The type field and
this length field are not included in this length.

The two pad options are defined in RFC 2460 [Deering and Hinden 1998] and can be used
in either the hop-by-hop options header or in the destination options header. The jumbo
payload length, a hop-by-hop option, is defined in RFC 2675 [Borman, Deering, and
Hinden 1999], and it is generated when needed and processed when received entirely by
the kernel. Router alert, a hop-by-hop option, is described for IPv6 in RFC 2711 [Partridge
and Jackson 1999] and is similar to the IPv4 router alert. We show these in Figure 27.9.
Other options are also defined, for instance, for Mobile-IPv6, but we do not show them
here.

Figure 27.9. IPv6 hop-by-hop options.

The pad1 byte is the only option without a length and value. It provides 1 byte of padding.
The padN option is used when 2 or more bytes of padding are required. For 2 bytes of
padding, the length of this option would be 0 and the option would consist of just the type
field and the length field. For 3 bytes of padding, the length would be 1, and 1 byte of 0
would follow this length. The jumbo payload length option provides a datagram length of
32 bits and is used when the 16-bit payload length field in Figure A.2 is inadequate. The
router alert option indicates that this packet should be intercepted by certain routers along
the path; the value in the router alert option indicates what routers should be interested.

We show the padding options because each hop-by-hop and destination option also has an
associated alignment requirement, written as xn + y. This means that the option must
appear at an integer multiple of x bytes from the start of the header, plus y bytes. For
example, the alignment requirement of the jumbo payload option is 4n + 2, and this is to
force the 4-byte option value (the jumbo payload length) to be on a 4-byte boundary. The
reason why the y value is 2 for this option is because of the 2 bytes that appear at the
beginning of each hop-by-hop and destination options header (Figure 27.8). The alignment
requirement of the router alert option is 2n + 0, to force the 2-byte option value to be on a
2-byte boundary.

The hop-by-hop and destination options are normally specified as ancillary data with 
sendmsg and returned as ancillary data by recvmsg. Nothing special needs to be done by
the application to send either or both of these options; just specify them in a call to 
sendmsg. To receive these options, the corresponding socket option must be enabled:
IPV6_RECVHOPOPTS for the hop-by-hop options and IPV6_RECVDSTOPTS for the destination
options. For example, to enable both options to be returned,

const int on = 1;

Page 826

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


setsockopt(sockfd, IPPROTO_IPV6, IPV6_RECVHOPOPTS, &on, sizeof(on));

setsockopt(sockfd, IPPROTO_IPV6, IPV6_RECVDSTOPTS, &on, sizeof(on));

Figure 27.10 shows the format of the ancillary data objects used to send and receive the
hop-by-hop and destination options.

Figure 27.10. Ancillary data objects for hop-by-hop and destination
options.

The actual contents of the IPv6 option header is passed between the user and the kernel as
the cmsg_data portion of these objects. To reduce code duplication, seven functions are
defined to create and process these data sections. The following four functions build an
option to send:

#include <netinet/in.h>

int inet6_opt_init(void *extbuf, socklen_t extlen) ;

Returns: number of bytes required to hold empty extension header, -1 on error

int inet6_opt_append(void *extbuf, socklen_t extlen, int offset, uint8_t type,
socklen_t len, uint_t align, void **databufp) ;

Returns: updated length of overall extension header after adding option, -1 on error

int inet6_opt_finish(void *extbuf, socklen_t extlen, int offset) ;

Returns: updated length of finished extension header,  1 on error

int inet6_opt_set_val(void *databuf, int offset, const void *val, socklen_t vallen)
;

Returns: new offset inside databuf

inet6_opt_init returns the number of bytes required to hold an empty extension header.
If the extbuf argument is not NULL, it initializes the extension header. It fails and returns
-1 if the extbuf argument is supplied but the extlen argument is not a multiple of 8. (All
IPv6 hop-by-hop and destination options headers must be multiples of 8 bytes.)

inet6_opt_append returns the updated total length of the extension header after
appending the specified option. If the extbuf argument is not NULL, it also initializes the
option and inserts any necessary padding. It fails and returns -1 if the new option does not
fit in the supplied buffer. The offset argument is the current running total length, and must
be the return value from a previous call to inet6_opt_init or inet6_opt_append. The type
and len arguments are the type and length of the option, and are copied directly into the
option header. The align argument specifies the alignment requirement, that is, x from the
function xn + y. The value of y is derived from align and len, so it does not need to be

Page 827

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


explicitly specified. The databufp argument is the address to a pointer that will be filled in
with the location of the option value; the caller can then copy the option value into this
location using the inet6_opt_set_val function or any other method.

inet6_opt_finish is called to complete an extension header, adding any needed padding
to make the overall header a multiple of 8 bytes. As before, if the extbuf argument is non-
NULL, the padding is actually inserted into the buffer; otherwise, the function simply
computes the updated length. As with inet6_opt_append, the offset argument is the
current running total length, the return value from a previous inet6_opt_init or
inet6_opt_append. inet6_opt_finish returns the total length of the completed header, or
-1 if the required padding will not fit in the supplied buffer.

inet6_opt_set_val copies an option value into the data buffer returned by
inet6_opt_append. The databuf argument is the pointer returned from inet6_opt_append.
offset is a running length within this option; it must be initialized to 0 for each option and
then will be the return value from the previous inet6_opt_set_val as the option is built
up. The val and vallen arguments specify the value to copy into the option value buffer.

The expected use of these functions is to make two passes through the list of options you
intend to insert: the first to calculate the desired length, and the second to actually build
the option into an appropriately sized buffer. During the first pass, we call inet6_opt_init,
inet6_opt_append once for each option we will append, and inet6_opt_finish, passing
NULL and 0 for the extbuf and extlen arguments, respectively. We then dynamically
allocate the option buffer using the size returned by inet6_opt_finish, and we will pass
this buffer as the extbuf argument during the second pass. During the second pass, we
call inet6_opt_init and inet6_opt_append, either copying the data manually or using
inet6_opt_set_val for each option value. Finally, we call inet6_opt_finish. Alternately,
we can pre-allocate a buffer that should be large enough for our desired options and skip
the first pass; however, this is vulnerable to failure if a change in the desired options would
over-run the pre-allocated buffer.

The remaining three functions process a received option:

#include <netinet/in.h>

int inet6_opt_next(const void *extbuf, socklen_t extlen, int offset, uint8_t *
typep, socklen_t *lenp, void **databufp) ;

Returns: offset of next option, -1 on end of options or error

int inet6_opt_find(const void *extbuf, socklen_t extlen, int offset, uint8_t type,
socklen_t *lenp, void **databufp) ;

Returns: offset of next option, -1 on end of options or error

int inet6_opt_get_val(const void *databuf, int offset, void *val, socklen_t vallen
) ;

Returns: new offset inside databuf

inet6_opt_next processes the next option in a buffer. extbuf and extlen specify the buffer
containing the header. As with inet6_opt_append, offset is a running offset into the buffer.
It is 0 for the first call to inet6_opt_next, and then it is the return value from the previous
call for future calls. typep, lenp, and databufp return the type, length, and value of the
option, respectively. inet6_opt_next returns -1 if the header is malformed or if it has
reached the end of the buffer.

Page 828

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


inet6_opt_find is similar to the previous function, but it lets the caller specify the option
type to search for (the type argument) instead of always returning the next option.

inet6_opt_get_val is used to extract values from an option, using the databuf pointer
returned by a previous inet6_opt_next or inet6_opt_find call. As with
inet6_opt_set_val, the offset argument must start at 0 for each option, then must be the
return value of a previous call to inet6_opt_get_val.

[ Team LiB ]

Page 829

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

27.6 IPv6 Routing Header
The IPv6 routing header is used for source routing in IPv6. The first two bytes of the
routing header are the same as we showed in Figure 27.7: a next header field followed by
a header extension length. The next two bytes specify the routing type and the number of
segments left (i.e., how many listed nodes are still to be visited). Only one type of routing
header is specified, type 0, and we show its format in Figure 27.11.

Figure 27.11. IPv6 routing header.

An unlimited number of addresses can appear in the routing header (limited only by packet
length) and segments left must be equal to or less than the number of addresses in the
header. RFC 2460 [Deering and Hinden 1998] specifies the details of how the header is
processed as the packet travels to the final destination, along with a detailed example.

The routing header is normally specified as ancillary data with sendmsg and returned as
ancillary data by recvmsg. Nothing special needs to be done by the application to send the
header: just specify it as ancillary data in a call to sendmsg. To receive the routing header,
the IPV6_RECVRTHDR socket option must be enabled, as in

const int on = 1;

Page 830

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


setsockopt(sockfd, IPPROTO_IPV6, IPV6_RECVRTHDR, &on, sizeof(on));

Figure 27.12 shows the format of the ancillary data object used to send and receive the
routing header. Six functions are defined to create and process the routing header. The
following three functions build an option to send:

Figure 27.12. Ancillary data object for IPv6 routing header.

#include <netinet/in.h>

socklen_t inet6_rth_space(int type, int segments) ;

Returns: positive number of bytes if OK, 0 on error

void *inet6_rth_init(void *rthbuf, socklen_t rthlen, int type, int segments);

Returns: non-null pointer if OK, NULL on error

int inet6_rth_add(void *rthbuf, const struct in6_addr *addr);

Returns: 0 if OK, -1 on error

inet6_rth_space returns the number of bytes required to hold a routing header of the
specified type (normally specified as IPV6_RTHDR_TYPE_0) with the specified number of
segments.

inet6_rth_init initializes the buffer pointed to by rthbuf to contain a routing header of
the specified type and the specified number of segments. The return value is the pointer to
the buffer, and this pointer is then used as an argument to the next function. 
inet6_rth_init returns NULL if an error occurs, for instance, when the supplied buffer is
not large enough.

inet6_rth_add adds the IPv6 address pointed to by addr to the end of the routing header
being constructed. When successful, the segleft member of the routing header is updated
to account for the new address.

The following three functions deal with a received routing header:

#include <netinet/in.h>

int inet6_rth_reverse(const void *in, void *out);

Returns: 0 if OK, -1 on error

int inet6_rth_segments(const void *rthbuf);

Page 831

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


#include <netinet/in.h>

Returns: number of segments in routing header if OK, -1 on error

struct in6_addr *inet6_rth_getaddr(const void *rthbuf, int index);

Returns: non-null pointer if OK, NULL on error

inet6_rth_reverse takes a routing header that was received (pointed to by in) and creates
a new routing header (in the buffer pointed to by out) that sends datagrams along the
reverse of that path. The reversal can occur in place; that is, the in and out pointers can
point to the same buffer.

inet6_rth_segments returns the number of segments in the routing header described by
rthbuf. When successful, the return value is greater than zero.

inet6_rth_getaddr returns a pointer to the IPv6 address specified by index in the routing
header described by rthbuf. index must have a value between zero and one less than the
value returned by inet6_rth_segments, inclusive.

To demonstrate these options, we create a UDP client and server. The client, shown in 
Figure 27.13, accepts a source route on the command line like the IPv4 TCP client we
showed in Figure 27.6; the server prints the received source route and reverses it to send
back to the client.

Create source route
11 21 If more than one argument was supplied, all but the final argument form the source
route. We first determine how much space the route header will require with 
inet6_rth_space, then allocate the necessary space with malloc. We initialize the
allocated buffer with inet6_rth_init. Then, for each address in the source route, we
convert it to numeric form using host_serv and add it to the source route using
inet6_rth_add. This is very similar to our IPv4 TCP client, except that instead of our own
helper functions, these library functions are provided by the system.

Look up destination and create socket
22 23 We use host_serv to look up the destination, and create a socket to use.

Set sticky IPV6_RTHDR option and call worker function
24 27 As we will see in Section 27.7, instead of sending the same ancillary data with every
packet, we can use setsockopt to apply the routing header to every packet in the session.
We only set this option if ptr is non-NULL, meaning that we allocated a route header
earlier. Finally, we call the worker function, dg_cli, which we defined in Figure 8.8.

Figure 27.13 IPv6 UDP client with source route.

ipopts/udpcli01.c

 1 #include    "unp.h"

 2 int

 3 main(int argc,  char **argv)

 4  {

 5     int     c,  sockfd, len = 0;

 6     u_char *ptr = NULL;

 7     void     *rth;

Page 832

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


 8     struct addrinfo *ai;

 9     if (argc < 2)

10         err_quit("usage: udpcli01 [ <hostname> ... ] <hostname>");

11     if (argc > 2)  {

12         int     i;

13         len = Inet6_rth_space(IPV6_RTHDR_TYPE_0, argc - 2);

14         ptr = Malloc(len);

15         Inet6_rth_init(ptr, len, IPV6_RTHDR_TYPE_0, argc - 2);

16         for (i = 1; i < argc - 1; i++)  {

17             ai = Host_serv(argv[i], NULL, AF_INET6, 0);

18             Inet6_rth_add(ptr,

19                           &((struct sockaddr_in6 *)

ai->ai_addr)->sin6_addr);

20         }

21     }

22     ai = Host_serv(argv[argc - 1], SERV_PORT_STR, AF_INET6, SOCK_DGRAM);

23     sockfd = Socket(ai->ai_family, ai->ai_socktype, ai->ai_protocol);

24     if (ptr)  {

25         Setsockopt (sockfd, IPPROTO_IPV6, IPV6_RTHDR, ptr, len);

26         free (ptr);

27     }

28     dg_cli (stdin, sockfd, ai->ai_addr, ai->ai_addrlen); /* do it all */

29     exit (0);

30  }

Our server is the same simple UDP server as before: open a socket and call dg_echo. The
setup is trivial, so we do not show it. Instead, Figure 27.14 shows our dg_echo function,
which prints the source route if one was received and reverses it for use in returning the
packet.

Turn on IPV6_RECVRTHDR option and set up msghdr struct
12 13 To receive the incoming source route, we must set the IPV6_RECVRTHDR socket
option. We must also use recvmsg, so we set up the unchanging fields of a msghdr
structure.

Set up modifiable fields and call recvmsg
21 24 We set the length fields to the appropriate sizes and call recvmsg.

Figure 27.14 dg_echo function that prints and reverses IPv6 source
route.

ipopts/dgechoprintroute.c

 1 #include     "unp.h"

 2 void

 3 dg_echo(int sockfd, SA *pcliaddr, socklen_t clilen)

 4 {

 5     int     n;

 6     char    mesg[MAXLINE];

Page 833

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


 7     int     on;

 8     char    control[MAXLINE];

 9     struct msghdr msg;

10     struct cmsghdr *cmsg;

11     struct iovec iov[1];

12     on = 1;

13     Setsockopt (sockfd, IPPROTO_IPV6, IPV6_RECVRTHDR, &on, sizeof(on));

14     bzero (&msg, sizeof(msg));

15     iov[0].iov_base = mesg;

16     msg.msg_name = pcliaddr;

17     msg.msg_iov = iov;

18     msg.msg_iovlen = 1;

19     msg.msg_control = control;

20     for ( ; ; )  {

21         msg.msg_namelen = clilen;

22         msg.msg_controllen = sizeof(control);

23         iov[0].iov_len = MAXLINE;

24         n = Recvmsg (sockfd, &msg, 0);

25         for (cmsg = CMSG_FIRSTHDR(&msg); cmsg != NULL;

26              cmsg = CMSG_NXTHDR (&msg, cmsg))  {

27             if (cmsg->cmsg_level == IPPROTO_IPV6 &&

28                 cmsg->cmsg_type == IPV6_RTHDR)  {

29                 inet6_srcrt_print(CMSG_DATA(cmsg));

30                 Inet6_rth_reverse(CMSG_DATA(cmsg), CMSG_DATA(cmsg));

31             }

32         }

33         iov[0].iov_len = n;

34         Sendmsg(sockfd, &msg, 0);

35     }

36 }

Find and process route header
25 32 We loop through the ancillary data using CMSG_FIRSTHDR and CMSG_NXTHDR. Even
though we are only expecting one piece of ancillary data, it is good practice to loop like
this. If we do find a routing header, we print it with our inet6_srcrt_print function (
Figure 27.15). We then reverse the route with inet6_rth_reverse so that we can use it to
return the packet along the same path. In this case, inet6_rth_reverse works on the
route in place, so that we can use the same ancillary data to send the return packet.

Echo packet
33 34 We set the length of the data to send, and use sendmsg to return the packet.

Figure 27.15 inet6_srcrt_print function: prints a received IPv6 source
route.

ipopts/sourceroute6.c

 1 #include    "unp.h"

 2 void

 3 inet6_srcrt_print(void *ptr)

 4 {

 5     int     i, segments;

 6     char    str[INET6_ADDRSTRLEN];

 7     segments = Inet6_rth_segments(ptr);

Page 834

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


 8     printf("received source route: ");

 9     for (i = 0; i < segments; i++)

10         printf ("%s ", Inet_ntop(AF_INET6, Inet6_rth_getaddr(ptr, i),

11                                  str, sizeof(str)));

12     printf("\n");

13  }

Our inet6_srcrt_print is almost trivial, thanks to the IPv6 route helper functions.

Determine number of segments in route
7 We first use inet6_rth_segments to determine the number of segments present in the
route.

Loop through each segment
9 11 We loop through all the segments, calling inet6_rth_getaddr for each one and
converting the address to presentation form using inet_ntop.

Our client and server that handle IPv6 source routes do not need to know how the source
route is formatted in the packet. The library functions the API provides hide the details of
the packet format from us, yet give us all the flexibility we had when we built the option
from scratch in IPv4.

[ Team LiB ]

Page 835

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

27.7 IPv6 Sticky Options
We have described the use of ancillary data with sendmsg and recvmsg to send and receive
seven different ancillary data objects:

1. IPv6 packet information: the in6_pktinfo structure containing either the
destination address and outgoing interface index, or the source address and the
arriving interface index (Figure 22.21)

2. The outgoing hop limit or received hop limit (Figure 22.21)

3. The next-hop address (Figure 22.21)

4. The outgoing or received traffic class (Figure 22.21)

5. Hop-by-hop options (Figure 27.10)

6. Destination options (Figure 27.10)

7. Routing header (Figure 27.12)

We summarized the cmsg_level and cmsg_type values for these objects, along with the
values for the other ancillary data object in Figure 14.11.

When the same value will be used for all packets sent on a socket, instead of sending these
options in every call to sendmsg, we can set the corresponding socket options instead. The
socket options use the same constants as the ancillary data, that is, the option level is
always IPPROTO_IPV6 and the option name is IPV6_DSTOPTS, IPV6_HOPLIMIT, IPV6_HOPOPTS
, IPV6_NEXTHOP, IPV6_PKTINFO, IPV6_RTHDR, or IPV6_TCLASS. But, these sticky options can
be overridden on a per-packet basis for a UDP socket or for a raw IPv6 socket by specifying
ancillary data in a call to sendmsg. If any ancillary data is specified in a call to sendmsg, the
corresponding sticky options are not sent with that datagram.

The concept of sticky options can also be used with TCP because ancillary data is never
sent or received by sendmsg or recvmsg on a TCP socket. Instead, a TCP application can set
the corresponding socket option and specify any of the seven option types mentioned at
the beginning of this section. These objects then affect all packets sent on this socket.
However, retransmission of packets that were originally sent when other (or no) sticky
options were set may use either the original or the new sticky options.

There is no way to retrieve options received via TCP since there is no relationship between
received packets and user receive operations.

[ Team LiB ]

Page 836

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

27.8 Historical IPv6 Advanced API
RFC 2292 [Stevens and Thomas 1998] defines an earlier version of the API described here,
which is implemented and deployed in some systems. In this earlier version, the functions
to deal with destination and hop-by-hop options are inet6_option_space,
inet6_option_init, inet6_option_append, inet6_option_alloc, inet6_option_next and
inet6_option_find. These functions dealt with struct cmsghdr objects directly, assuming
that all options were contained in ancillary data. The routing header functions in that API
were inet6_rthdr_space, inet6_rthdr_init, inet6_rthdr_add, inet6_rthdr_lasthop,
inet6_rthdr_reverse, inet6_rthdr_segments, inet6_rthdr_getaddr and
inet6_rthdr_getflags. These functions also operate directly on struct cmsghdr ancillary
data objects.

In this API, sticky options were set with the IPV6_PKTOPTIONS socket option. The ancillary
data objects that would have been passed to sendmsg were instead set as the data portion
of the IPV6_PKTOPTIONS socket option. In that API, the IPV6_DSTOPTS, IPV6_HOPOPTS, and
IPV6_RTHDR socket options were flag values to request reception of the respective headers
via ancillary data.

For more information on these operations, refer to Sections 4 through 8 of RFC 2292
[Stevens and Thomas 1998].

[ Team LiB ]

Page 837

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

27.9 Summary
The most commonly used of the 10 defined IPv4 options is the source route, but its use is
dwindling these days because of security concerns. Access to IPv4 header options is
through the IP_OPTIONS socket option.

IPv6 defines six extension headers. Access to IPv6 extension headers is through a
functional interface, obviating the need to understand their actual format in the packet.
These extension headers are written as ancillary data with sendmsg and returned as
ancillary data with recvmsg.

[ Team LiB ]

Page 838

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Exercises
27.1 In our IPv4 source route example at the end of Section 27.3, what

changes if we specify each intermediate node to the client with the -G
option, instead of the -g option?

27.2 The length of the buffer specified to setsockopt for the IP_OPTIONS
socket option must be a multiple of 4 bytes. What would we do if we
did not place an NOP at the beginning of the buffer, as shown in Figure
27.1?

27.3 How does ping receive a source route when the IP record route option is
used (described in Section 7.3 of TCPv1)?

27.4 In the example code from the rlogind server at the end of Section 27.3
that clears a received source route, why is the socket descriptor
argument for getsockopt and setsockopt 0?

27.5 For many years, the code we showed at the end of Section 27.3 that
clears a received source route looked like the following:

optsize = 0;

setsockopt (0, IPPROTO_IP, IP_OPTIONS, NULL, &optsize);

What is wrong with this code? Does it matter?

[ Team LiB ]

Page 839

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Chapter 28. Raw Sockets
Section 28.1.?Introduction

Section 28.2.?Raw Socket Creation

Section 28.3.?Raw Socket Output

Section 28.4.?Raw Socket Input

Section 28.5.?ping Program

Section 28.6.?traceroute Program

Section 28.7.?An ICMP Message Daemon

Section 28.8.?Summary

Exercises

[ Team LiB ]

Page 840

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

28.1 Introduction
Raw sockets provide three features not provided by normal TCP and UDP sockets:

 Raw sockets let us read and write ICMPv4, IGMPv4, and ICMPv6 packets. The ping
program, for example, sends ICMP echo requests and receives ICMP echo replies.
(We will develop our own version of the ping program in Section 28.5.) The
multicast routing daemon, mrouted, sends and receives IGMPv4 packets.

This capability also allows applications that are built using ICMP or IGMP to be
handled entirely as user processes, instead of putting more code into the kernel.
The router discovery daemon (in. rdisc under Solaris 2.x; Appendix F of TCPv1
describes how to obtain the source code for a publicly available version), for
example, is built this way. It processes two ICMP messages (router advertisement
and router solicitation) that the kernel knows nothing about.

 With a raw socket, a process can read and write IPv4 datagrams with an IPV4
protocol field that is not processed by the kernel. Recall the 8-bit IPv4 protocol field
in Figure A.1. Most kernels only process datagrams containing values of 1 (ICMP), 2
(IGMP), 6 (TCP), and 17 (UDP). But many other values are defined for the protocol
field: The IANA's "Protocol Numbers" registry lists all the values. For example, the
OSPF routing protocol does not use TCP or UDP, but it uses IP directly, setting the
protocol field of the IP datagram to 89. The gated program that implements OSPF
must use a raw socket to read and write these IP datagrams since they contain a
protocol field the kernel knows nothing about. This capability carries over to IPv6
also.

 With a raw socket, a process can build its own IPv4 header using the IP_HDRINCL
socket option. This can be used, for example, to build UDP and TCP packets, and we
will show an example of this in Section 29.7.

This chapter describes raw socket creation, input, and output. We will also develop versions
of the ping and traceroute programs that work with both IPv4 and IPv6.

[ Team LiB ]

Page 841

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

28.2 Raw Socket Creation
The steps involved in creating a raw socket are as follows:

1. The socket function creates a raw socket when the second argument is SOCK_RAW.
The third argument (the protocol) is normally nonzero. For example, to create an
IPv4 raw socket we would write

2.
3.
4.
5. int     sockfd;

6.
7. sockfd = socket(AF_INET, SOCK_RAW, protocol);

8.

where protocol is one of the constants, IPPROTO_xxx, defined by including the
<netinet/in.h> header, such as IPPROTO_ICMP.

Only the superuser can create a raw socket. This prevents normal users from writing
their own IP datagrams to the network.

9. The IP_HDRINCL socket option can be set as follows:

10.
11.
12.
13. const int on = 1;
14.
15. if (setsockopt(sockfd, IPPROTO_IP, IP_HDRINCL, &on, sizeof(on)) < 0)
16.     error
17.

We will describe the effect of this socket option in the next section.

18. bind can be called on the raw socket, but this is rare. This function sets only the
local address: There is no concept of a port number with a raw socket. With regard
to output, calling bind sets the source IP address that will be used for datagrams
sent on the raw socket (but only if the IP_HDRINCL socket option is not set). If bind
is not called, the kernel sets the source IP address to the primary IP address of the
outgoing interface.

19. connect can be called on the raw socket, but this is rare. This function sets only the
foreign address: Again, there is no concept of a port number with a raw socket. With
regard to output, calling connect lets us call write or send instead of sendto, since
the destination IP address is already specified.

[ Team LiB ]

Page 842

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

28.3 Raw Socket Output
Output on a raw socket is governed by the following rules:

 Normal output is performed by calling sendto or sendmsg and specifying the
destination IP address. write, writev, or send can also be called if the socket has
been connected.

 If the IP_HDRINCL option is not set, the starting address of the data for the kernel to
send specifies the first byte following the IP header because the kernel will build the
IP header and prepend it to the data from the process. The kernel sets the protocol
field of the IPv4 header that it builds to the third argument from the call to socket.

 If the IP_HDRINCL option is set, the starting address of the data for the kernel to
send specifies the first byte of the IP header. The amount of data to write must
include the size of the caller's IP header. The process builds the entire IP header,
except: (i) the IPv4 identification field can be set to 0, which tells the kernel to set
this value; (ii) the kernel always calculates and stores the IPv4 header checksum;
and (iii) IP options may or may not be included; see Section 27.2

 The kernel fragments raw packets that exceed the outgoing interface MTU.

Raw sockets are documented to provide an identical interface to the one a protocol
would have if it was resident in the kernel [McKusick et al. 1996] Unfortunately, this
means that certain pieces of the API are dependent on the OS kernel, specifically
with regard to the byte ordering of the fields in the IP header. On many
Berkeley-derived kernels, all fields are in network byte order except ip_len and
ip_off, which are in host byte order (pp. 233 and 1057 of TCPv2). On Linux and
OpenBSD, however, all the fields must be in network byte order.

The IP_HDRINCL socket option was introduced with 4.3BSD Reno. Before this, the
only way for an application to specify its own IP header in packets sent on a raw IP
socket was to apply a kernel patch that was introduced in 1988 by Van Jacobson to
support traceroute. This patch required the application to create a raw IP socket
specifying a protocol of IPPROTO_RAW, which has a value of 255 (and is a reserved
value and must never appear as the protocol field in an IP header).

The functions that perform input and output on raw sockets are some of the
simplest in the kernel. For example, in TCPv2, each function requires about 40 lines
of C code (pp. 1054 1057), compared to TCP input at about 2,000 lines and TCP
output at about 700 lines.

Our description of the IP_HDRINCL socket option is for 4.4BSD. Earlier versions, such as
Net/2, filled in more fields in the IP header when this option was set.

With IPv4, it is the responsibility of the user process to calculate and set any header
checksums contained in whatever follows the IPv4 header. For example, in our ping
program (Figure 28.14), we must calculate the ICMPv4 checksum and store it in the
ICMPv4 header before calling sendto.

IPv6 Differences
There are a few differences with raw IPv6 sockets (RFC 3542 [Stevens et al. 2003]):

 All fields in the protocol headers sent or received on a raw IPv6 socket are in
network byte order.

Page 843

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


 There is nothing similar to the IPv4 IP_HDRINCL socket option with IPv6. Complete
IPv6 packets (including the IPv6 header or extension headers) cannot be read or
written on an IPv6 raw socket. Almost all fields in an IPv6 header and all extension
headers are available to the application through socket options or ancillary data
(see Exercise 28.1). Should an application need to read or write complete IPv6
datagrams, datalink access (described in Chapter 29) must be used.

 Checksums on raw IPv6 sockets are handled differently, as will be described shortly.

IPV6_CHECKSUM Socket Option
For an ICMPv6 raw socket, the kernel always calculates and stores the checksum in the
ICMPv6 header. This differs from an ICMPv4 raw socket, where the application must do this
itself (compare Figures 28.14 and 28.16). While ICMPv4 and ICMPv6 both require the
sender to calculate the checksum, ICMPv6 includes a pseudoheader in its checksum (we
will discuss the concept of a pseudoheader when we calculate the UDP checksum in Figure
29.14). One of the fields in this pseudoheader is the source IPv6 address, and normally the
application lets the kernel choose this value. To prevent the application from having to try
to choose this address just to calculate the checksum, it is easier to let the kernel calculate
the checksum.

For other raw IPv6 sockets (i.e., those created with a third argument to socket other than
IPPROTO_ICMPV6), a socket option tells the kernel whether to calculate and store a
checksum in outgoing packets and verify the checksum in received packets. By default,
this option is disabled, and it is enabled by setting the option value to a nonnegative value,
as in

int offset = 2;

if (setsockopt(sockfd, IPPROTO_IPV6, IPV6_CHECKSUM,

               &offset, sizeof(offset)) < 0)

    error

This not only enables checksums on this socket, it also tells the kernel the byte offset of
the 16-bit checksum: 2 bytes from the start of the application data in this example. To
disable the option, it must be set to -1. When enabled, the kernel will calculate and store
the checksum for outgoing packets sent on the socket and also verify the checksums for
packets received on the socket.

[ Team LiB ]

Page 844

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

28.4 Raw Socket Input
The first question that we must answer regarding raw socket input is: Which received IP
datagrams does the kernel pass to raw sockets? The following rules apply:

 Received UDP packets and received TCP packets are never passed to a raw socket. If
a process wants to read IP datagrams containing UDP or TCP packets, the packets
must be read at the datalink layer, as described in Chapter 29.

 Most ICMP packets are passed to a raw socket after the kernel has finished
processing the ICMP message. Berkeley-derived implementations pass all received
ICMP packets to a raw socket other than echo request, timestamp request, and
address mask request (pp. 302 303 of TCPv2). These three ICMP messages are
processed entirely by the kernel.

 All IGMP packets are passed to a raw socket after the kernel has finished processing
the IGMP message.

 All IP datagrams with a protocol field that the kernel does not understand are
passed to a raw socket. The only kernel processing done on these packets is the
minimal verification of some IP header fields: the IP version, IPv4 header checksum,
header length, and destination IP address (pp. 213 220 of TCPv2).

 If the datagram arrives in fragments, nothing is passed to a raw socket until all
fragments have arrived and have been reassembled.

When the kernel has an IP datagram to pass to the raw sockets, all raw sockets for all
processes are examined, looking for all matching sockets. A copy of the IP datagram is
delivered to each matching socket. The following tests are performed for each raw socket
and only if all three tests are true is the datagram delivered to the socket:

 If a nonzero protocol is specified when the raw socket is created (the third argument
to socket), then the received datagram's protocol field must match this value or the
datagram is not delivered to this socket.

 If a local IP address is bound to the raw socket by bind, then the destination IP
address of the received datagram must match this bound address or the datagram
is not delivered to this socket.

 If a foreign IP address was specified for the raw socket by connect, then the source
IP address of the received datagram must match this connected address or the
datagram is not delivered to this socket.

Notice that if a raw socket is created with a protocol of 0, and neither bind nor connect is
called, then that socket receives a copy of every raw datagram the kernel passes to raw
sockets.

Whenever a received datagram is passed to a raw IPv4 socket, the entire datagram,
including the IP header, is passed to the process. For a raw IPv6 socket, only the payload
(i.e., no IPv6 header or any extension headers) is passed to the socket (e.g., Figures 28.11
and 28.22).

In the IPv4 header passed to the application, ip_len, ip_off, and ip_id are host byte
ordered, and ip_len contains only the IP payload length (with the IP header length
subtracted), but the remaining fields are network byte ordered. Under Linux, all fields are
left in network byte order.

As previously mentioned, the raw socket interface is defined to provide an identical

Page 845

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


interface to the one a protocol would have if it was resident in the kernel, so the contents
of the fields are dependent on the OS kernel.

We mentioned in the previous section that all fields in a datagram received on a raw IPv6
socket are left in network byte order.

ICMPv6 Type Filtering
A raw ICMPv4 socket receives most ICMPv4 messages received by the kernel. But ICMPv6
is a superset of ICMPv4, including the functionality of ARP and IGMP (Section 2.2).
Therefore, a raw ICMPv6 socket can potentially receive many more packets compared to a
raw ICMPv4 socket. But most applications using a raw socket are interested in only a small
subset of all ICMP messages.

To reduce the number of packets passed from the kernel to the application across a raw
ICMPv6 socket, an application-specified filter is provided. A filter is declared with a
datatype of struct icmp6_filter, which is defined by including <netinet/icmp6.h>. The
current filter for a raw ICMPv6 socket is set and fetched using setsockopt and getsockopt
with a level of IPPROTO_ICMPv6 and an optname of ICMP6_FILTER.

Six macros operate on the icmp6_filter structure.

#include <netinet/icmp6.h>

void ICMP6_FILTER_SETPASSALL (struct icmp6_filter *filt);

void ICMP6_FILTER_SETBLOCKALL (struct icmp6_filter *filt);

void ICMP6_FILTER_SETPASS (int msgtype, struct icmp6_filter *filt);

void ICMP6_FILTER_SETBLOCK (int msgtype, struct icmp6_filter *filt);

int ICMP6_FILTER_WILLPASS (int msgtype, const struct icmp6_filter *filt);

int ICMP6_FILTER_WILLBLOCK (int msgtype, const struct icmp6_filter *filt);

Both return: 1 if filter will pass (block) message type, 0 otherwise

The filt argument to all the macros is a pointer to an icmp6_filter variable that is
modified by the first four macros and examined by the final two macros. The msgtype
argument is a value between 0 and 255 and specifies the ICMP message type.

The SETPASSALL macro specifies that all message types are to be passed to the application,
while the SETBLOCKALL macros specifies that no message types are to be passed. By
default, when an ICMPv6 raw socket is created, all ICMPv6 message types are passed to
the application.

The SETPASS macro enables one specific message type to be passed to the application
while the SETBLOCK macro blocks one specific message type. The WILLPASS macro returns 1
if the specified message type is passed by the filter, or 0 otherwise; the WILLBLOCK macro
returns 1 if the specified message type is blocked by the filter, or 0 otherwise.

As an example, consider the following application, which wants to receive only ICMPv6
router advertisements:

Page 846

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


struct icmp6_filter myfilt;

fd = socket (AF_INET6, SOCK_RAW, IPPROTO_ICMPV6);

ICMP6_FILTER_SETBLOCKALL (&myfilt);

ICMP6_FILTER_SETPASS (ND_ROUTER_ADVERT, &myfilt);

Setsockopt (fd, IPPROTO_ICMPV6, ICMP6_FILTER. &myfilt, sizeof (myfilt));

We first block all message types (since the default is to pass all message types) and then
pass only router advertisements. Despite our use of the filter, the application must be
prepared to receive all types of ICMPv6 packets since any ICMPv6 packets that arrive
between the socket and the setsockopt will be added to the receive queue. The
ICMP6_FILTER option is simply an optimization.

[ Team LiB ]

Page 847

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

28.5 ping Program
In this section, we will develop and present a version of the ping program that works with
both IPv4 and IPv6. We will develop our own program instead of presenting the publicly
available source code for two reasons. First, the publicly available ping program suffers
from a common programming disease known as creeping featurism: It supports a dozen
different options. Our goal in examining a ping program is to understand the network
programming concepts and techniques without being distracted by all these options. Our
version of ping supports only one option and is about five times smaller than the public
version. Second, the public version works only with IPv4 and we want to show a version
that also supports IPv6.

The operation of ping is extremely simple: An ICMP echo request is sent to some IP
address and that node responds with an ICMP echo reply. These two ICMP messages are
supported under both IPv4 and IPv6. Figure 28.1 shows the format of the ICMP messages.

Figure 28.1. Format of ICMPv4 and ICMPv6 echo request and echo
reply messages.

Figure A.15 and A.16 show the type values for these messages and also show that the
code is 0. We will see that we set the identifier to the PID of the ping process and we
increment the sequence number by one for each packet we send. We store the 8-byte
timestamp of when the packet is sent as the optional data. The rules of ICMP require that
the identifier, sequence number, and any optional data be returned in the echo reply.
Storing the timestamp in the packet lets us calculate the RTT when the reply is received.

Figure 28.2 shows some examples of our program. The first uses IPv4 and the second uses
IPv6. Note that we made our ping program set-user-ID, as it takes superuser privileges to
create a raw socket.

Figure 28.2 Sample output from our ping program.

freebsd % ping www.google.com

PING www.google.com (216.239.57.99): 56 data bytes

64 bytes from 216.239.57.99: seq=0, ttl=53, rtt=5.611 ms

64 bytes from 216.239.57.99: seq=1, ttl=53, rtt=5.562 ms

64 bytes from 216.239.57.99: seq=2, ttl=53, rtt=5.589 ms

64 bytes from 216.239.57.99: seq=3, ttl=53, rtt=5.910 ms

freebsd % ping www.kame.net

PING orange.kame.net (2001:200:0:4819:203:47ff:fea5:3085): 56 data bytes

64 bytes from 2001:200:0:4819:203:47ff:fea5:3085: seq=0, hlim=52, rtt=422.066

ms

64 bytes from 2001:200:0:4819:203:47ff:fea5:3085: seq=1, hlim=52, rtt=417.398

ms

64 bytes from 2001:200:0:4819:203:47ff:fea5:3085: seq=2, hlim=52, rtt=416.528

ms

Page 848

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


64 bytes from 2001:200:0:4819:203:47ff:fea5:3085: seq=3, hlim=52, rtt=429.192

ms

Figure 28.3 is an overview of the functions that comprise our ping program.

Figure 28.3. Overview of the functions in our ping program.

The program operates in two parts: One half reads everything received on a raw socket,
printing the ICMP echo replies, and the other half sends an ICMP echo request once per
second. The second half is driven by a SIGALRM signal once per second.

Figure 28.4 shows our ping.h header that is included by all our program files.

Figure 28.4 ping.h header.

ping/ping.h

 1 #include    "unp.h"

 2 #include    <netinet/in_systm.h>

 3 #include    <netinet/ip.h>

 4 #include    <netinet/ip_icmp.h>

 5 #define BUFSIZE     1500

 6             /* globals */

 7 char    sendbuf[BUFSIZE];

 8 int     datalen;                /* #bytes of data following ICMP header */

 9 char   *host;

10 int     nsent;                  /* add 1 for each sendto() */

11 pid_t   pid;                    /* our PID */

12 int     sockfd;

13 int     verbose;

14             /* function prototypes */

15 void    init_v6(void);

16 void    proc_v4(char *, ssize_t, struct msghdr *, struct timeval *);

17 void    proc_v6(char *, ssize_t, struct msghdr *, struct timeval *);

18 void    send_v4(void);

19 void    send_v6(void);

20 void    readloop(void);

21 void    sig_alrm(int);

22 void    tv_sub(struct timeval *, struct timeval *);

23 struct proto {

24     void    (*fproc) (char *, ssize_t, struct msghdr *, struct timeval *);

Page 849

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


25     void    (*fsend) (void);

26     void    (*finit) (void);

27     struct sockaddr *sasend;    /* sockaddr{} for send, from getaddrinfo */

28     struct sockaddr *sarecv;    /* sockaddr{} for receiving */

29     socklen_t salen;            /* length of sockaddr {}s */

30     int     icmpproto;          /* IPPROTO_xxx value for ICMP */

31 } *pr;

32 #ifdef IPV6

33 #include    <netinet/ip6.h>

34 #include    <netinet/icmp6.h>

35 #endif

Include IPv4 and ICMPv4 headers
1 22 We include the basic IPv4 and ICMPv4 headers, define some global variables, and our
function prototypes.

Define proto structure
23 31 We use the proto structure to handle the difference between IPv4 and IPv6. This
structure contains two function pointers, two pointers to socket address structures, the size
of the socket address structures, and the protocol value for ICMP. The global pointer pr will
point to one of the structures that we will initialize for either IPv4 or IPv6.

Include IPv6 and ICMPv6 headers
32 35 We include two headers that define the IPv6 and ICMPv6 structures and constants
(RFC 3542 [Stevens et al. 2003]).

The main function is shown in Figure 28.5.

Figure 28.5 main function.

ping/main.c

 1 #include     "ping.h"

 2 struct proto proto_v4 =

 3     { proc_v4, send_v4, NULL, NULL, NULL, 0, IPPROTO_ICMP };

 4 #ifdef  IPV6

 5 struct proto proto_v6 =

 6     { proc_v6, send_v6, NULL, NULL, 0, IPPROTO_ICMPV6 };

 7 #endif

 8 int     datalen = 56;   /* data that goes with ICMP echo request */

 9 int

10 main(int argc, char **argv)

11 {

12     int     c;

13     struct addrinfo *ai;

14     char   *h;

15     opterr = 0;                  /* don't want getopt() writing to stderr */

16     while ( (c = getopt (argc, argv, "v") ) != -1) {

17         switch (c) {

Page 850

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


18         case 'v':

19             verbose++;

20             break;

21          case '?':

22              err_quit ("unrecognized option: %c", c);

23          }

24     }

25     if  (optind != argc - 1)

26         err_quit ("usage: ping [ -v ] <hostname>");

27     host = argv [optind];

28     pid = getpid() & Oxffff;     /* ICMP ID field is 16 bits */

29     Signal(SIGALRM, sig_alrm);

30     ai = Host_serv (host, NULL, 0, 0);

31     h = Sock_ntop_host(ai->ai_addr, ai->ai_addrlen);

32     printf ("PING %s (%s): %d data bytes\n",

33             ai->ai_canonname ? ai->ai_canonname : h, h, datalen);

34         /* initialize  according to protocol */

35     if (ai->ai_family == AF_INET) {

36          pr = &proto_v4;

37 #ifdef   IPV6

38     } else if (ai->ai_family == AF_INET6) {

39         pr = &proto_v6;

40         if (IN6_IS_ADDR_V4MAPPED (&(((struct sockaddr_in6 *)

41                             ai->ai_addr)->sin6_addr)))

42             err_quit ("cannot ping IPv4-mapped IPv6 address");

43 #endif

44     } else

45         err_quit ("unknown address family %d", ai->ai_family);

46     pr->sasend = ai->ai_addr;

47     pr->sacrecv = Calloc (1, ai->ai_addrlen);

48     pr->salen = ai->ai_addrlen);

49     readloop();

50     exit(0);

51 }

Define proto structures for IPv4 and IPv6
2 7 We define a proto structure for IPv4 and IPv6. The socket address structure pointers
are initialized to null pointers, as we do not yet know whether we will use IPv4 or IPv6.

Length of optional data
8 We set the amount of optional data that gets sent with the ICMP echo request to 56
bytes. This will yield an 84-byte IPv4 datagram (20-byte IPv4 header and 8-byte ICMP
header) or a 104-byte IPv6 datagram. Any data that accompanies an echo request must be
sent back in the echo reply. We will store the time at which we send an echo request in the
first 8 bytes of this data area and then use this to calculate and print the RTT when the
echo reply is received.

Handle command-line options

Page 851

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


15 24 The only comman-line option we support is -v, which will cause us to print most
received ICMP messages. (We do not print echo replies belonging to another copy of ping
that is running.) A signal handler is established for SIGALRM, and we will see that this
signal is generated once per second and causes an ICMP echo request to be sent.

Process hostname argument
31 48 A hostname or IP address string is a required argument and it is processed by our
host_serv function. The returned addrinfo structure contains the protocol family, either
AF_INET or AF_INET6. We initialize the pr global to the correct proto structure. We also
make certain that an IPv6 address is not really an IPv4-mapped IPv6 address by calling 
IN6_IS_ADDR_V4MAPPED, because even though the returned address is an IPv6 address,
IPv4 packets will be sent to the host. (We could switch and use IPv4 when this happens.)
The socket address structure that has already been allocated by the getaddrinfo function
is used as the one for sending, and another socket address structure of the same size is
allocated for receiving.

49 The function readloop is where the processing takes place. We will show this in Figure
28.6.

Create socket
12 13 A raw socket of the appropriate protocol is created. The call to setuid sets our
effective user ID to our real user ID, in case the program was set-user-ID instead of being
run by root. The program must have superuser privileges to create the raw socket, but now
that the socket is created, we can give up the extra privileges. It is always best to give up
an extra privilege when it is no longer needed, just in case the program has a latent bug
that someone could exploit.

Figure 28.6 readloop function.

ping/readloop.c

 1 #include     "ping.h"

 2 void

 3 readloop(void)

 4 {

 5     int     size;

 6     char    recvbuf[BUFSIZE];

 7     char    controlbuf[BUFSIZE];

 8     struct msghdr msg;

 9     struct iovec iov;

10     ssize_t n;

11     struct timeval tval;

12     sockfd = Socket(pr->sasend->sa_family, SOCK_RAW, pr->icmpproto);

13     setuid(getuid());           /* don't need special permissions any more

*/

14     if (pr->finit)

15         (*pr->finit) ();

16     size = 60 * 1024;           /* OK if setsockopt fails */

17     setsockopt (sockfd, SOL_SOCKET, SO_RCVBUF, &size, sizeof (size));

18     sig_alrm (SIGALRM);         /* send first packet */

19     iov.iov_base = recvbuf;

20     iov.iov_len = sizeof (recvbuf);

Page 852

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


21     msg.msg_name = pr->sarecv;

22     msg.msg_iov = &iov;

23     msg.msg_iovlen = 1;

24     msg.msg_control = controlbuf;

25     for ( ; ; ) {

26         msg.msg_namelen = pr->salen;

27         msg.msg_controllen = sizeof (controlbuf);

28         n = recvmsg (sockfd, &msg, 0);

29         if (n < o) {

30             if (errno == EINTR)

31                 continue;

32             else

33                 err_sys("recvmsg error");

34         }

35         Gettimeofday (&tval, NULL);

36         (*pr->fproc) (recvbuf, n, &msg, &tval);

37    }

38 }

Perform protocol-specific initialization
14 15 If the protocol specified an initialization function, we call it. We show the IPv6
initialization function in Figure 28.10.

Set socket receive buffer size
16 17 We try to set the socket receive buffer size to 61,440 bytes (60 x 1024), which
should be larger than the default. We do this in case the user pings either the IPv4
broadcast address or a multicast address, either of which can generate lots of replies. By
making the buffer larger, there is a smaller chance that the socket receive buffer will
overflow.

Send first packet
18 We call our signal handler, which we will see sends a packet and schedules a SIGALRM
for one second in the future. It is not common to see a signal handler called directly, as we
do here, but it is acceptable. A signal handler is just a C function, even though it is
normally called asynchronously.

Set up msghdr for recvmsg
19 24 We set up the unchanging fields in the msghdr and iovec structs that we will pass
to recvmsg.

Infinite loop reading all ICMP messages
25 37 The main loop of the program is an infinite loop that reads all packets returned on
the raw ICMP socket. We call gettimeofday to record the time that the packet was received
and then call the appropriate protocol function (proc_v4 or proc_v6) to process the ICMP
message.

Figure 28.7 shows the tv_sub function, which subtracts two timeval structures, storing the
result in the first structure.

Figure 28.7 tv_sub function: subtracts two timeval structures.

lib/tv_sub.c

 1 #include     "unp.h"

Page 853

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


 2 void

 3 tv_sub (struct timeval *out, struct timeval *in)

 4 {

 5     if ((out->tv_usec -= in->tv_usec) < 0) {     /* out -= in */

 6         --out->tv_sec;

 7         out->tv_usec += 1000000;

 8     }

 9     out->tv_sec -= in->tv_sec;

10 }

Figure 28.8 shows the proc_v4 function, which processes all received ICMPv4 messages.
You may want to refer to Figure A.1, which shows the format of the IPv4 header. Also
realize that when the ICMPv4 message is received by the process on the raw socket, the
kernel has already verified that the basic fields in the IPv4 header and in the ICMPv4
header are valid (pp. 214 and 311 of TCPv2).

Figure 28.8 proc_v4 function: processes ICMPv4 message.

ping/proc_v4.c

 1 #include     "ping.h"

 2 void

 3 proc_v4 (char *ptr, ssize_t len, struct msghdr *msg, struct timeval *tvrecv)

 4 {

 5     int     hlenl, icmplen;

 6     double  rtt;

 7     struct ip *ip;

 8     struct icmp *icmp;

 9     struct timeval *tvsend;

10     ip = (struct ip *) ptr;      /* start of IP header */

11     hlenl = ip->ip_hl << 2;      /* length of IP header */

12     if (ip->ip_p != IPPROTO_ICMP)

13         return;                  /* not ICMP */

14     icmp = (struct icmp *) (ptr + hlenl);   /* start of ICMP header */

15     if ( (icmplen = len - hlenl) < 8)

16         return;                  /* malformed packet */

17     if (icmp->icmp_type == ICMP_ECHOREPLY) {

18         if (icmp->icmp_id != pid)

19             return;                /* not a response to our ECHO_REQUEST */

20         if (icmplen < 16)

21             return;                /* not enough data to use */

22         tvsend = (struct  timeval  *) icmp->icmp_data;

23         tv_sub (tvrecv, tvsend);

24         rtt = tvrecv->tv_sec * 1000.0 + tvrecv->tv_usec / 1000.0;

25         printf ("%d bytes from %s: seq=%u, ttl=%d, rtt=%.3f ms\n",

26                 icmplen, Sock_ntop_host (pr->sarecv, pr->salen),

27                 icmp->icmp_seq, ip->ip_ttl, rtt);

28     } else if  (verbose) {

29         printf (" %d bytes from %s: type = %d, code = %d\n",

30                 icmplen, Sock_ntop_host (pr->sarecv, pr->salen),

31                 icmp->icmp_type, icmp->icmp_code);

32     }

33 }

Page 854

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


Get pointer to ICMP header
10 16 The IPv4 header length field is multiplied by 4, giving the size of the IPv4 header in
bytes. (Remember that an IPv4 header can contain options.) This lets us set icmp to point
to the beginning of the ICMP header. We make sure that the IP protocol is ICMP and that
there is enough data echoed to look at the timestamp we included in the echo request. 
Figure 28.9 shows the various headers, pointers, and lengths used by the code.

Figure 28.9. Headers, pointers, and lengths in processing ICMPv4
reply.

Check for ICMP echo reply
17 21 If the message is an ICMP echo reply, then we must check the identifier field to see
if this reply is in response to a request our process sent. If the ping program is running
multiple times on this host, each process gets a copy of all received ICMP messages.

22 27 We calculate the RTT by subtracting the time the message was sent (contained in
the optional data portion of the ICMP reply) from the current time (pointed to by the 
tvrecv function argument). The RTT is converted from microseconds to milliseconds and
printed, along with the sequence number field and the received TTL. The sequence number
field lets the user see if packets were dropped, reordered, or duplicated, and the TTL gives
an indication of the number of hops between the two hosts.

Print all received ICMP messages if verbose option specified
28 32 If the user specified the -v command-line option, we print the type and code fields
from all other received ICMP messages.

The processing of ICMPv6 messages is handled by the proc_v6 function, shown in Figure
28.12 (p. 751). It is similar to the proc_v4 function; however, since IPv6 raw sockets do
not return the IPv6 header, it receives the hop limit as ancillary data. This was set up using
the init_v6 function, shown in Figure 28.10.

The init_v6 function prepares the socket for use.

Set ICMPv6 receive filter
6 14 If the -v command-line option was not specified, install a filter that blocks all ICMP
message types except for the expected echo reply. This reduces the number of packets
received on the socket.

Request IPV6_HOPLIMIT ancillary data
15 22 The API to request reception of the hop limit with incoming packets has changed
over time. We prefer the newer API: setting the IPV6_RECVHOPLIMIT socket option.
However, if the constant for this option is not defined, we can try the older API: setting 
IPV6_HOPLIMIT as an option. We don't check the return value from setsockopt, since the
program can still do useful work without receiving the hop limit.

Page 855

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


Figure 28.10 init_v6 function: initializes ICMPv6 socket.

ping/init_v6.c

 1 void

 2 init_v6()

 3 {

 4 #ifdef IPV6

 5     int     on = 1;

 6     if (verbose == 0) {

 7         /* install a filter that only passes ICMP6_ECHO_REPLY unless verbose

*/

 8         struct icmp6_filter myfilt;

 9         ICMP6_FILTER_SETBLOCKALL (&myfilt);

10         ICMP6_FILTER_SETPASS (ICMP6_ECHO_REPLY, &myfilt);

11         setsockopt (sockfd, IPPROTO_IPV6, ICMP6_FILTER, &myfilt,

12                     sizeof (myfilt));

13         /* ignore error return; the filter is an optimization */

14     }

15     /* ignore error returned below; we just won't receive the hop limit */

16 #ifdef IPV6_RECVHOPLIMIT

17     /* RFC 3542 */

18     setsockopt (sockfd, IPPROTO_IPV6, IPV6_RECVHOPLIMIT, &on, sizeof(on));

19 #else

20     /* RFC 2292 */

21     setsockopt (sockfd, IPPROTO_IPV6, IPV6_HOPLIMIT, &on, sizeof(on));

22 #endif

23 #endif

24 }

The proc_v6 function (Figure 28.12) processes incoming packets.

Get pointer to ICMPv6 header
11 13 The ICMPv6 header is the data returned by the receive operation. (Recall that the
IPv6 header and extension headers, if any, are never returned as normal data, but as
ancillary data.) Figure 28.11 shows the various headers, pointers, and lengths used by the
code.

Figure 28.11. Headers, pointers, and lengths in processing ICMPv6
reply.

Check for ICMP echo reply
14 37 If the ICMP message type is an echo reply, we check the identifier field to see if the
reply is for us. If so, we calculate the RTT and then print it along with the sequence
number and IPv6 hop limit. We obtain the hop limit from the IPV6_HOPLIMIT ancillary data.

Figure 28.12 proc_v6 function: processes received ICMPv6 message.

Page 856

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


ping/proc_v6.c

 1 #include     "ping.h"

 2 void

 3 proc_v6 (char *ptr, ssize_t len, struct msghdr *msg, struct timeval *tvrecv)

 4 {

 5 #ifdef IPV6

 6     double rtt;

 7     struct icmp6_hdr *icmp6;

 8     struct timeval *tvsend;

 9     struct cmsghdr *cmsg;

10     int     hlim;

11     icmp6 = (struct icmp6_hdr *) ptr;

12     if (len < 8)

13         return;                 /* malformed packet */

14     if (icmp6->icmp6_type == ICMP6_ECHO_REPLY) {

15         if (icmp6->icmp6_id != pid)

16             return;             /* not a response to our ECHO_REQUEST */

17         if (len < 16)

18             return;             /* not enough data to use */

19         tvsend = (struct timeval *) (icmp6 + 1);

20         tv_sub (tvrecv, tvsend);

21         rtt = tvrecv->tv_sec * 1000.0 + tvrecv->tv_usec / 1000.0;

22         hlim = -1;

23         for (cmsg = CMSG_FIRSTHDR (msg); cmsg != NULL;

24              cmsg = CMSG_NXTHDR (msg, cmsg)) {

25             if (cmsg->cmsg_level == IPPROTO_IPV6

26                 && cmsg->cmsg_type == IPV6_HOPLIMIT) {

27                 hlim = * (u_int32_t *) CMSG_DATA (cmsg);

28                 break;

29             }

30         }

31         printf("%d bytes from %s: seq=%u, hlim=",

32                len, Sock_ntop_host (pr->sarecv, pr->salen),

icmp6->icmp6_seq);

33         if (hlim == -1)

34             printf("???");     /* ancillary data missing */

35         else

36             printf("%d", hlim);

37         printf(", rtt=%.3f ms\n", rtt);

38     } else if (verbose) {

39         printf(" %d bytes from %s: type = %d, code = %d\n",

40                len, Sock_ntop_host (pr->sarecv, pr->salen),

41                icmp6->icmp6_type, icmp6->icmp6_code);

42     }

43 #endif /* IPV6 */

44 }

Print all received ICMP messages if verbose option specified
38 41 If the user specified the -v command-line option, we print the type and code fields
from all other received ICMP messages.

Our signal handler for the SIGALRM signal is the sig_alrm function, shown in Figure 28.13.

Page 857

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


We saw in Figure 28.6 that our readloop function calls this signal handler once at the
beginning to send the first packet. This function just calls the protocol-dependent function
to send an ICMP echo request (send_v4 or send_v6) and then schedules another SIGALRM
for one second in the future.

Figure 28.13 sig_alrm function: SIGALRM signal handler.

ping/sig_alrm.c

1 #include     "ping.h"

2 void

3 sig_alrm (int signo)

4 {

5     (*pr->fsend) ();

6     alarm(1);

7     return;

8 }

The function send_v4, shown in Figure 28.14, builds an ICMPv4 echo request message and
writes it to the raw socket.

Figure 28.14 send_v4 function: builds an ICMPv4 echo request message
and sends it.

ping/send_v4.c

 1 #include     "ping.h"

 2 void

 3 send_v4 (void)

 4 {

 5     int     len;

 6     struct icmp *icmp;

 7     icmp = (struct icmp *) sendbuf;

 8     icmp->icmp_type = ICMP_ECHO;

 9     icmp->icmp_code = 0;

10     icmp->icmp_id = pid;

11     icmp->icmp-seq = nsent++;

12     memset (icmp->icmp_data, 0xa5, datalen); /* fill with pattern */

13     Gettimeofday ((struct timeval *) icmp->icmp_data, NULL);

14     len = 8 + datalen;           /* checksum ICMP header and data */

15     icmp->icmp_cksum = 0;

16     icmp->icmp_cksum = in_cksum ((u_short *) icmp, len);

17     Sendto (sockfd, sendbuf, len, 0, pr->sasend, pr->salen);

18 }

Build ICMPv4 message
7 13 The ICMPv4 message is built. The identifier field is set to our PID and the sequence
number field is set to the global nsent, which is then incremented for the next packet. We
store a pattern of 0xa5 in the data portion of the ICMP message. The current time-of-day is
then stored in the beginning of the data portion.

Calculate ICMP checksum

Page 858

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


14 16 To calculate the ICMP checksum, we set the checksum field to 0 and call the
function in_cksum, storing the result in the checksum field. The ICMPv4 checksum is
calculated from the ICMPv4 header and any data that follows.

Send datagram
17 The ICMP message is sent on the raw socket. Since we have not set the IP_HDRINCL
socket option, the kernel builds the IPv4 header and prepends it to our buffer.

The Internet checksum is the one's complement of the one's complement sum of the
16-bit values to be checksummed. If the data length is an odd number, then 1 byte of 0 is
logically appended to the end of the data, just for the checksum computation. Before
computing the checksum, the checksum field itself is set to 0. This algorithm is used for
the IPv4, ICMPv4, IGMPv4, ICMPv6, UDP, and TCP checksums. RFC 1071 [Braden, Borman,
and Partridge 1988] contains additional information and some numeric examples. Section
8.7 of TCPv2 talks about this algorithm in more detail and shows a more efficient
implementation. Our in_cksum function, shown in Figure 28.15, calculates the checksum.

Figure 28.15 in_cksum function: calculate the Internet checksum.

libfree/in_cksum.c

 1 uint16_t

 2 in_cksum (uint16_t * addr, int len)

 3 {

 4     int     nleft = len;

 5     uint32_t sum = 0;

 6     uint16_t *w = addr;

 7     uint16_t answer = 0;

 8     /*

 9      * Our algorithm is simple, using a 32 bit accumulator (sum), we add

10      * sequential 16 bit words to it, and at the end, fold back all the

11      * carry bits from the top 16 bits into the lower 16 bits.

12      */

13     while (nleft > 1) {

14         sum += *w++;

15         nleft -= 2;

16     }

17         /* mop up an odd byte, if necessary */

18     if (nleft == 1) {

19         * (unsigned char *) (&answer) = * (unsigned char *) w;

20         sum += answer;

21     }

22         /* add back carry outs from top 16 bits to low 16 bits */

23     sum = (sum >> 16) + (sum & 0xffff); /* add hi 16 to low 16 */

24     sum += (sum >> 16);     /* add carry */

25     answer = ~sum;     /* truncate to 16 bits */

26     return (answer);

27 }

Internet checksum algorithm
1 27 The first while loop calculates the sum of all the 16-bit values. If the length is odd,
then the final byte is added in with the sum. The algorithm we show in Figure 28.15 is the
simple algorithm. The kernel often has a specially optimized checksum algorithm due to
the high volume of checksum computations performed by the kernel.

This function is taken from the public domain version of ping by Mike Muuss.

Page 859

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


The final function for our ping program is send_v6, shown in Figure 28.16, which builds
and sends an ICMPv6 echo request.

Figure 28.16 send_v6 function: builds and sends an ICMPv6 echo
request message.

ping/send_v6.c

 1 #include     "ping.h"

 2 void

 3 send_v6 ()

 4 {

 5 #ifdef IPV6

 6     int     len;

 7     struct icmp6_hdr *icmp6;

 8     icmp6 = (struct icmp6_hdr *) sendbuf;

 9     icmp6->icmp6_type = ICMP6_ECHO_REQUEST;

10     icmp6->icmp6_code = 0;

11     icmp6->icmp6_id = pid;

12     icmp6->icmp6_seq = nsent++;

13     memset ((icmp6 + 1), 0xa5, datalen); /* fill with pattern */

14     Gettimeofday ((struct timeval *) (icmp6 + 1), NULL);

15     len = 8 + datalen;           /* 8-byte ICMPv6 header */

16     Sendto (sockfd, sendbuf, len, 0, pr->sasend, pr->salen);

17         /* kernel calculates and stores checksum for us */

18 #endif  /* IPV6 */

19 }

The send_v6 function is similar to send_v4, but notice that it does not compute the ICMPv6
checksum. As we mentioned earlier in the chapter, since the ICMPv6 checksum uses the
source address from the IPv6 header in its computation, this checksum is calculated by the
kernel for us, after the kernel chooses the source address.

[ Team LiB ]

Page 860

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

28.6 traceroute Program
In this section, we will develop our own version of the traceroute program. Like the ping
program we developed in the previous section, we will develop and present our own
version, instead of presenting the publicly available version. We do this because we need a
version that supports both IPv4 and IPv6, and we do not want to be distracted with lots of
options that are not germane to our discussion of network programming.

traceroute lets us determine the path that IP datagrams follow from our host to some
other destination. Its operation is simple and Chapter 8 of TCPv1 covers it in detail with
numerous examples of its usage. traceroute uses the IPv4 TTL field or the IPv6 hop limit
field and two ICMP messages. It starts by sending a UDP datagram to the destination with
a TTL (or hop limit) of 1. This datagram causes the first-hop router to return an ICMP "time
exceeded in transit" error. The TTL is then increased by one and another UDP datagram is
sent, which locates the next router in the path. When the UDP datagram reaches the final
destination, the goal is to have that host return an ICMP "port unreachable" error. This is
done by sending the UDP datagram to a random port that is (hopefully) not in use on that
host.

Early versions of traceroute were able to set the TTL field in the IPv4 header only by
setting the IP_HDRINCL socket option and then building their own IPv4 header. Current
systems, however, provide an IP_TTL socket option that lets us specify the TTL to use for
outgoing datagrams. (This socket option was introduced with the 4.3BSD Reno release.) It
is easier to set this socket option than to build a complete IPv4 header (although we will
show how to build IPv4 and UDP headers in Section 29.7). The IPv6 IPV6_UNICAST_HOPS
socket option lets us control the hop limit field for IPv6 datagrams.

Figure 28.17 shows our trace.h header, which all our program files include.

1 11 We include the standard IPv4 headers that define the IPv4, ICMPv4, and UDP
structures and constants. The rec structure defines the data portion of the UDP datagram
that we send, but we will see that we never need to examine this data. It is sent mainly for
debugging purposes.

Define proto structure
32 43 As with our ping program in the previous section, we handle the protocol differences
between IPv4 and IPv6 by defining a proto structure that contains function pointers,
pointers to socket address structures, and other constants that differ between the two IP
versions. The global pr will be set to point to one of these structures that is initialized for
either IPv4 or IPv6, after the destination address is processed by the main function (since
the destination address is what specifies whether we use IPv4 or IPv6).

Include IPv6 headers
44 47 We include the headers that define the IPv6 and ICMPv6 structures and constants.

Figure 28.17 trace.h header.

traceroute/trace.h

 1 #include     "unp.h"

 2 #include    <netinet/in_systm.h>

 3 #include    <netinet/ip.h>

 4 #include    <netinet/ip_icmp.h>

 5 #include    <netinet/udp.h>

Page 861

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


 6 #define BUFSIZE      1500

 7 struct rec {                        /* of outgoing UDP data */

 8     u_short rec_seq;                /* sequence number */

 9     u_short rec_ttl;                /* TTL packet left with */

10     struct timeval rec_tv;          /* time packet left */

11 };

12              /* globals */

13 char     recvbuf [BUFSIZE];

14 char     sendbuf [BUFSIZE];

15 int     datalen;                    /* # bytes of data following ICMP header

*/

16 char   *host;

17 u_short sport, dport;

18 int     nsent;                      /* add 1 for each sendto () */

19 pid_t   pid;                        /* our PID */

20 int     probe, nprobes;

21 int     sendfd, recvfd;             /* send on UDP sock, read on raw ICMP

sock */

22 int     ttl, max_ttl;

23 int     verbose;

24             /* function prototypes */

25 const char *icmpcode_v4 (int);

26 const char *icmpcode_v6 (int);

27 int     recv_v4 (int, struct timeval *);

28 int     recv_v6 (int, struct timeval *);

29 void    sig_alrm (int);

30 void    traceloop (void);

31 void    tv_sub (struct timeval *, struct timeval *);

32 struct proto {

33     const char *(*icmpcode) (int);

34     int     (*recv) (int, struct timeval *);

35     struct sockaddr *sasend;    /* sockaddr{} for send, from getaddrinfo */

36     struct sockaddr *sarecv;    /* sockaddr{} for receiving */

37     struct sockaddr *salast;    /* last sockaddr{} for receiving */

38     struct sockaddr *sabind;    /* sockaddr{} for binding source port */

39     socklen_t salen;            /* length of sockaddr{}s */

40     int     icmpproto;          /* IPPROTO_xxx value for ICMP */

41     int     ttllevel;           /* setsockopt () level to set TTL */

42     int     ttloptname;         /* setsockopt () name to set TTL */

43 } *pr;

44 #ifdef IPV6

45 #include     <netinet/ip6.h>

46 #include     <netinet/icmp6.h>

47 #endif

The main function is shown in Figure 28.18 (p. 759). It processes the command-line
arguments, initializes the pr pointer for either IPv4 or IPv6, and calls our traceloop
function.

Define proto structures

Page 862

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


2 9 We define the two proto structures, one for IPv4 and one for IPv6, although the
pointers to the socket address structures are not allocated until the end of this function.

Set defaults
10 13 The maximum TTL or hop limit that the program uses defaults to 30, although we
provide the -m command-line option to let the user change this. For each TTL, we send
three probe packets, but this could be changed with another command-line option. The
initial destination port is 32768+666, which will be incremented by one each time we send
a UDP datagram. We hope that these ports are not in use on the destination host when the
datagrams finally reach the destination, but there is no guarantee.

Process command-line arguments
19 37 The -v command-line option causes most received ICMP messages to be printed.

Process hostname or IP address argument and finish initialization
38 58 The destination hostname or IP address is processed by our host_serv function,
returning a pointer to an addrinfo structure. Depending on the type of returned address,
IPv4 or IPv6, we finish initializing the proto structure, store the pointer in the pr global,
and allocate additional socket address structures of the correct size.

59 The function traceloop, shown in Figure 28.19, sends the datagrams and reads the
returned ICMP messages. This is the main loop of the program.

Figure 28.18 main function for traceroute program.

traceroute/main.c

 1 #include     "trace.h"

 2 struct proto proto_v4 = { icmpcode_v4, recv_v4, NULL, NULL, NULL, NULL, 0,

 3     IPPROTO_ICMP, IPPROTO_IP, IP_TTL

 4 };

 5 #ifdef IPV6

 6 struct proto proto_v6 = { icmpcode_v6, recv_v6, NULL, NULL, NULL, NULL, 0,

 7     IPPROTO_ICMPV6, IPPROTO_IPV6, IPV6_UNICAST_HOPS

 8 };

 9 #endif

10 int     datalen = sizeof (struct rec); /* defaults */

11 int     max_ttl = 30;

12 int     nprobes = 3;

13 u_short dport = 32768 + 666;

14 int

15 main(int argc, char **argv)

16 {

17     int     c;

18     struct addrinfo *ai;

19     char   *h;

20     opterr = 0;                  /* don't want getopt () writing to stderr

*/

21     while ( (c = getopt (argc, argv, "m:v")) != -1) {

22         switch (c) {

23         case 'm':

Page 863

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


24             if ( (max_ttl = atoi (optarg)) <= 1)

25                 err_quit ("invalid -m value");

26             break;

27         case 'v':

28             verbose++;

29             break;

30         case '?':

31             err_quit ("unrecognized option: %c", c);

32         }

33     }

34     if (optind != argc - 1)

35         err_quit ("usage: traceroute [ -m <maxttl> -v ] <hostname>");

36     host = argv [optind];

37     pid = getpid();

38     Signal (SIGALRM, sig_alrm);

39     ai = Host_serv (host, NULL, 0, 0);

40     h = Sock_ntop_host (ai->ai_addr, ai->ai_addrlen);

41     printf ("traceroute to %s (%s) : %d hops max, %d data bytes\n",

42             ai->ai_canonname ? ai->ai_canonname : h, h, max_ttl, datalen);

43     /* initialize according to protocol */

44     if (ai->ai_family == AF_INET) {

45         pr = &proto_v4;

46 #ifdef  IPV6

47     } else if (ai->ai_family == AF_INET6) {

48         pr = &proto_v6;

49         if (IN6_IS_ADDR_V4MAPPED

50             (&(((struct sockaddr_in6 *) ai->ai_addr)->sin6_addr)))

51             err_quit ("cannot traceroute IPv4-mapped IPv6 address");

52 #endif

53     } else

54         err_quit ("unknown address family %d", ai->ai_family);

55     pr->sasend = ai->ai_addr; /* contains destination address */

56     pr->sarecv = Calloc (1, ai->ai_addrlen);

57     pr->salast = Calloc (1, ai->ai_addrlen);

58     pr->sabind = Calloc (1, ai->ai_addrlen);

59     pr->salen = ai->ai_addrlen;

60     traceloop();

61     exit (0);

62 }

We next examine our function traceloop, shown in Figure 28.19 (p. 761).

Create raw socket
9 10 We need two sockets: a raw socket on which we read all returned ICMP messages and
a UDP socket on which we send the probe packets with the increasing TTLs. After creating
the raw socket, we reset our effective user ID to our real user ID since we no longer require
superuser privileges.

Set ICMPv6 receive filter

Page 864

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


11 20 If we are tracing the route to an IPv6 address and the -v command-line option was
not specified, install a filter that blocks all ICMP message types except for the ones we
expect: "time exceeded" or "destination unreachable." This reduces the number of packets
received on the socket.

Create UDP socket and bind source port
21 25 We bind a source port to the UDP socket that is used for sending, using the
low-order 16 bits of our PID with the high-order bit set to 1. Since it is possible for
multiple copies of the traceroute program to be running at any given time, we need a way
to determine if a received ICMP message was generated in response to one of our
datagrams, or in response to a datagram sent by another copy of the program. We use the
source port in the UDP header to identify the sending process because the returned ICMP
message is required to include the UDP header from the datagram that caused the ICMP
error.

Establish signal handler for SIGALRM
26 We establish our function sig_alrm as the signal handler for SIGALRM because each time
we send a UDP datagram, we wait three seconds for an ICMP message before sending the
next probe.

Figure 28.19 traceloop function: main processing loop.

traceroute/traceloop.c

 1 #include     "trace.h"

 2 void

 3 traceloop(void)

 4 {

 5     int     seq, code, done;

 6     double  rtt;

 7     struct rec *rec;

 8     struct timeval tvrecv;

 9     recvfd = Socket (pr->sasend->sa_family, SOCK_RAW, pr->icmpproto);

10     setuid (getuid());           /* don't need special permissions anymore

*/

11 #ifdef  IPV6

12     if (pr->sasend->sa_family == AF_INET6 && verbose == 0) {

13         struct icmp6_filter myfilt;

14         ICMP6_FILTER_SETBLOCKALL (&myfilt);

15         ICMP6_FILTER_SETPASS (ICMP6_TIME_EXCEEDED, &myfilt);

16         ICMP6_FILTER_SETPASS (ICMP6_DST_UNREACH, &myfilt);

17         setsockopt (recvfd, IPPROTO_IPV6, ICMP6_FILTER,

18                    &myfilt, sizeof (myfilt));

19     }

20 #endif

21     sendfd = Socket (pr->sasend->sa_family, SOCK_DGRAM, 0);

22     pr->sabind->sa_family = pr->sasend->sa_family;

23     sport = (getpid() & 0xffff) | 0x8000; /* our source UDP port # */

24     sock_set_port (pr->sabind, pr->salen; htons (sport));

25     Bind (sendfd, pr->sabind, pr->salen);

26     sig_alrm (SIGALRM);

Page 865

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


27     seq = 0;

28     done = 0;

29     for (ttl = 1; ttl <= max_ttl && done == 0; ttl++) {

30          Setsockopt (sendfd, pr->ttllevel, pr->ttloptname, &ttl, sizeof

(int));

31          bzero (pr->salast, pr->salen);

32          printf ("%2d ", ttl);

33          fflush (stdout);

34          for (probe = 0; probe < nprobes; probe++) {

35               rec = (struct rec *) sendbuf;

36               rec->rec_seq = ++seq;

37               rec->rec_ttl = ttl;

38               Gettimeofday (&rec->rec_tv, NULL);

39               sock_set_port (pr->sasend, pr->salen, htons (dport + seq));

40               Sendto (sendfd, sendbuf, datalen, 0, pr->sasend, pr->salen),

41               if ( (code = (*pr->recv) (seq, &tvrecv)) == -3)

42                   printf (" *"); /* timeout, no reply */

43               else {

44                   char     str [NI_MAXHOST];

45                   if (sock_cmp_addr (pr->sarecv, pr->salast, pr->salen) !=

0) {

46                   if (getnameinfo (pr->sarecv, pr->salen, str, sizeof (str),

47                                    NULL, 0, 0) == 0)

48                       printf (" %s (%s)", str,

49                               Sock_ntop_host (pr->sarecv, pr->salen));

50                  else

51                       printf (" %s", Sock_ntop_host (pr->sarecv,

pr->salen));

52                  memcpy (pr->salast, pr->sarecv, pr->salen);

53          }

54          tv_sub (&tvrecv, &rec->rec_tv);

55          rtt = tvrecv.tv_sec * 1000.0 + tvrecv.tv_usec / 1000.0;

56          printf (" %.3f ms", rtt);

57          if (code == -1) /* port unreachable; at destination */

58              done++;

59          else if (code >= 0)

60              printf (" (ICMP %s)", (*pr->icmpcode) (code));

61        }

62        fflush (stdout);

63     }

64     printf ("\n");

65   }

66 }

Main loop; set TTL or hop limit and send three probes
27 38 The main loop of the function is a double nested for loop. The outer loop starts the
TTL or hop limit at 1, and increases it by 1, while the inner loop sends three probes (UDP
datagrams) to the destination. Each time the TTL changes, we call setsockopt to set the
new value using either the IP_TTL or IPV6_UNICAST_HOPS socket option.

Each time around the outer loop, we initialize the socket address structure pointed to by 

Page 866

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


salast to 0. This structure will be compared to the socket address structure returned by
recvfrom when the ICMP message is read, and if the two structures are different, the IP
address from the new structure will be printed. Using this technique, the IP address
corresponding to the first probe for each TTL is printed, and should the IP address change
for a given value of the TTL (say a route changes while we are running the program), the
new IP address will then be printed.

Set destination port and send UDP datagram
39 40 Each time a probe packet is sent, the destination port in the sasend socket address
structure is changed by calling our sock_set_port function. The reason for changing the
port for each probe is that when we reach the final destination, all three probes are sent to
a different port, and hopefully at least one of the ports is not in use. sendto sends the UDP
datagram.

Read ICMP message
41 42 One of our functions, recv_v4 or recv_v6, calls recvfrom to read and process the
returned ICMP messages. These two functions return -3 if a timeout occurs (telling us to
send another probe if we haven't sent three for this TTL), -2 if an ICMP "time exceeded in
transit" error is received, -1 if an ICMP "port unreachable" error is received (which means
we have reached the final destination), or the non-negative ICMP code if some other ICMP
destination unreachable error is received.

Print reply
43 63 As we mentioned earlier, if this is the first reply for a given TTL, or if the IP address
of the node sending the ICMP message has changed for this TTL, we print the hostname
and IP address, or just the IP address (if the call to getnameinfo doesn't return the
hostname). The RTT is calculated as the time difference from when we sent the probe to
the time when the ICMP message was returned and printed.

Our recv_v4 function is showin in Figure 28.20.

Figure 28.20 recv_v4 function: reads and processes ICMPv4 messages.

traceroute/recv_v4.c

 1 #include     "trace.h"

 2 extern int gotalarm;

 3 /*

 4  * Return: -3 on timeout

 5  *         -2 on ICMP time exceeded in transit (caller keeps going)

 6  *         -1 on ICMP port unreachable (caller is done)

 7  *       >= 0 return value is some other ICMP unreachable code

 8  */

 9 int

10 recv_v4(int seq, struct timeval *tv)

11 {

12     int     hlen1, hlen2, icmplen, ret;

13     socklen_t len;

14     ssize_t n;

15     struct ip *ip, *hip;

16     struct icmp *icmp;

17     struct udphdr *udp;

Page 867

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


18     gotalarm = 0;

19     alarm(3);

20     for ( ; ; ) {

21         if (gotalarm)

22             return (-3);        /* alarm expried */

23         len = pr->salen;

24         n = recvfrom (recvfd, recvbuf, sizeof (recvbuf), 0, pr->sarecv,

&len);

25         if (n < 0) {

26             if (errno == EINTR)

27                 continue;

28             else

29                  err_sys ("recvfrom error");

30          }

31          ip = (struct ip *) recvbuf; /* start of IP header */

32          hlen1 = ip->ip_hl << 2; /* length of IP header */

33          icmp = (struct icmp *) (recvbuf + hlen1); /* start of ICMP header

*/

34          if ( (icmplen = n - hlen1) < 8)

35              continue;     /* not enough to look at ICMP header */

36          if (icmp->icmp_type == ICMP_TIMXCEED &&

37              icmp->icmp_code == ICMP_TIMXCEED_INTRANS) {

38              if (icmplen < 8 + sizeof (struct ip))

39              continue;         /* not enough data to look at inner IP */

40          hip = (struct ip *) (recvbuf + hlen1 + 8);

41          hlen2 = hip->ip_hl << 2;

42          if (icmplen < 8 + hlen2 + 4)

43              continue;        /* not enough data to look at UDP ports */

44          udp = (struct udphdr *) (recvbuf + hlen1 + 8 + hlen2);

45          if (hip->ip_p == IPPROTO_UDP &&

46              udp->uh_sport == htons (sport) &&

47              udp->uh_dport == htons (dport + seq)) {

48              ret = -2;        /* we hit an intermediate router */

49              break;

50          }

51     } else if (icmp->icmp_type == ICMP_UNREACH) {

52          if (icmplen <8 + sizeof (struct ip))

53               continue;       /* not enough data to look at inner IP */

54          hip = (struct ip *) (recvbuf + hlen1 + 8);

55          hlen2 = hip->ip_hl << 2;

56          if (icmplen < 8 + hlen2 + 4)

57              continue;       /* not enough data to look at UDP ports */

58          udp = (struct udphdr *) (recvbuf + hlen1 + 8 + hlen2);

59          if (hip->ip_p == IPPROTO_UDP &&

60              udp->uh_sport == htons (sport) &&

61              udp->uh_dport == htons (dport + seq)) {

62              if (icmp->icmp_code == ICMP_UNREACH_PORT)

63                  ret = -1;    /* have reached destination */

64              else

65                  ret = icmp->icmp_code; /* 0, 1, 2, ... */

66              break;

67          }

Page 868

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


68     }

69     if (verbose) {

70         printf (" (from %s: type = %d, code = %d)\n",

71                 Sock_ntop_host (pr->sarecv, pr->salen),

72                 icmp->icmp_type, icmp->icmp_code);

73     }

74     /* Some other ICMP error, recvfrom() again */

75     }

76     alarm(0);                   /* don't leave alarm running */

77     Gettimeofday (tv, NULL);    /* get time of packet arrival */

78     return (ret);

79 }

Set alarm and read each ICMP message
19 30 An alarm is set for three seconds in the future and the function enters a loop that
calls recvfrom, reading each ICMPv4 message returned on the raw socket.

This function avoids the race condition we described in Section 20.5 by using a global flag.

Get pointer to ICMP header
31 35 ip points to the beginning of the IPv4 header (recall that a read on a raw socket
always returns the IP header), and icmp points to the beginning of the ICMP header. Figure
28.21 shows the various headers, pointers, and lengths used by the code.

Figure 28.21. Headers, pointers, and lengths in processing ICMPv4
error.

Process ICMP "time exceeded in transit" message
36 50 If the ICMP message is a "time exceeded in transit" message, it is possibly a reply to
one of our probes. hip points to the IPv4 header that is returned in the ICMP message
following the 8-byte ICMP header. udp points to the UDP header that follows. If the ICMP
message was generated by a UDP datagram and if the source and destination ports of that
datagram are the values we sent, then this is a reply to our probe from an intermediate
router.

Process ICMP "port unreachable" message
51 68 If the ICMP message is "destination unreachable," then we look at the UDP header
returned in the ICMP message to see if the message is a response to our probe. If so, and
if the ICMP code is "port unreachable," we return -1 as we have reached the final
destination. If the ICMP message is from one of our probes but it is not a "port
unreachable," then that ICMP code value is returned. A common example of this is a
firewall returning some other unreachable code for the destination host we are probing.

Handle other ICMP messages

Page 869

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


69 73 All other ICMP messages are printed if the -v flag was specified.

The next function, recv_v6, is shown in Figure 28.24 (p.767) and is the IPv6 equivalent to
the previously described function. This function is nearly identical to recv_v4 except for the
different constant names and the different structure member names. Also, the IPv6 header
is not part of the data received on an IPv6 raw socket; the data starts with the ICMPv6
header. Figure 28.22 shows the various headers, pointers, and lengths used by the code.

Figure 28.22. Headers, pointers, and lengths in processing ICMPv6
error.

We define two functions, icmpcode_v4 and icmpcode_v6, that can be called from the
bottom of the traceloop function to print a description string corresponding to an ICMP
"destination unreachable" error. Figure 28.25 (p.767) shows just the IPv6 function. The
IPv4 function is similar, albeit longer, as there are more ICMPv4 "destination unreachable"
codes (Figure A.15).

The final function in our traceroute program is our SIGALRM handler, the sig_alrm function
shown in Figure 28.23. All this function does is return, causing an error return of EINTR
from the recvfrom in either recv_v4 or recv_v6.

Figure 28.23 sig_alrm function.

traceroute/sig_alrm.c

1 #include     "trace.h"

2 int     gotalarm;

3 void

4 sig_alrm(int signo)

5 {

6     gotalarm = 1:         /* set flag to note that alarm occurred */

7     return;               /* and interrupt the recvfrom() */

8  }

Figure 28.24 recv_v6 function: reads and processes ICMPv6 messages.

traceroute/recv_v6.c

 1 #include     "trace.h"

 2 extern int gotalarm;

 3 /*

 4  * Return: -3 on timeout

 5  *         -2 on ICMP time exceeded in transit (caller keeps going)

 6  *         -1 on ICMP port unreachable (caller is done)

 7  *       >= 0 return value is some other ICMP unreachable code

Page 870

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


 8  */

 9 int

10 recv_v6 (int seq, struct timeval *tv)

11 {

12 #ifdef IPV6

13     int     hlen2, icmp6len, ret;

14     ssize_t n;

15     socklen_t len;

16     struct ip6_hdr *hip6;

17     struct icmp6_hdr *icmp6;

18     struct udphdr *udp;

19     gotalarm = 0;

20     alarm(3);

21     for ( ; ; ) {

22         if (gotalarm)

23             return (-3);         /* alarm expired */

24         len = pr->salen;

25         n = recvfrom (recvfd, recvbuf, sizeof (recvbuf), 0, pr->sarecv,

&len);

26         if (n < 0) {

27             if (errno == EINTR)

28                 continue;

29             else

30                 err_sys ("recvfrom error");

31          }

32          icmp6 = (struct icmp6_hdr *) recvbuf; /* ICMP header */

33          if ( (icmp6len = n) < 8)

34                continue;         /* not enough to look at ICMP header */

35          if (icmp6->icmp6_type == ICMP6_TIME_EXCEEDED &&

36              icmp6->icmp6_code == ICMP6_TIME_EXCEED_TRANSIT) {

37              if (icmp6len < 8 + sizeof (struct ip6_hdr) + 4)

38                  continue;       /* not enough data to look at inner header

*/

39              hip6 = (struct ip6_hdr *) (recvbuf + 8);

40              hlen2 = sizeof (struct ip6_hdr);

41              udp = (struct udphdr *) (recvbuf + 8 + hlen2);

42              if (hip6->ip6_nxt == IPPROTO_UDP &&

43                  udp->uh_sport == htons (sport) &&

44                  udp->uh_dport == htons (dport + seq))

45                  ret = -2;     /* we hit an intermediate router */

46              break;

47          } else if (icmp6->icmp6_type == ICMP6_DST_UNREACH) {

48              if (icmp6len <8 + sizeof (struct ip6_hdr) + 4)

49                  continue;       /* not enough data to look at inner header

*/

50          hip6 = (struct ip6_hdr *) (recvbuf + 8);

51          hlen2 = sizeof (struct ip6_hdr);

52          udp = (struct udphdr *) (recvbuf + 8 + hlen2);

53          if (hip6->ip6_nxt == IPPROTO_UDP &&

54              udp->uh_sport == htons (sport) &&

55              udp->uh_dport == htons (dport + seq)) {

56              if (icmp6->icmp6_code == ICMP6_DST_UNREACH_NOPORT)

57                  ret = -1; /* have reached destination */

58              else

Page 871

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


59                  ret = icmp6->icmp6_code; /* 0, 1, 2, ... */

60              break;

61          }

62     } else if (verbose) {

63          printf (" (from %s: type = %d, code = %d)\n",

64                  Sock_ntop_host (pr->sarecv, pr->salen),

65                  icmp6->icmp6_type, icmp6->icmp6_code);

66          }

67          /* Some other ICMP error, recvfrom () again */

68     }

69     alarm (0);                   /* don't leave alarm running */

70     Gettimeofday (tv, NULL);     /* get time of packet arrival */

71     return (ret);

72 #endif

73 }

Figure 28.25 Return the string corresponding to an ICMPv6
unreachable code.

traceroute/icmpcode_v6.c

 1 #include     "trace.h"

 2 const char *

 3 icmpcode_v6 (int code)

 4 {

 5 #ifdef IPV6

 6     static char errbuf [100];

 7     switch (code) {

 8     case ICMP6_DST_UNREACH_NOROUTE:

 9         return ("no route to host");

10     case ICMP6_DST_UNREACH_ADMIN:

11         return ("administratively prohibited");

12     case ICMP6_DST_UNREACH_NOTNEIGHBOR:

13         return ("not a neighbor");

14     case ICMP6_DST_UNREACH_ADDR:

15         return ("address unreachable");

16     case ICMP6_DST_UNREACH_NOPORT:

17         return ("port unreachable");

18     default:

19          sprintf (errbuf, "[unknown code %d]", code);

20          return errbuf;

21     }

22 #endif

23 }

Example
We first show an example using IPv4.

freebsd % traceroute www.unpbook.com

traceroute to www.unpbook.com (206.168.112.219): 30 hops max, 24 data bytes

 1  12.106.32.1 (12.106.32.1) 0.799 ms 0.719 ms 0.540 ms

 2  12.124.47.113 (12.124.47.113) 1.758 ms 1.760 ms 1.839 ms

 3  gbr2-p27.sffca.ip.att.net (12.123.195.38) 2.744 ms 2.575 ms 2.648 ms

 4  tbr2-p012701.sffca.ip.att.net (12.122.11.85) 3.770 ms 3.689 ms 3.848 ms

 5  gbr3-p50.dvmco.ip.att.net (12.122.2.66) 26.202 ms 26.242 ms 26.102 ms

 6  gbr2-p20.dvmco.ip.att.net (12.122.5.26) 26.255 ms 26.194 ms 26.470 ms

Page 872

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


 7  gar2-p370.dvmco.ip.att.net (12.123.36.141) 26.443 ms 26.310 ms 26.427 ms

 8  att-46.den.internap.ip.att.net (12.124.158.58) 26.962 ms 27.130 ms

                                                                    27.279 ms

 9  border10.ge3-0-bbnet2.den.pnap.net (216.52.40.79) 27.285 ms 27.293 ms

                                                                    26.860 ms

10  coop-2.border10.den.pnap.net (216.52.42.118) 28.721 ms 28.991 ms

                                                                   30.077 ms

11  199.45.130.33 (199.45.130.33) 29.095 ms 29.055 ms 29.378 ms

12  border-to-141-netrack.boulder.co.coop.net (207.174.144.178) 30.875 ms

                                                           29.747 ms 30.142 ms

13  linux.unpbook.com (206.168.112.219) 31.713 ms 31.573 ms 33.952 ms

We have wrapped the long lines for a more readable output.

Here is an example using IPv6.

freebsd % traceroute www.kame.net

traceroute to orange.kame.net (2001:200:0:4819:203:47ff:fea5:3085):

            30 hops max, 24 data bytes

 1  3ffe:b80:3:9adl::1 (3ffe:b80:3:9adl::1) 107.437 ms 99.341 ms 103.477 ms

 2  Viagenie-gw.int.ipv6.ascc.net (2001:288:3b0::55)

            105.129 ms 89.418 ms 90.016 ms

3  gw-Viagenie.int.ipv6.ascc.net (2001:288:3b0::54)

             302.300 ms 291.580 ms 289.839 ms

 4  c7513-gw.int.ipv6.ascc.net (2001:288:3b0::c)

            296.088 ms 298.600 ms 292.196 ms

 5  m160-c7513.int.ipv6.ascc.net (2001:288:3b0::1e)

            296.266 ms 314.878 ms 302.429 ms

 6  m20jp-m160tw.int.ipv6.ascc.net (2001:288:3b0::1b)

            327.637 ms 326.897 ms 347.062 ms

 7  hitachil.otemachi.wide.ad.jp (2001:200:0:1800::9c4:2)

            420.140 ms 426.592 ms 422.756 ms

 8  pc3.yagami.wide.ad.jp (2001:200:0:1c04::1000:2000)

            415.471 ms 418.308 ms 461.654 ms

 9  gr2000.k2c.wide.ad.jp (2001:200:0:8002::2000:1)

            416.581 ms 422.430 ms 427.692 ms

10  2001:200:0:4819:203:47ff:fea5:3085 (2001:200:0:4819:203:47ff:fea5:3085)

            417.169 ms 434.674 ms 424.037 ms

We have wrapped the long lines for a more readable output.

[ Team LiB ]

Page 873

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

28.7 An ICMP Message Daemon
Receiving asynchronous ICMP errors on a UDP socket has been, and continues to be, a
problem. ICMP errors are received by the kernel, but are rarely delivered to the application
that needs to know about them. In the sockets API, we have seen that it requires
connecting the UDP socket to one IP address to receive these errors (Section 8.11). The
reason for this limitation is that the only error returned from recvfrom is an integer errno
code, and if the application sends datagrams to multiple destinations and then calls 
recvfrom, this function cannot tell the application which datagram encountered an error.

In this section, we will provide a solution that does not require any kernel changes. We will
provide an ICMP message daemon, icmpd, that creates a raw ICMPv4 socket and a raw
ICMPv6 socket and receives all ICMP messages the kernel passes to these two raw sockets.
It also creates a Unix domain stream socket, binds it to the pathname /tmp/icmpd, and
listens for incoming client connects to this pathname. We will show this in Figure 28.26.

Figure 28.26. icmpd daemon: initial sockets created.

A UDP application (which is a client to the daemon) first creates its UDP socket, the socket
for which it wants to receive asynchronous errors. The application must bind an ephemeral
port to this socket, for reasons we will discuss later. It then creates a Unix domain socket
and connects to this daemon's well-known pathname. We will show this in Figure 28.27.

Figure 28.27. Application creates its UDP socket and a Unix domain
connection to the daemon.

The application next "passes" its UDP socket to the daemon across the Unix domain
connection using descriptor passing, as we described in Section 15.7. This gives the
daemon a copy of the socket so that it can call getsockname and obtain the port number
bound to the socket. We will show this passing of the socket in Figure 28.28.

Figure 28.28. Passing UDP socket to daemon across Unix domain

Page 874

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


connection.

After the daemon obtains the port number bound to the UDP socket, it closes its copy of
the socket, taking us back to the arrangement shown in Figure 28.27.

If the host supports credential passing (Section 15.8), the application could also send its
credentials to the daemon. The daemon could then check whether this user should be
allowed access to this facility.

From this point on, any ICMP errors the daemon receives in response to UDP datagrams
sent from the port bound to the application's UDP socket cause the daemon to send a
message (which we will describe shortly) across the Unix domain socket to the application.
The application must therefore use select or poll, awaiting data on either the UDP socket
or the Unix domain socket.

We now look at the source code for an application using this daemon, and then the daemon
itself. We start with Figure 28.29, our header that is included by both the application and
the daemon.

Figure 28.29 unpicmpd.h header.

icmpd/unpicmpd.h

 1 #ifndef__unpicmp_h

 2 #define__unpicmp_h

 3 #include   "unp.h"

 4 #define ICMPD_PATH     "/tmp/icmpd"     /* server's well-known pathname */

 5 struct icmpd_err {

 6     int      icmpd_errno;      /* EHOSTUNREACH, EMSGSIZE, ECONNREFUSED */

 7     char     icmpd_type;       /* actual ICMPv[46] type */

 8     char     icmpd_code;       /* actual ICMPv[46] code */

 9     socklen_t icmpd_len;       /* length of sockaddr{} that follows */

10     struct sockaddr_storage icmpd_dest;  /* sockaddr_storage handles any

size */

11 };

12 #endif  /* __unpicmp_h */

4 11 We define the server's well-known pathname and the icmpd_err structure that is
passed from the server to the application whenever an ICMP message is received that
should be passed to this application.

6 8 A problem is that the ICMPv4 message types differ numerically (and sometimes
conceptually) from the ICMPv6 message types (Figures A.15 and A.16). The actual ICMP
type and code values are returned, but we also map these into an errno value (
icmpd_errno), similar to the final columns in Figures A.15 and A.16. The application can

Page 875

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


deal with this value instead of the protocol-dependent ICMPv4 or ICMPv6 values. Figure
28.30 shows the ICMP messages that are handled, plus their mapping into an errno value.

Figure 28.30. icmpd_errno mapping from ICMPv4 and ICMPv6 errors.

The daemon returns five types of ICMP errors.

 "port unreachable," indicating that no socket is bound to the destination port at the
destination IP address.

 "packet too big," which is used with path MTU discovery. Currently, there is no API
defined to allow a UDP application to perform path MTU discovery. What often
happens on kernels that support path MTU discovery for UDP is that the receipt of
this ICMP error causes the kernel to record the new path MTU value in the kernel's
routing table, but the UDP application that sent the datagram that got discarded is
not notified. Instead, the application must time out and retransmit the datagram, in
which case, the kernel will find the new (and smaller) MTU in its routing table, and
the kernel will then fragment the datagram. Passing this error back to the
application lets the application retransmit sooner, and perhaps lets the application
reduce the size of the datagrams it sends.

 The "time exceeded" error is normally seen with a code of 0, indicating that either
the IPv4 TTL or IPv6 hop limit reached 0. This often indicates a routing loop, which
might be a transient error.

 ICMPv4 "source quenches," while deprecated by RFC 1812 [Baker 1995], may be
sent by routers (or by misconfigured hosts acting as routers). They indicate that a
packet has been discarded, and we therefore treat them like a "destination
unreachable" message. Note that IPv6 does not have a "source quench" error.

 All other destination unreachable messages indicate that a packet has been
discarded.

10 The icmpd_dest member is a socket address structure containing the destination IP
address and port of the datagram that generated the ICMP error. This member will be
either a sockaddr_in structure for IPv4 or a sockaddr_in6 structure for IPv6. If the
application is sending datagrams to multiple destinations, it probably has one socket
address structure per destination. By returning this information in a socket address
structure, the application can compare it against its own structures to find the one that
caused the error. It is a sockaddr_storage to allow storage of any sockaddr type the
system supports.

UDP Echo Client That Uses Our icmpd Daemon
We now modify our UDP echo client, the dg_cli function, to use our icmpd daemon. Figure
28.31 shows the first half of the function.

2 3 The function arguments are the same as all previous versions of this function.

bind wildcard address and ephemeral port

12 We call our sock_bind_wild function to bind the wildcard IP address and an ephemeral
port to the UDP socket. We do this so that the copy of this socket that we pass to the
daemon has bound a port, as the daemon needs to know this port.

Page 876

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


The daemon could also do this bind if a local port has not already been bound to the socket
that it receives, but this does not work in all environments. Certain SVR4 implementations,
such as Solaris 2.5, in which sockets are not part of the kernel, have a bug when one
process binds a port to a shared socket; the other process with a copy of that socket gets
strange errors when it tries to use the socket. The easiest solution is to require the
application to bind the local port before passing the socket to the daemon.

Establish Unix domain connection to daemon

13 16 We create an AF_LOCAL socket and connect to the daemon's well-known pathname.

Figure 28.31 First half of dg_cli application.

icmpd/dgcli01.c

 1 #include     "unpicmpd.h"

 2 void

 3 dg_cli(FILE *fp, int sockfd, const SA *pservaddr, socklen_t servlen)

 4 {

 5     int     icmpfd, maxfdpl;

 6     char    sendline[MAXLINE], recvline[MAXLINE + 1];

 7     fd_set  rset;

 8     ssize_t n;

 9     struct timeval tv;

10     struct icmpd_err icmpd_err;

11     struct sockaddr_un sun;

12     Sock_bind_wild(sockfd, pservaddr->sa_family);

13     icmpfd = Socket(AF_LOCAL, SOCK_STREAM, 0);

14     sun.sun_family = AF_LOCAL;

15     strcpy(sun.sun_path, ICMPD_PATH);

16     Connect(icmpfd, (SA *) &sun, sizeof(sun));

17     Write_fd(icmpfd, "1", 1, sockfd);

18     n = Read(icmpfd, recvline, 1);

19     if (n != 1 | | recvline[0] != '1')

20         err_quit("error creating icmp socket, n = %d, char = %c",

21                   n, recvline[0]);

22     FD_ZERO(&rset);

23     maxfdpl = max(sockfd, icmpfd) + 1;

Send UDP socket to daemon, await daemon's reply

17 21 We call our write_fd function from Figure 15.13 to send a copy of our UDP socket to
the daemon. We also send a single byte of data, the character "1", because some
implementations do not like passing a descriptor without any data. The daemon sends back
a single byte of data, consisting of the character "1" to indicate success. Any other reply
indicates an error.

22 23 We initialize a descriptor set and calculate the first argument for select (the
maximum of the two descriptors, plus one).

The last half of our client is shown in Figure 28.32. This is the loop that reads a line from
standard input, sends the line to the server, reads back the server's reply, and writes the
reply to standard output.

Figure 28.32 Last half of dg_cli application.

Page 877

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


icmpd/dgcli01.c

24     while (Fgets(sendline, MAXLINE, fp) ! = NULL) {

25         Sendto(sockfd, sendline, strlen(sendline), 0, pservaddr, servlen);

26          tv.tv_sec = 5;

27          tv.tv_usec = 0;

28          FD_SET(sockfd, &rset);

29          FD_SET(icmpfd, &rset);

30          if ( (n = Select(maxfdpl, &rset,  NULL, NULL, &tv)) == 0) {

31              fprintf(stderr,   socket timeout\n);

32              continue;

33          }

34          if (FD_ISSET(sockfd,  &rset)) {

35              n = Recvfrom(sockfd, recvline, MAXLINE, 0, NULL, NULL);

36              recvline[n] = 0;     /* null terminate */

37              Fputs(recvline, stdout);

38          }

39          if (FD_ISSET(icmpfd, &rset)) {

40              if ( (n = Read(icmpfd, &icmpd_err, sizeof(icmpd_err))) == 0)

41                   err_quit ("ICMP daemon terminated");

42              else if (n ! = sizeof(icmpd_err))

43                   err_quit("n = %d, expected %d", n, sizeof(icmpd_err));

44              printf("ICMP error: dest = %s, %s, type = %d, code = %d\n",

45                     Sock_ntop(&icmpd_err.icmpd_dest, icmpd_err.icmpd_len),

46                     strerror(icmpd_err.icmpd_errno),

47                     icmpd_err.icmpd_type, icmpd_err.icmpd_code);

48          }

49     }

50 }

Call select

26 33 Since we are calling select, we can easily place a timeout on our wait for the echo
server's reply. We set this to five seconds, enable both descriptors for readability, and call 
select. If a timeout occurs, we print a message and go back to the top of the loop.

Print server's reply

34 38 If a datagram is returned by the server, we print it to standard output.

Handle ICMP error

39 48 If our Unix domain connection to the icmpd daemon is readable, we try to read an
icmpd_err structure. If this succeeds, we print the relevant information the daemon
returns.

strerror is an example of a simple, almost trivial, function that should be more portable
than it is. First, ANSI C says nothing about an error return from the function. The Solaris
man page says that the function returns a null pointer if the argument is out of range. But
this means code like

printf("%s", strerror(arg));

is incorrect because strerror can return a null pointer. But the FreeBSD implementation,

Page 878

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


along with all the source code implementations the authors could find, handle an invalid
argument by returning a pointer to a string such as "Unknown error." This makes sense
and means the code above is fine. But POSIX changes this and says that because no return
value is reserved to indicate an error, if the argument is out of range, the function sets 
errno to EINVAL. (POSIX does not say anything about the returned pointer in the case of
an error.) This means that completely conforming code must set errno to 0, call strerror,
test whether errno equals EINVAL, and print some other message in case of an error.

UDP Echo Client Examples
We now show some examples of this client before looking at the daemon source code. We
first send datagrams to an IP address that is not connected to the Internet.

freebsd % udpcli01 192.0.2.5 echo

hi there

socket timeout

and hello

socket timeout

We assume icmpd is running and expect ICMP "host unreachable" errors to be returned by
some router, but none are received. Instead, our application times out. We show this to
reiterate that a timeout is still required and the generation of ICMP messages such as "host
unreachable" may not occur.

Our next example sends a datagram to the standard echo server on a host that is not
running the server. We receive an ICMPv4 "port unreachable" as expected.

freebsd % udpcli01 aix-4 echo

hello, world

ICMP error: dest = 192.168.42.2:7, Connection refused, type = 3, code = 3

We try again with IPv6 and receive an ICMPv6 "port unreachable" as expected.

freebsd % udpcli01 aix-6 echo

hello, world

ICMP error: dest = [3ffe:b80:1f8d:2:204:acff:fe17:bf38] :7,

                                   Connection refused, type = 1, code = 4

We have wrapped the long line for readability.

icmpd Daemon
We start the description of our icmpd daemon with the icmpd.h header, shown in Figure
28.33.

client array

2 17 Since the daemon can handle any number of clients, we use an array of client
structures to keep the information about each client. This is similar to the data structures
we used in Section 6.8. In addition to the descriptor for the Unix domain connection to the
client, we also store the address family of the client's UDP socket AF_INET or AF_INET6) and

Page 879

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


the port number bound to this socket. We also declare the function prototypes and the
globals shared by these functions.

Figure 28.33 icmpd.h header for icmpd daemon.

icmpd/icmpd.h

 1 #include     "unpicmpd.h"

 2 struct client {

 3     int     connfd;             /* Unix domain stream socket to client */

 4     int     family;             /* AF_INET or AF_INET6 */

 5     int     lport;              /* local port bound to client's UDP socket

*/

 6     /* network byte ordered */

 7 } client [FD_SETSIZE];

 8                          /* globals */

 9 int    fd4, fd6, listenfd, maxi, maxfd, nready;

10 fd_set rset, allset;

11 struct sockaddr_un cliaddr;

12                 /* function prototypes */

13 int     readable_conn (int);

14 int     readable_listen (void);

15 int     readable_v4 (void);

16 int     readable_v6 (void);

Figure 28.34 First half of main function: creates sockets.

icmpd/icmpd.c

 1 #include     "icmpd.h"

 2 int

 3 main(int argc, char **argv)

 4 {

 5     int     i, sockfd;

 6     struct sockaddr_un sun;

 7     if (argc != 1)

 8         err_quit ("usage: icmpd");

 9     maxi = -1;                   /* index into client [] array */

10     for (i = 0; i < FD_SETSIZE; i++)

11         client [i] .connfd = -1;   /* -1 indicates available entry */

12     FD_ZERO (&allset);

13     fd4 = Socket (AF_INET, SOCK_RAW, IPPROTO_ICMP);

14     FD_SET (fd4, &allset);

15     maxfd = fd4;

16 #ifdef IPV6

17     fd6 = Socket (AF_INET6, SOCK_RAW, IPPROTO_ICMPV6);

18     FD_SET (fd6, &allset);

19     maxfd = max (maxfd, fd6);

20 #endif

21     listenfd = Socket (AF_UNIX, SOCK_STREAM, 0);

22     sun.sun_family = AF_LOCAL;

Page 880

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


23     strcpy (sun.sun_path, ICMPD_PATH);

24     unlink (ICMPD_PATH);

25     Bind (listenfd, (SA *) &sun, sizeof (sun));

26     Listen (listenfd, LISTENQ);

27     FD_SET (listenfd, &allset);

28     maxfd = max (maxfd, listenfd);

Figure 28.34 shows the first half of the main function.

Initialize client array

9 10 The client array is initialized by setting the connected socket member to  1.

Create sockets

12 28 Three sockets are created: a raw ICMPv4 socket, a raw ICMPv6 socket, and a Unix
domain stream socket. We unlink any previously existing instance of the Unix domain
socket, bind its well-known pathname to the socket, and call listen. This is the socket to
which clients connect. The maximum descriptor is also calculated for select and a socket
address structure is allocated for calls to accept.

Figure 28.35 shows the second half of the main function, which is an infinite loop that calls
select, waiting for any of the daemon's descriptors to be readable.

Figure 28.35 Second half of main function: handles readable descriptor.

icmpd/icmpd.c

29      for ( ; ; ) {

30          rset = allset;

31          nready = Select (maxfd + 1, &rset, NULL, NULL, NULL);

32          if (FD_ISSET (listenfd, &rset))

33              if (readable_listen () <= 0)

34                  continue;

35          if (FD_ISSET (fd4, &rset))

36              if (readable_v4 () <= 0)

37                  continue;

38 #ifdef IPV6

39        if (FD_ISSET (fd6, &rset))

40              if (readable_v6 () <= 0)

41                  continue;

42 #endif

43          for (i = 0; i <= maxi; i++) { /* check all clients for data */

44              if ( (sockfd = client [i] .connfd) < 0)

45                  continue;

46          if (FD_ISSET (sockfd, &rset))

47              if (readable_conn (i) <= 0)

48                  break;     /* no more readable descriptors */

49          }

50     }

51     exit (0);

52 }

Check listening Unix domain socket

32 34 The listening Unix domain socket is tested first and if ready, readable_listen is
called. The variable nready, the number of descriptors that select returns as readable, is a

Page 881

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


global variable. Each of our readable_XXX function decrements this variable and returns
its new value as the return value of the function. When this value reaches 0, all the
readable descriptors have been processed and select is called again.

Check raw ICMP sockets

35 42 The raw ICMPv4 socket is tested, and then the raw ICMPv6 socket.

Check connected Unix domain sockets

43 49 We next check whether any of the connected Unix domain sockets are readable.
Readability on any of these sockets means that the client has sent a descriptor, or that the
client has terminated.

Figure 28.36 shows the readable_listen function, called when the daemon's listening
socket is readable. This indicates a new client connection.

Figure 28.36 Handle new client connections.

icmpd/readable_listen.c

 1 #include   "icmpd.h"

 2 int

 3 readable_listen (void)

 4 {

 5     int     i, connfd;

 6     socklen_t clilen;

 7     clilen = sizeof (cliaddr);

 8     connfd = Accept (listenfd, (SA *) &cliaddr, &clilen);

 9         /* find first available client [] structure */

10     for (i = 0; i < FD_SETSIZE; i++)

11         if (client [i] .connfd < 0) {

12             client [i] .connfd = connfd; /* save descriptor */

13             break;

14          }

15     if (i == FD_SETSIZE) {

16         close (connfd);            /* can't handle new client, */

17         return (--nready);         /* rudely close the new connection */

18     }

19     printf ("new connection, i = %d, connfd = %d\n", i, connfd);

20     FD_SET (connfd, &allset);  /* add new descriptor to set */

21     if (connfd > maxfd)

22         maxfd = connfd;            /* for select () */

23     if (i > maxi)

24         maxi = i;                  /* max index in client [] array */

25     return (--nready);

26 }

7 25 The connection is accepted and the first available entry in the client array is used.
The code in this function was copied from the beginning of Figure 6.22. If an entry couldn't
be found in the client array, we simply closed the new client connection and remained to
serve our current clients.

When a connected socket is readable, our readable_conn function is called (Figure 28.37).
Its argument is the index of this client in the client array.

Page 882

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


Read client data and possibly a descriptor

13 18 We call our read_fd function from Figure 15.11 to read the data and possibly a
descriptor. If the return value is 0, the client has closed its end of the connection, possibly
by terminating.

Figure 28.37 Read data and possible descriptor from client.

icmpd/readable_conn.c

 1 #include     "icmpd.h"

 2 int

 3 readable_conn(int i)

 4 {

 5     int     unixfd, recvfd;

 6     char    c;

 7     ssize_t n;

 8     socklen_t len;

 9     struct sockaddr_storage ss;

10     unixfd = client [i] .connfd;

11     recvfd = -1;

12     if ( (n = Read_fd (unixfd, &c, 1, &recvfd)) == 0) {

13         err_msg ("client %d terminated, recvfd = %d", i, recvfd);

14         goto clientdone;         /* client probably terminated */

15     }

16         /* data from client; should be descriptor */

17     if (recvfd < 0) {

18         err_msg ("read_fd did not return descriptor");

19         goto clienterr;

20     }

One design decision was whether to use a Unix domain stream socket between the
application and the daemon, or a Unix domain datagram socket. The application's UDP
socket can be passed over either type of Unix domain socket. The reason why we used a
stream socket was to detect when a client terminated. When a client terminates, all its
descriptors are automatically closed, including its Unix domain connection to the daemon,
which tells the daemon to remove this client from the client array. Had we used a
datagram socket, we would not know when the client terminated.

16 20 If the client has not closed the connection, then we expect a descriptor.

The second half of our readable_conn function is shown in Figure 28.38.

Get port number bound to UDP socket

21 25 getsockname is called so the daemon can obtain the port number bound to the
socket. Since we do not know what size buffer to allocate for the socket address structure,
we use a sockaddr_storage structure, which is large enough and appropriately aligned to
store any socket address structure the system supports.

26 33 The address family of the socket is stored in the client structure, along with the
port number. If the port number is 0, we call our sock_bind_wild function to bind the
wildcard address and an ephemeral port to the socket, but as we mentioned earlier, this
does not work on some SVR4 implementations.

Figure 28.38 Get port number that client has bound to its UDP socket.

Page 883

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


icmpd/readable_conn.c

21     len = sizeof (ss);

22     if (getsockname (recvfd, (SA *) &ss, &len) < 0) {

23          err_ret ("getsockname error");

24          goto clienterr;

25     }

26     client[i].family = ss.ss_family;

27     if ((client[i].lport = sock_get_port ((SA *) &ss, len)) == 0) {

28         client[i].lport = sock_bind_wild (recvfd, client[i].family);

29          if (client[i].lport <= 0) {

30             err_ret ("error binding ephemeral port");

31             goto clienterr;

32          }

33     }

34     Write (unixfd, "1", 1);        /* tell client all OK */

35     Close (recvfd);                /* all done with client's UDP socket */

36     return  (--nready);

37   clienterr:

38     Write (unixfd, "0", 1);        /* tell client error occurred */

39     clientdone:

40       Close (unixfd);

41       if (recvfd >= 0)

42           Close (recvfd);

43       FD_CLR (unixfd, &allset);

44       client[i].connfd = -1;

45       return (--nready);

46 }

Indicate success to client

34 One byte consisting of the character "1" is sent back to the client.

close client's UDP socket

35 We are finished with the client's UDP socket and close it. This descriptor was passed to
us by the client and is therefore a copy; hence, the UDP socket is still open in the client.

Handle errors and termination of client

37 45 If an error occurs, a byte of "0" is written back to the client. When the client
terminates, our end of the Unix domain connection is closed, and the descriptor is removed
from the set of descriptors for select. The connfd member of the client structure is set
to  1, indicating it is available.

Our readable_v4 function is called when the raw ICMPv4 socket is readable. We show the
first half in Figure 28.39. This code is similar to the ICMPv4 code shown earlier in Figures
28.8 and 28.20

Figure 28.39 Handle received ICMPv4 datagram, first half.

icmpd/readable_v4.c

 1 #include     "icmpd.h"

 2 #include     <netinet/in_systm.h>

 3 #include     <netinet/ip.h>

 4 #include     <netinet/ip_icmp.h>

 5 #include     <netinet/udp.h>

Page 884

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


 6 int

 7 readable_v4 (void)

 8 {

 9     int      i, hlen1, hlen2, icmplen, sport;

10     char     buf[MAXLINE];

11     char     srcstr [INET_ADDRSTRLEN], dststr[INET_ADDRSTRLEN];

12     ssize_t  n;

13     socklen _ t len;

14     struct  ip *ip, *hip;

15     struct  icmp *icmp;

16     struct  udphdr *udp;

17     struct  sockaddr_in from, dest;

18     struct  icmpd_err icmpd_err;

19     len =  sizeof (from);

20     n =  Recvfrom(fd4, buf, MAXLINE, 0, (SA *) &from, &len);

21     printf("%d bytes ICMPv4 from %s:", n, Sock_ntop_host ((SA *) &from,

len));

22     ip = (struct ip *) buf;     /* start of IP header */

23     hlen1 = ip->ip_hl << 2;     /* length of IP header */

24     icmp = (struct icmp *) (buf + hlen1);     /* start of ICMP header */

25     if ( (icmplen = n - hlen1) < 8)

26          err_quit("icmplen (%d) < 8", icmplen);

27     printf(" type = %d, code = %d\n", icmp->icmp_type, icmp->icmp_code);

This function prints some information about every received ICMPv4 message. This was
done for debugging when developing this daemon and could be output based on a
command-line argument.

Figure 28.40 shows the last half of our readable_v4 function.

Figure 28.40 Handle received ICMPv4 datagram, second half.

icmpd/readable_v4.c

28     if (icmp->icmp_type == ICMP_UNREACH ||

29         icmp->icmp_type == ICMP_TIMXCEED ||

30         icmp->icmp_type == ICMP_SOURCEQUENCH) {

31         if (icmplen < 8 + 20 + 8)

32             err_quit("icmplen (%d) < 8 + 20 + 8", icmplen);

33         hip = (struct ip *) (buf + hlen1 + 8);

34         hlen2 = hip->ip_hl << 2;

35         printf("\tsrcip = %s, dstip = %s, proto = %d\n",

36                Inet_ntop(AF_INET, &hip->ip_src, srcstr, sizeof(srcstr)),

37                Inet_ntop(AF_INET, &hip->ip_dst, dststr, sizeof(dststr)),

38                hip->ip_p);

39         if (hip->ip_p == IPPROTO_UDP) {

40             udp = (struct udphdr *) (buf + hlen1 + 8 + hlen2);

41             sport = udp->uh_sport;

42                 /* find client's Unix domain socket, send headers */

43             for (i = 0; i <= maxi; i++) {

44                 if (client[i].connfd >= 0 &&

45                     client[i].family == AF_INET &&

46                     client[i].lport == sport) {

Page 885

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


47                     bzero(&dest, sizeof(dest));

48                     dest.sin_family = AF_INET;

49 #ifdef  HAVE_SOCKADDR_SA_LEN

50                     dest.sin_len = sizeof(dest);

51 #endif

52                     memcpy(&dest.sin_addr, &hip->ip_dst,

53                              sizeof(struct in_addr));

54                     dest.sin_port = udp->uh_dport;

55                     icmpd_err.icmpd_type = icmp->icmp_type;

56                     icmpd_err.icmpd_code = icmp->icmp_code;

57                     icmpd_err.icmpd_len = sizeof(struct sockaddr_in);

58                     memcpy(&icmpd_err.icmpd_dest, &dest, sizeof(dest));

59                         /* convert type & code to reasonable errno value */

60                    icmpd_err.icmpd_errno = EHOSTUNREACH;     /* default */

61                    if (icmp->icmp_type == ICMP_UNREACH) {

62                        if (icmp->icmp_code == ICMP_UNREACH_PORT)

63                            icmpd_err.icmpd_errno = ECONNREFUSED;

64                        else if (icmp->icmp_code == ICMP_UNREACH_NEEDFRAG)

65                            icmpd_err.icmpd_errno = EMSGSIZE;

66                    }

67                    Write(client[i].connfd, &icmpd_err, sizeof(icmpd_err));

68                }

69             }

70         }

71     }

72     return (--nready);

73 }

Check message type, notify application

29 31 The only ICMPv4 messages that we pass to the application are "destination
unreachable," "time exceeded," and "source quench" (Figure 28.30).

Check for UDP error, find client

34 42 hip points to the IP header that is returned following the ICMP header. This is the IP
header of the datagram that elicited the ICMP error. We verify that this IP datagram is a
UDP datagram and then fetch the source UDP port number from the UDP header following
the IP header.

43 55 A search is made of all the client structures for a matching address family and port.
If a match is found, an IPv4 socket address structure is built containing the destination IP
address and port from the UDP datagram that caused the error.

Build icmpd_err structure

56 70 An icmpd_err structure is built that is sent to the client across the Unix domain
connection to this client. The ICMPv4 message type and code are first mapped into an 
errno value, as described with Figure 28.30.

Figure 28.41 Handle received ICMPv6 datagram, first half.

icmpd/readable_v6.c

 1 #include     "icmpd.h"

 2 #include     <netinet/in_systm.h>

 3 #include     <netinet/ip.h>

 4 #include     <netinet/ip_icmp.h>

 5 #include     <netinet/udp.h>

Page 886

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


 6 #ifdef     IPV6

 7 #include     <netinet/ip6.h>

 8 #include     <netinet/icmp6.h>

 9 #endif

10 int

11 readable_v6 (void)

12 {

13 #ifdef       IPV6

14     int      i, hlen2, icmp6len, sport;

15     char     buf [MAXLINE];

16     char     srcstr [INET6_ADDRSTRLEN], dststr [INET6_ADDRSTRLEN];

17     ssize_t n;

18     socklen_t len;

19     struct ip6_hdr *ip6, *hip6;

20     struct icmp6_hdr *icmp6;

21     struct udphdr *udp;

22     struct sockaddr_in6 from, dest;

23     struct icmpd_err icmp_err;

24     len = sizeof (from);

25     n = Recvfrom (fd6, buf, MAXLINE, 0, (SA *) &from, &len);

26     printf ("%d bytes ICMPv6 from %s:", n, Sock_ntop_host ((SA *) &from,

len));

27     icmp6 = (struct icmp6_hdr *) buf;     /* start of ICMPv6 header */

28     if ( (icmp6len = n) < 8)

29         err_quit ("icmp6len (%d) < 8", icmp6len);

30     printf ("type = %d, code = %d\n", icmp6->icmp6_type, icmp6->icmp6_code);

ICMPv6 errors are handled by our readable_v6 function, the first half of which is shown in
Figure 28.41. The ICMPv6 handling is similar to the code in Figures 28.12 and 28.24.

The second half of our readable_v6 function is shown in Figure 28.42 (p. 785). This code is
similar to Figure 28.40: It checks the type of ICMP error, checks that the datagram that
caused the error was a UDP datagram, and then builds the icmpd_err structure, which is
sent to the client.

Figure 28.42 Handle received ICMPv6 datagram, second half.

icmpd/readable_v6.c

31     if (icmp6->icmp6_type == ICMP6_DST_UNREACH ||

32         icmp6->icmp6_type == ICMP6_PACKET_TOO_BIG ||

33         icmp6->icmp6_type == ICMP6_TIME_EXCEEDED) {

34         if (icmp6len < 8 + 8)

35             err_quit (" icmp6len (%d) < 8 + 8", icmp6len);

36         hip6 = (struct ip_hdr *) (buf + 8);

37         hlen2 = sizeof (struct ip6_hdr);

38         printf ("\tsrcip = %s, dstip = %s, next hdr = %d\n",

39                 Inet_ntop (AF_INET6, &hip6->ip6_src,  srcstr, sizeof

(srcstr)),

40                 Inet_ntop (AF_INET6, &hip6->ip6_dst, dststr, sizeof

(dststr)),

41                 hip6->ip6_nxt);

42         if (hip6->ip6_nxt == IPPROTO_UDP) {

43             udp = (struct udphdr *) (buf + 8 + hlen2);

Page 887

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


44             sport = udp->uh_sport;

45                 /* find client's Unix domain socket, send headers */

46             for (i = 0; i <= maxi; i++) {

47                 if (client [i].connfd >= 0 &&

48                     client [i].family == AF_INET6 &&

49                     client [i].lport == sport) {

50                     bzero (&dest, sizeof (dest));

51                     dest.sin6_family = AF_INET6;

52 #ifdef HAVE_SOCKADDR_SA_LEN

53                     dest.sin6_len = sizeof (dest);

54 #endif

55                     memcpy (&dest.sin6_addr, &hip6->ip6_dst,

56                             sizeof (struct in6_addr));

57                     dest.sin6_port = udp->uh_dport;

58                     icmpd_err.icmp_type = icmp6->icmp6_type;

59                     icmpd_err.icmpd_code = icmp6->icmp6_code;

60                     icmpd_err.icmpd_len = sizeof (struct sockaddr_in6);

61                     memcpy (&icmpd_err.icmpd_dest, &dest, sizeof (dest));

62                         /* convert type & code to reasonable errno value */

63                     icmpd_err.icmpd_errno = EHOSTUNREACH; /* default */

64                     if (icmp6->icmp6_type == ICMP6_DST_UNREACH &&

65                         icmp6->icmp6_code == ICMP6_DST_UNREACH_NOPORT)

66                         icmpd_err.icmpd_errno = ECONNREFUSED;

67                     if (icmp6->icmp6_type == ICMP6_PACKET_TOO_BIG)

68                         icmpd_err.icmpd_errno = EMSGSIZE;

69                     Write (client [i].connfd, &icmpd_err, sizeof

(icmpd_err));

70                }

71            }

72        }

73    }

74    return (--nready);

75 #endif

76 }

[ Team LiB ]

Page 888

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

28.8 Summary
Raw sockets provide three capabilities:

 We can read and write ICMPv4, IGMPv4, and ICMPv6 packets.

 We can read and write IP datagrams with a protocol field that the kernel does not
handle.

 We can build our own IPv4 header, normally used for diagnostic purposes (or by
hackers, unfortunately).

Two commonly used diagnostic tools, ping and traceroute, use raw sockets, and we have
developed our own versions of both that support IPv4 and IPv6. We also developed our
own icmpd daemon that provides access to ICMP errors for a UDP socket. This example also
provided an example of descriptor passing across a Unix domain socket between an
unrelated client and server.

[ Team LiB ]

Page 889

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Exercises
28.1 We said that almost all fields in an IPv6 header and all extension

headers are available to the application through socket options or
ancillary data. What information in an IPv6 datagram is not available to
an application?

28.2 What happens in Figure 28.40 if for some reason the client stops
reading from its Unix domain connection to the icmpd daemon and lots
of ICMP errors arrive for the client? What is the easiest solution?

28.3 If we specify the subnet-directed broadcast address to our ping
program, it works. That is, a broadcast ICMP echo request is sent as a
link-layer broadcast, even though we do not set the SO_BROADCAST
socket option. Why?

28.4 What happens with our ping program if we ping the all-hosts multicast
group, 224.0.0.1 on a multihomed host?

[ Team LiB ]

Page 890

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Chapter 29. Datalink Access
Section 29.1.?Introduction

Section 29.2.?BSD Packet Filter (BPF)

Section 29.3.?Datalink Provider Interface (DLPI)

Section 29.4.?Linux: SOCK_PACKET and PF_PACKET

Section 29.5.?libpcap: Packet Capture Library

Section 29.6.?libnet: Packet Creation and Injection Library

Section 29.7.?Examining the UDP Checksum Field

Section 29.8.?Summary

Exercises

[ Team LiB ]

Page 891

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

29.1 Introduction
Providing access to the datalink layer for an application is a powerful feature that is
available with most current operating systems. This provides the following capabilities:

 The ability to watch the packets received by the datalink layer, allowing programs
such as tcpdump to be run on normal computer systems (as opposed to dedicated
hardware devices to watch packets). When combined with the capability of the
network interface to go into a promiscuous mode, this allows an application to watch
all the packets on the local cable, not just the packets destined for the host on
which the program is running.

This ability is less useful in switched networks, which have become quite common.
This is because the switch only passes traffic to a port if it is addressed to the
device or devices attached to that port (unicast, multicast, or broadcast). To monitor
traffic carried on other ports of the switch, the switch port must be configured to
receive other traffic, often called monitor mode or port mirroring. Note that many
devices that you might not expect to be switches actually are, for example, a
dual-speed 10/100Mbps hub is usually a two-port switch: one port for the 100Mbps
systems and the other for the 10Mbps systems.

 The ability to run certain programs as normal applications instead of as part of the
kernel. For example, most Unix versions of an RARP server are normal applications
that read RARP requests from the datalink (RARP requests are not IP datagrams)
and then write the reply back to the datalink.

The three common methods to access the datalink layer under Unix are the BSD Packet
Filter (BPF), the SVR4 Datalink Provider Interface (DLPI), and the Linux SOCK_PACKET
interface. We present an overview of these three, but then describe libpcap, the publicly
available packet capture library. This library works with all three and using this library
makes our programs independent of the actual datalink access provided by the OS. We
describe this library by developing a program that sends DNS queries to a name server (we
build our own UDP datagrams and write them to a raw socket) and reading the reply using 
libpcap to determine if the name server enables UDP checksums.

[ Team LiB ]

Page 892

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

29.2 BSD Packet Filter (BPF)
4.4BSD and many other Berkeley-derived implementations support BPF, the BSD packet
filter. The implementation of BPF is described in Chapter 31 of TCPv2. The history of BPF, a
description of the BPF pseudomachine, and a comparison with the SunOS 4.1.x NIT packet
filter is provided in [McCanne and Jacobson 1993].

Each datalink driver calls BPF right before a packet is transmitted and right after a packet
is received, as shown in Figure 29.1.

Figure 29.1. Packet capture using BPF.

Examples of these calls for an Ethernet interface are in Figures 4.11 and 4.19 of TCPv2.
The reason for calling BPF as soon as possible after reception and as late as possible before
transmission is to provide accurate timestamps.

While it is not hard to provide a tap into the datalink to catch all packets, the power of BPF
is in its filtering capability. Each application that opens a BPF device can load its own filter,
which is then applied by BPF to each packet. While some filters are simple (the filter " udp
or tcp" receives only UDP or TCP packets), others can examine fields in the packet headers
for certain values. For example,

tcp and port 80 and tcp[13:1] & 0x7 != 0

was used in Chapter 14 of TCPv3 to collect only TCP segments to or from port 80 that had
either the SYN, FIN, or RST flags on. The expression tcp[13:1] refers to the 1-byte value
starting at byte offset 13 from the start of the TCP header.

BPF implements a register-based filter machine that applies application-specific filters to
each received packet. While one can write filter programs in the machine language of this
pseudomachine (which is described on the BPF man page), the simplest interface is to
compile ASCII strings (such as the one beginning with tcp that we just showed) into this
machine language using the pcap_compile function that we will describe in Section 29.7.

Three techniques are used by BPF to reduce its overhead:

 The BPF filtering is within the kernel, which minimizes the amount of data copied
from BPF to the application. This copy, from kernel space to user space, is

Page 893

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


expensive. If every packet was copied, BPF could have trouble keeping up with fast
datalinks.

 Only a portion of each packet is passed by BPF to the application. This is called the 
snapshot length, or snaplen. Most applications need only the packet headers, not
the packet data. This also reduces the amount of data copied by BPF to the
application. tcpdump, for example, defaults this value to 96, which allows room for a
14-byte Ethernet header, a 40-byte IPv6 header, a 20-byte TCP header, and 22
bytes of data. But, to print additional information for other protocols (e.g., DNS and
NFS) requires the user to increase this value when tcpdump is run.

 BPF buffers the data destined for an application and this buffer is copied to the
application only when the buffer is full, or when the read timeout expires. This
timeout value can be specified by the application. tcpdump, for example, sets the
timeout to 1000 ms, while the RARP daemon sets it to 0 (since there are few RARP
packets, and the RARP server needs to send a response as soon as it receives the
request). The purpose of the buffering is to reduce the number of system calls. The
same number of packets are still copied between BPF and the application, but each
system call has an overhead, and reducing the number of system calls always
reduces the overhead. (Figure 3.1 of APUE compares the overhead of the read
system call, for example, when reading a given file in different chunk sizes varying
between 1 byte and 131,072 bytes.)

Although we show only a single buffer in Figure 29.1, BPF maintains two buffers for each
application and fills one while the other is being copied to the application. This is the
standard double-buffering technique.

In Figure 29.1, we show only the BPF reception of packets: packets received by the
datalink from below (the network) and packets received by the datalink from above (IP).
The application can also write to BPF, causing packets to be sent out the datalink, but most
applications only read from BPF. There is no reason to write to BPF to send IP datagrams
because the IP_HDRINCL socket option allows us to write any type of IP datagram desired,
including the IP header. (We show an example of this in Section 29.7.) The only reason to
write to BPF is to send our own network packets that are not IP datagrams. The RARP
daemon does this, for example, to send its RARP replies, which are not IP datagrams.

To access BPF, we must open a BPF device that is not currently open. For example, we
could try /dev/bpf0, and if the error return is EBUSY, then we could try /dev/bpf1, and so
on. Once a device is opened, about a dozen ioctl commands set the characteristics of the
device: load the filter, set the read timeout, set the buffer size, attach a datalink to the BPF
device, enable promiscuous mode, and so on. I/O is then performed using read and write.

[ Team LiB ]

Page 894

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

29.3 Datalink Provider Interface (DLPI)
SVR4 provides datalink access through DLPI. DLPI is a protocol-independent interface
designed by AT&T that interfaces to the service provided by the datalink layer [Unix
International 1991]. Access to DLPI is by sending and receiving STREAMS messages.

There are two styles of DLPI. In one style, there is a single device to open, and the desired
interface is specified using a DLPI DL_ATTACH_REQ request. In the other style, the
application simply opens the device (e.g., le0). But for efficient operation, two additional
STREAMS modules are normally pushed onto the stream: pfmod, which performs packet
filtering within the kernel, and bufmod, which buffers the data destined for the application.
We show this in Figure 29.2.

Figure 29.2. Packet capture using DLPI, pfmod, and bufmod.

Conceptually, this is similar to what we described in the previous section for BPF: pfmod
supports filtering within the kernel using a pseudomachine and bufmod reduces the amount
of data and number of system calls by supporting a snapshot length and a read timeout.

One interesting difference, however, is the type of pseudomachine supported by the BPF
and pfmod filters. The BPF filter is a directed acyclic control flow graph (CFG), while pfmod
uses a Boolean expression tree. The former maps naturally into code for a register machine
while the latter maps naturally into code for a stack machine [McCanne and Jacobson
1993]. This paper shows that the CFG implementation used by BPF is normally 3 to 20
times faster than the Boolean expression tree, depending on the complexity of the filter.

Another difference is that BPF always makes the filtering decision before copying the
packet, in order to not copy packets that the filter will discard. Depending on the DLPI
implementation, the packet may be copied to give it to pfmod, which may then discard it.

[ Team LiB ]

Page 895

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

29.4 Linux: SOCK_PACKET and PF_PACKET
There are two methods of receiving packets from the datalink layer under Linux. The
original method, which is more widely available but less flexible, is to create a socket of
type SOCK_PACKET. The newer method, which introduces more filtering and performance
features, is to create a socket of family PF_PACKET. To do either, we must have sufficient
privileges (similar to creating a raw socket), and the third argument to socket must be a
nonzero value specifying the Ethernet frame type. When using PF_PACKET sockets, the
second argument to socket can be SOCK_DGRAM, for "cooked" packets with the link-layer
header removed, or SOCK_RAW, for the complete link-layer packet. SOCK_PACKET sockets only
return the complete link layer packet. For example, to receive all frames from the datalink,
we write

fd = socket(PF_PACKET, SOCK_RAW, htons(ETH_P_ALL));        /* newer systems*/

or

fd = socket(AF_INET, SOCK_PACKET, htons(ETH_P_ALL));      /* older systems*/

This would return frames for all protocols that the datalink receives.

If we wanted only IPv4 frames, the call would be

fd = socket(PF_PACKET, SOCK_RAW, htons(ETH_P_IP));          /* newer systems */

or

fd = socket(AF_INET, SOCK_PACKET, htons(ETH_P_IP));         /* older systems */

Other constants for the final argument are ETH_P_ARP and ETH_P_IPV6, for example.

Specifying a protocol of ETH_P_xxx tells the datalink which frame types to pass to the
socket for the frames the datalink receives. If the datalink supports a promiscuous mode
(e.g., an Ethernet), then the device must also be put into a promiscuous mode, if desired.
This is done with a PACKET_ADD_MEMBERSHIP socket option, using a packet_mreq structure
specifying an interface and an action of PACKET_MR_PROMISC. On older systems, this is done
instead by an ioctl of SIOCGIFFLAGS to fetch the flags, setting the IFF_PROMISC flag, and
then storing the flags with SIOCSIFFLAGS. Unfortunately, with this method, multiple
promiscuous listeners can interfere with each other and a buggy program can leave
promiscuous mode on even after it exits.

Some differences are evident when comparing this Linux feature to BPF and DLPI:

1. The Linux feature provides no kernel buffering and kernel filtering is only available
on newer systems (via the SO_ATTACH_FILTER socket option). There is a normal
socket receive buffer, but multiple frames cannot be buffered together and passed

Page 896

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


to the application with a single read. This increases the overhead involved in
copying the potentially voluminous amounts of data from the kernel to the
application.

2. SOCK_PACKET provides no filtering by device. (PF_PACKET sockets can be linked to a
device by calling bind.) If ETH_P_IP is specified in the call to socket, then all IPv4
packets from all devices (Ethernets, PPP links, SLIP links, and the loopback device,
for example) are passed to the socket. A generic socket address structure is
returned by recvfrom, and the sa_data member contains the device name (e.g.,
eth0). The application must then discard data from any device in which it is not
interested. The problem again is too much data can be returned to the application,
which can get in the way when monitoring a high-speed network.

[ Team LiB ]

Page 897

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

29.5 libpcap: Packet Capture Library
The packet capture library, libpcap, provides implementation-independent access to the
underlying packet capture facility provided by the OS. Currently, it supports only the
reading of packets (although adding a few lines of code to the library lets one write
datalink packets too on some systems). See the next section for a description of another
library that supports not only writing datalink packets, but also constructing arbitrary
packets.

Support currently exists for BPF under Berkeley-derived kernels, DLPI under HP-UX and
Solaris 2.x, NIT under SunOS 4.1.x, the Linux SOCK_PACKET and PF_PACKET sockets, and a
few other operating systems. This library is used by tcpdump. About 25 functions comprise
the library, but rather than just describe the functions, we will show the actual use of the
common functions in a complete example in a later section. All the library functions begin
with the pcap_ prefix. The pcap man page describes these functions in more detail.

The library is publicly available from http://www.tcpdump.org/.

[ Team LiB ]

Page 898

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.tcpdump.org/default.htm
http://www.tcpdump.org/
http://www.processtext.com/abcchm.html


[ Team LiB ]

29.6 libnet: Packet Creation and Injection Library
libnet provides an interface to craft and inject arbitrary packets into the network. It
provides both raw socket and datalink access modes in an implementation-independent
manner.

The library hides many of the details of crafting the IP and UDP or TCP headers, and
provides simple and portable access to writing datalink and raw packets. As with libpcap,
the library is made up of quite a number of functions. We will show how to use a small
group of the functions for accessing raw sockets in the example in the following section, as
well as the code required to use raw sockets directly for comparison. All the library
functions begin with the libnet_ prefix; the libnet man page and online manual describe
these functions in more detail.

The library is publicly available from http://www.packetfactory.net/libnet/. The online
manual is http://www.packetfactory.net/libnet/manual/. As of this writing, the only
manual available is for the deprecated version 1.0; the supported version 1.1 has a 
significantly different API. This example uses the 1.1 API.

[ Team LiB ]

Page 899

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.packetfactory.net/libnet/default.htm
http://www.packetfactory.net/libnet/manual/default.htm
http://www.packetfactory.net/libnet/
http://www.packetfactory.net/libnet/manual/
http://www.processtext.com/abcchm.html


[ Team LiB ]

29.7 Examining the UDP Checksum Field
We will now develop an example that sends a UDP datagram containing a DNS query to a
name server and reads the reply using the packet capture library. The goal of the example
is to determine whether the name server computes a UDP checksum or not. With IPv4, the
computation of a UDP checksum is optional. Most current systems enable these checksums
by default, but unfortunately, older systems, notably SunOS 4.1.x, disable these
checksums by default. All systems today, and especially a system running a name server,
should always run with UDP checksums enabled, as corrupted datagrams can corrupt the
server's database.

Enabling or disabling UDP checksums is normally done on a systemwide basis, as described
in Appendix E of TCPv1.

We will build our own UDP datagram (the DNS query) and write it to a raw socket. We will
also show the same code using libnet. We could use a normal UDP socket to send the
query, but we want to show how to use the IP_HDRINCL socket option to build a complete
IP datagram.

We can never obtain the UDP checksum when reading from a normal UDP socket, and we
can never read UDP or TCP packets using a raw socket (Section 28.4). Therefore, we must
use the packet capture facility to obtain the entire UDP datagram containing the name
server's reply.

We will also examine the UDP checksum field in the UDP header. If it is 0, the server does
not have UDP checksums enabled.

Figure 29.3 summarizes the operation of our program.

Figure 29.3. Our application to check if a name server has UDP
checksums enabled.

We write our own UDP datagrams to the raw socket and read back the replies using 
libpcap. Notice that UDP also receives the name server reply, and it will respond with an
ICMP "port unreachable" because it knows nothing about the source port number that our
application chooses. The name server will ignore this ICMP error. We also note that it is
harder to write a test program of this form that uses TCP, even though we are easily able
to write our own TCP segments because any reply to the TCP segments we generate will
normally cause our TCP to respond with an RST to whomever we sent the segment.

One way around this is to send TCP segments with a source IP address that belongs to the

Page 900

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


attached subnet but is not currently assigned to some other node. Add an ARP entry to the
sending host for this new IP address so that the sending host will answer ARP requests for
this new address, but do not configure the new IP address as an alias. This will cause the
IP stack on the sending host to discard packets received for this new IP address, assuming
the sending host is not acting as a router.

Figure 29.4 is a summary of the functions that comprise our program.

Figure 29.4. Summary of functions for our udpcksum program.

Figure 29.5 shows the header udpcksum.h, which includes our basic unp.h header along
with the various system headers that are needed to access the structure definitions for the
IP and UDP packet headers.

Figure 29.5 udpcksum.h header.

udpcksum/udpcksum.h

 1 #include    "unp.h"

 2 #include    <pcap.h>

 3 #include    <netinet/in_systm.h>    /* required for ip.h */

 4 #include    <netinet/in.h>

 5 #include    <netinet/ip.h>

 6 #include    <netinet/ip_var.h>

 7 #include    <netinet/udp.h>

 8 #include    <netinet/udp_var.h>

 9 #include    <net/if.h>

10 #include    <netinet/if_ether.h>

11 #define TTL_OUT     64          /* outgoing TTL */

12                     /* declare global variables */

13 extern struct sockaddr *dest, *local;

14 extern socklen_t destlen, locallen;

15 extern int datalink;

16 extern char *device;

17 extern pcap_t *pd;

18 extern int rawfd;

19 extern int snaplen;

20 extern int verbose;

21 extern int zerosum;

22                      /* function prototypes */

23 void    cleanup(int);

Page 901

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


24 char   *next_pcap(int *);

25 void    open_output(void);

26 void    open_pcap(void);

27 void    send_dns_query(void);

28 void    test_udp(void);

29 void    udp_write(char *, int);

30 struct udpiphdr *udp_read(void);

3 10 Additional Internet headers are required to deal with the IP and UDP header fields.

11 29 We define some global variables and prototypes for our own functions that we will
show shortly.

The first part of the main function is shown in Figure 29.6.

Figure 29.6 main function: definitions.

udpcksum/main.c

 1 #include    "udpcksum.h"

 2             /* define global variables */

 3 struct sockaddr *dest, *local;

 4 struct sockaddr_in locallookup;

 5 socklen_t destlen, locallen;

 6 int     datalink;              /* from pcap_datalink(), in <net/bpf.h> */

 7 char   *device;                /* pcap device */

 8 pcap_t *pd;                    /* packet capture struct pointer */

 9 int     rawfd;                 /* raw socket to write on */

10 int     snaplen = 200;         /* amount of data to capture */

11 int     verbose;

12 int     zerosum;               /* send UDP query with no checksum */

13 static void usage(const char *);

14 int

15 main(int argc, char *argv[])

16 {

17     int     c, lopt = 0;

18     char   *ptr, localname[1024], *localport;

19     struct addrinfo *aip;

The next part of the main function, shown in Figure 29.7, processes the command-line
arguments.

Process command-line options
20 25 We call getopt to process the command-line arguments. The -0 option lets us send
our UDP query without a UDP checksum to see if the server handles this differently from a
datagram with a checksum.

26 28 The -i option lets us specify the interface on which to receive the server's reply. If
this is not specified, the packet capture library chooses one, which might not be correct on
a multihomed host. This is one way that reading from a packet capture device differs from
reading from a normal socket: With a socket, we can wildcard the local address, allowing
us to receive packets arriving on any interface, but with a packet capture device, we
receive arriving packets on only one interface.

Figure 29.7 main function: processes command-line arguments.

Page 902

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


udpcksum/main.c

20     opterr = 0;                 /* don't want getopt() writing to stderr */

21     while ( (c = getopt(argc, argv, "0i:l:v")) != -1) {

22          switch (c) {

23          case '0':

24              zerosum = 1;

25              break;

26          case 'i':

27              device = optarg;    /* pcap device */

28              break;

29          case 'l':               /* local IP address and port #: a.b.c.d.p

*/

30              if ( (ptr = strrchr(optarg, '.')) == NULL)

31                   usage("invalid -l option");

32              *ptr++ = 0;         /* null replaces final period */

33              localport = ptr;    /* service name or port number */

34              strncpy(localname, optarg, sizeof(localname));

35              lopt = 1;

36              break;

37          case 'v':

38              verbose = 1;

39              break;

40         case '?':

41              usage("unrecognized option");

42         }

43    }

We note that the Linux SOCK_PACKET feature does not limit its datalink capture to a single
device. Nevertheless, libpcap provides this filtering based on either its default or on our -i
option.

29 36 The -l option lets us specify the source IP address and port number. The port (or a
service name) is taken as the string following the final period, and the source IP address is
taken as everything before the final period.

Figure 29.8 main function: converts hostnames and service names;
creates socket.

44     if (optind != argc - 2)

45         usage("missing <host> and/or <serv>");

46         /* convert destination name and service */

47     aip = Host_serv(argv[optind], argv[optind + 1], AF_INET, SOCK_DGRAM);

48     dest = aip->ai_addr;       /* don't freeaddrinfo() */

49     destlen = aip->ai_addrlen;

50     /*

51      * Need local IP address for source IP address for UDP datagrams.

52      * Can't specify 0 and let IP choose, as we need to know it for

53      * the pseudoheader to calculate the UDP checksum.

54      * If -l option supplied, then use those values; otherwise,

55      * connect a UDP socket to the destination to determine the right

Page 903

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


56      * source address.

57      */

58     if (lopt) {

59             /* convert local name and service */

60         aip = Host_serv(localname, localport, AF_INET, SOCK_DGRAM);

61         local = aip->ai_addr; /* don't freeaddrinfo() */

62         locallen = aip->ai_addrlen;

63     } else {

64         int     s;

65         s = Socket(AF_INET, SOCK_DGRAM, 0);

66         Connect(s, dest, destlen);

67         /* kernel chooses correct local address for dest */

68         locallen = sizeof(locallookup);

69         local = (struct sockaddr *) &locallookup;

70         Getsockname(s, local, &locallen);

71         if (locallookup.sin_addr.s_addr == htonl(INADDR_ANY))

72             err_quit("Can't determine local address - use -l\n");

73         close(s);

74     }

75     open_output();              /* open output, either raw socket or libnet

*/

76     open_pcap();                /* open packet capture device */

77     setuid(getuid());           /* don't need superuser privileges anymore

*/

78     Signal(SIGTERM, cleanup);

79     Signal(SIGINT, cleanup);

80     Signal(SIGHUP, cleanup);

81     test_udp();

82     cleanup(0);

83 }

The last part of the main function is shown in Figure 29.8.

Process destination name and port
46 49 We verify that exactly two command-line arguments remain: the destination
host-name and service name. We call host_serv to convert these into a socket address
structure, the pointer to which we save in dest.

Process local name and port
50 74 If specified on the command line, we then do the same conversion of the local
host-name and port, saving the pointer to the socket address structure in local.
Otherwise, we determine the local IP address to use by connecting a datagram socket to
the destination and storing the resulting local address in local. Since we will be building
our own IP and UDP headers, we must know the source IP address when we write the UDP
datagram. We cannot leave it as 0 and let IP choose the address, because the address is
part of the UDP pseudoheader (which we describe shortly) that we must use for the UDP
checksum computation.

Create raw socket and open packet capture device
75 76 The function open_output prepares the output method, whether raw sockets or
libnet. The function open_pcap opens the packet capture device; we will show this

Page 904

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


function next.

Change permissions and establish signal handlers
77 80 We need superuser privileges to create a raw socket. We normally need superuser
privileges to open the packet capture device, but this depends on the implementation. For
example, with BPF, the administrator can set the permissions of the /dev/bpf devices to
whatever is desired for that system. We now give up these additional permissions,
assuming the program file is set-user-ID. If the process has superuser privileges, calling 
setuid sets our real user ID, effective user ID, and saved set-user-ID to our real user ID (
getuid). We establish signal handlers in case the user terminates the program before it is
done.

Perform test and cleanup
81 82 The function test_udp (Figure 29.10) performs the test and then returns. cleanup (
Figure 29.18) prints summary statistics from the packet capture library and terminates the
process.

Figure 29.9 shows the open_pcap function, which we called from the main function to open
the packet capture device.

Choose packet capture device
10 14 If the packet capture device was not specified (the -i command-line option), then
pcap_lookupdev chooses a device. It issues the SIOCGIFCONF ioctl and chooses the lowest
numbered device that is up, but not the loopback. Many of the pcap library functions fill in
an error string if an error occurs. The sole argument to this function is an array that is filled
in with an error string.

Open device
15 17 pcap_open_live opens the device. The term "live" refers to an actual device being
opened, instead of a save file containing previously saved packets. The first argument is
the device name, the second is the number of bytes to save per packet (snaplen, which we
initialized to 200 in Figure 29.6), the third is a promiscuous flag, the fourth is a timeout
value in milliseconds, and the fifth is a pointer to an error message array.

Figure 29.9 open_pcap function: opens and initializes packet capture
device.

udpcksum/pcap.c

 1 #include    "udpcksum.h"

 2 #define CMD     "udp and src host %s and src port %d"

 3 void

 4 open_pcap(void)

 5 {

 6     uint32_t localnet, netmask;

 7     char    cmd[MAXLINE], errbuf[PCAP_ERRBUF_SIZE],

 8         str1[INET_ADDRSTRLEN], str2[INET_ADDRSTRLEN];

 9     struct bpf_program fcode;

10     if (device == NULL) {

11         if ( (device = pcap_lookupdev(errbuf)) == NULL)

12             err_quit("pcap_lookup: %s", errbuf);

13     }

Page 905

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


14     printf("device = %s\n", device);

15         /* hardcode: promisc=0, to_ms=500 */

16     if ( (pd = pcap_open_live(device, snaplen, 0, 500, errbuf) ) == NULL)

17         err_quit("pcap_open_live: %s", errbuf);

18     if (pcap_lookupnet(device, &localnet, &netmask, errbuf) < 0)

19         err_quit("pcap_lookupnet: %s", errbuf);

20     if (verbose)

21         printf("localnet = %s, netmask = %s\n",

22                Inet_ntop(AF_INET, &localnet, str1, sizeof(str1)),

23                Inet_ntop(AF_INET, &netmask, str2, sizeof(str2)));

24     snprintf(cmd, sizeof(cmd), CMD,

25              Sock_ntop_host(dest, destlen),

26              ntohs(sock_get_port(dest, destlen)));

27     if (verbose)

28         printf("cmd = %s\n", cmd);

29     if (pcap_compile(pd, &fcode, cmd, 0, netmask) < 0)

30         err_quit("pcap_compile: %s", pcap_geterr(pd));

31     if (pcap_setfilter(pd, &fcode) < 0)

32         err_quit("pcap_setfilter: %s", pcap_geterr(pd));

33     if ( (datalink = pcap_datalink(pd)) < 0)

34         err_quit("pcap_datalink: %s", pcap_geterr(pd));

35     if (verbose)

36         printf("datalink = %d\n", datalink);

37 }

If the promiscuous flag is set, the interface is placed into promiscuous mode, causing it to
receive all packets passing by on the wire. This is the normal mode for tcpdump. For our
example, however, the DNS server replies will be sent to our host.

The timeout argument is a read timeout. Instead of having the device return a packet to
the process every time a packet is received (which could be inefficient, invoking lots of
copies of individual packets from the kernel to the process), a packet is returned only when
either the device's read buffer is full or when the read timeout expires. If the read timeout
is set to 0, every packet is returned as soon as it is received.

Obtain network address and subnet mask
18 23 pcap_lookupnet returns the network address and subnet mask for the packet
capture device. We must specify the subnet mask in the call to pcap_compile that follows,
because the packet filter needs this to determine if an IP address is a subnet-directed
broadcast address.

Compile packet filter
24 30 pcap_compile takes a filter string (which we build in the cmd array) and compiles it
into a filter program (stored in fcode). This will select the packets that we want to receive.

Load filter program
31 32 pcap_setfilter takes the filter program we just compiled and loads it into the
packet capture device. This initiates the capturing of the packets we selected with the
filter.

Determine datalink type

Page 906

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


33 36 pcap_datalink returns the type of datalink for the packet capture device. We need
this when receiving packets to determine the size of the datalink header that will be at the
beginning of each packet we read (Figure 29.15).

After calling open_pcap, the main function calls test_udp, which we show in Figure 29.10.
This function sends a DNS query and reads the server's reply.

Figure 29.10 test_udp function: sends queries and reads responses.

udpcksum/udpcksum.c

12 void

13 test_udp(void)

14 {

15     volatile int nsent = 0, timeout = 3;

16     struct udpiphdr *ui;

17     Signal(SIGALRM, sig_alrm);

18     if (sigsetjmp(jmpbuf, 1)) {

19         if (nsent >= 3)

20             err_quit("no response");

21         printf("timeout\n");

22         timeout *= 2;           /* exponential backoff: 3, 6, 12 */

23     }

24     canjump = 1;                /* siglongjmp is now OK */

25     send_dns_query();

26     nsent++;

27     alarm(timeout);

28     ui = udp_read();

29     canjump = 0;

30     alarm(0);

31     if (ui->ui_sum == 0)

32         printf("UDP checksums off\n");

33     else

34         printf("UDP checksums on\n");

35     if (verbose)

36         printf("received UDP checksum = %x\n", ntohs(ui->ui_sum));

37 }

volatile variables
50 We want the two automatic variables, nsent and timeout, to retain their values after a
siglongjmp from the signal handler back to this function. An implementation is allowed to
restore automatic variables back to what their value was when sigsetjmp was called (p.
178 of APUE), but adding the volatile qualifier prevents this from happening.

Establish signal handler and jump buffer
52 53 A signal handler is established for SIGALRM and sigsetjmp establishes a jump buffer
for siglongjmp. (These two functions are described in detail in Section 10.15 of APUE.) The
second argument of 1 to sigsetjmp tells it to save the current signal mask since we will
call siglongjmp from our signal handler.

Handle siglongjmp

Page 907

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


54 58 This code is executed only when siglongjmp is called from our signal handler. This
indicates that a timeout occurred: We sent a request and never received a reply. If we
have sent three requests, we terminate. Otherwise, we print a message and multiply the
timeout value by 2. This is an exponential backoff, which we described in Section 22.5. The
first timeout will be for 3 seconds, then 6, and then 12.

The reason we use sigsetjmp and siglongjmp in this example, rather than just catching
EINTR (as in Figure 14.1), is because the packet capture library reading functions (which
are called by our udp_read function) restart a read operation when EINTR is returned. Since
we do not want to modify the library functions to return this error, our only solution is to
catch the SIGALRM signal and perform a nonlocal goto, returning control to our code instead
of the library code.

Send DNS query and read reply
60 65 send_dns_query (Figure 29.12) sends a DNS query to a name server. udp_read (
Figure 29.15) reads the reply. We call alarm to prevent the read from blocking forever. If
the specified timeout period (in seconds) expires, SIGALRM is generated and our signal
handler calls siglongjmp.

Examine received UDP checksum
66 71 If the received UDP checksum is 0, the server did not calculate and send a
checksum.

Figure 29.11 shows our signal handler, sig_alrm, which handles the SIGALRM signal.

Figure 29.11 sig_alrm function: handles SIGALRM signal.

udpcksum/udpcksum.c

 1 #include    "udpcksum.h"

 2 #include    <setjmp.h>

 3 static sigjmp_buf jmpbuf;

 4 static int canjump;

 5 void

 6 sig_alrm(int signo)

 7 {

 8     if(canjump == 0)

 9        return;

10     siglongjmp(jmpbuf, 1);

11 }

8 10 The flag canjump was set in Figure 29.10 after the jump buffer was initialized by
sigsetjmp. If the flag has been set, we call siglongjmp, which causes the flow of control to
act as if the sigsetjmp in Figure 29.10 had returned with a value of 1.

Figure 29.12 shows the send_dns_query function that sends a UDP query to a DNS server
using a raw socket. This function builds the application data, a DNS query.

Figure 29.12 send_dns_query function: sends a query to a DNS server.

udpcksum/senddnsquery-raw.c

 6 void

 7 send_dns_query(void)

 8 {

Page 908

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


 9     size_t nbytes;

10     char  *buf, *ptr;

11     buf = Malloc(sizeof(struct udpiphdr) + 100);

12     ptr = buf + sizeof(struct udpiphdr);    /* leave room for IP/UDP headers

*/

13     *((uint16_t *) ptr) = htons(1234);  /* identification */

14     ptr += 2;

15     *((uint16_t *) ptr) = htons(0x0100);    /* flags: recursion desired */

16     ptr += 2;

17     *((uint16_t *) ptr) = htons(1); /* # questions */

18     ptr += 2;

19     *((uint16_t *) ptr) = 0;    /* # answer RRs */

20     ptr += 2;

21     *((uint16_t *) ptr) = 0;    /* # authority RRs */

22     ptr += 2;

23     *((uint16_t *) ptr) = 0;    /* # additional RRs */

24     ptr += 2;

25     memcpy(ptr, "\001a\014root-servers\003net\000", 20);

26     ptr += 20;

27     *((uint16_t *) ptr) = htons(1); /* query type = A */

28     ptr += 2;

29     *((uint16_t *) ptr) = htons(1); /* query class = 1 (IP addr) */

30     ptr += 2;

31     nbytes = (ptr - buf) - sizeof(struct udpiphdr);

32     udp_write(buf, nbytes);

33     if (verbose)

34         printf("sent: %d bytes of data\n", nbytes);

35 }

Allocate buffer and initialize pointer
11 12 We use malloc to allocate buf with room for a 20-byte IP header, an 8-byte UDP
header, and 100 bytes of user data. ptr is set to point to the first byte of user data.

Build DNS query
13 24 To understand the details of the UDP datagram built by this function requires an
understanding of the DNS message format. This is found in Section 14.3 of TCPv1. We set
the identification field to 1234, the flags to 0, the number of questions to 1, and the
number of answer resource records (RRs), the number of authority RRs, and the number of
additional RRs to 0.

25 30 We form the single question that follows in the message: an A query for the IP
addresses of the host a.root-servers.net. This domain name is stored in 20 bytes and
consists of 4 labels: the 1-byte label a, the 12-byte label root-servers (remember that
\014 is an octal character constant), the 3-byte label net, and the root label whose length
is 0. The query type is 1 (called an A query) and the query class is also 1.

Write UDP datagram
31 32 This message consists of 36 bytes of user data (eight 2-byte fields and the 20-byte
domain name), but we calculate the message length by subtracting the beginning of the
buffer from the current pointer within the buffer to avoid having to change a constant if we
change the format of the message we're sending. We call our function udp_write to build
the UDP and IP headers and write the IP datagram to our raw socket.

Page 909

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


Figure 29.13 shows the open_output function for use with raw sockets.

Declare raw socket descriptor
2 We declare a global variable in which to hold the descriptor for the raw socket.

Create raw socket and enable IP_HDRINCL
7 13 We create a raw socket and enable the IP_HDRINCL socket option. This option lets us
write complete IP datagrams, including the IP header.

Figure 29.13 open_output function: prepares a raw socket.

udpcksum/udpwrite.c

 2 int     rawfd;                /* raw socket to write on */

 3 void

 4 open_output(void)

 5 {

 6     int     on = 1;

 7     /*

 8      * Need a raw socket to write our own IP datagrams to.

 9      * Process must have superuser privileges to create this socket.

10      * Also must set IP_HDRINCL so we can write our own IP headers.

11      */

12     rawfd = Socket(dest->sa_family, SOCK_RAW, 0);

13     Setsockopt(rawfd, IPPROTO_IP, IP_HDRINCL, &on, sizeof(on));

14 }

Figure 29.14 shows our function, udp_write, which builds the IP and UDP headers and
then writes the datagram to the raw socket.

Initialize packet header pointers
24 26 ip points to the beginning of the IP header (an ip structure) and ui points to the
same location, but the structure udpiphdr is the combined IP and UDP headers.

Zero header
27 We explicitly set the header area to zeros, to avoid checksumming any leftover data that
might be in the buffer.

Previous versions of this code explicitly set every element of the struct udpiphdr to zero;
however, this struct contains some implementation details so it may be different from
system to system. This is a typical portability problem when building headers explicitly.

Update lengths
28 31 ui_len is the UDP length: the number of bytes of user data plus the size of the UDP
header (8 bytes). userlen (the number of bytes of user data that follows the UDP header)
is incremented by 28 (20 bytes for the IP header and 8 bytes for the UDP header) to reflect
the total size of the IP datagram.

Fill in UDP header and calculate UDP checksum
32 45 When the UDP checksum is calculated, it includes not only the UDP header and UDP

Page 910

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


data, but also fields from the IP header. These additional fields from the IP header form
what is called the pseudoheader. The inclusion of the pseudoheader provides additional
verification that if the checksum is correct, then the datagram was delivered to the correct
host and to the correct protocol code. These statements initialize the fields in the IP header
that form the pseudoheader. The code is somewhat obtuse, but is explained in Section
23.6 of TCPv2. The result is storing the UDP checksum in the ui_sum member if the
zerosum flag (the - 0 command-line argument) is not set.

If the calculated checksum is 0, the value 0xffff is stored instead. In one's-complement
arithmetic, the two values are the same, but UDP sets the checksum to 0 to indicate that
the sender did not store a UDP checksum. Notice that we did not check for a calculated
checksum of 0 in Figure 28.14 because the ICMPv4 checksum is required: The value of 0
does not indicate the absence of a checksum.

We note that Solaris 2.x, for x < 6, has a bug with regard to checksums for TCP segments
or UDP datagrams sent on a raw socket with the IP_HDRINCL socket option set. The kernel
calculates the checksum and we must set the ui_sum field to the UDP length.

Fill in IP header
46 59 Since we have set the IP_HDRINCL socket option, we must fill in most fields in the IP
header. (Section 28.3 discusses these writes to a raw socket when this socket option is
set.) We set the identification field to 0 (ip_id), which tells IP to set this field. IP also
calculates the IP header checksum. sendto writes the IP datagram.

Note that we set the ip_len field in either host or network byte order, depending on the
OS we're using. This is a typical portability problem when using raw sockets.

The next function is udp_read, shown in Figure 29.15, which was called from Figure 29.10.

Figure 29.14 udp_write function: builds UDP and IP headers and writes
IP datagram to raw socket.

udpcksum/udpwrite.c

19 void

20 udp_write(char *buf, int userlen)

21 {

22     struct udpiphdr *ui;

23     struct ip *ip;

24         /* fill in and checksum UDP header */

25     ip = (struct ip *) buf;

26     ui = (struct udpiphdr *) buf;

27     bzero(ui, sizeof(*ui));

28             /* add 8 to userlen for pseudoheader length */

29     ui->ui_len = htons((uint16_t) (sizeof(struct udphdr) + userlen));

30             /* then add 28 for IP datagram length */

31     userlen += sizeof(struct udpiphdr);

32     ui->ui_pr = IPPROTO_UDP;

33     ui->ui_src.s_addr = ((struct sockaddr_in *) local)->sin_addr.s_addr;

34     ui->ui_dst.s_addr = ((struct sockaddr_in *) dest)->sin_addr.s_addr;

35     ui->ui_sport = ((struct sockaddr_in *) local)->sin_port;

36     ui->ui_dport = ((struct sockaddr_in *) dest)->sin_port;

37     ui->ui_ulen = ui->ui_len;

38     if (zerosum == 0) {

39 #if 1                              /* change to if 0 for Solaris 2.x, x < 6

*/

Page 911

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


40         if ( (ui->ui_sum = in_cksum((u_int16_t *) ui, userlen)) == 0)

41              ui->ui_sum = 0xffff;

42 #else

43         ui->ui_sum = ui->ui_len;

44 #endif

45     }

46         /* fill in rest of IP header; */

47         /* ip_output() calcuates & stores IP header checksum */

48     ip->ip_v = IPVERSION;

49     ip->ip_hl = sizeof(struct ip) >> 2;

50     ip->ip_tos = 0;

51 #if defined(linux) || defined(__OpenBSD__)

52     ip->ip_len = htons(userlen);    /* network byte order */

53 #else

54     ip->ip_len = userlen;       /* host byte order */

55 #endif

56     ip->ip_id = 0;              /* let IP set this */

57     ip->ip_off = 0;             /* frag offset, MF and DF flags */

58     ip->ip_ttl = TTL_OUT;

59     Sendto(rawfd, buf, userlen, 0, dest, destlen);

60 }

Figure 29.15 udp_read function: reads next packet from packet capture
device.

udpcksum/udpread.c

 7 struct udpiphdr *

 8 udp_read(void)

 9 {

10     int     len;

11     char   *ptr;

12     struct ether_header *eptr;

13     for ( ; ; ) {

14         ptr = next_pcap(&len);

15         switch (datalink) {

16         case DLT_NULL:          /* loopback header = 4 bytes */

17             return (udp_check(ptr + 4, len - 4));

18         case DLT_EN10MB:

19             eptr = (struct ether_header *) ptr;

20             if (ntohs(eptr->ether_type) != ETHERTYPE_IP)

21                 err_quit("Ethernet type %x not IP",

ntohs(eptr->ether_type));

22             return (udp_check(ptr + 14, len - 14));

23         case DLT_SLIP:          /* SLIP header = 24 bytes */

24             return (udp_check(ptr + 24, len - 24));

25         case DLT_PPP:           /* PPP header = 24 bytes */

26             return (udp_check(ptr + 24, len - 24));

27         default:

28             err_quit("unsupported datalink (%d)", datalink);

29         }

30     }

31 }

Page 912

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


14 29 Our function next_pcap (Figure 29.16) returns the next packet from the packet
capture device. Since the datalink headers differ depending on the actual device type, we
branch based on the value returned by the pcap_datalink function.

These magic offsets of 4, 14, and 24 are shown in Figure 31.9 of TCPv2. The 24-byte
offsets shown for SLIP and PPP are for BSD/OS 2.1.

Despite having the qualifier "10MB" in the name DLT_EN10MB, this datalink type is also
used for 100 Mbit/sec Ethernet.

Our function udp_check (Figure 29.19) examines the packet and verifies fields in the IP
and UDP headers.

Figure 29.16 shows the next_pcap function, which returns the next packet from the packet
capture device.

43 44 We call the library function pcap_next, which returns the next packet or NULL if a
timeout occurs. If the timeout occurs, we simply loop and call pcap_next again. A pointer
to the packet is the return value of the function and the second argument points to a 
pcap_pkthdr structure, which is also filled in on return.

Figure 29.16 next_pcap function: returns next packet.

udpcksum/pcap.c

38 char *

39 next_pcap(int *len)

40 {

41     char *ptr;

42     struct pcap_pkthdr hdr;

43         /* keep looping until packet ready */

44     while ( (ptr = (char *) pcap_next(pd, &hdr)) == NULL) ;

45     *len = hdr.caplen;          /* captured length */

46     return (ptr);

47 }

struct pcap_pkthdr {

  struct timeval  ts;     /* timestamp */

  bpf_u_int32     caplen; /* length of portion captured */

  bpf_u_int32     len;    /* length of this packet (off wire) */

};

The timestamp is when the packet capture device read the packet, as opposed to the
actual delivery of the packet to the process, which could be sometime later. caplen is the
amount of data that was captured (recall that we set our variable snaplen to 200 in Figure
29.6, and then this was the second argument to pcap_open_live in Figure 29.9). The
purpose of the packet capture facility is to capture the packet headers and not all the data
in each packet. len is the full length of the packet on the wire. caplen will always be less
than or equal to len.

45 46 The captured length is returned through the pointer argument and the return value
of the function is the pointer to the packet. Keep in mind that the "pointer to the packet"
points to the datalink header, which is the 14-byte Ethernet header in the case of an
Ethernet frame, or a 4-byte pseudolink header in the case of the loopback interface.

Page 913

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


If we look at the implementation of pcap_next in the library, it shows the division of labor
between the different functions. We show this in Figure 29.17. Our application calls the
pcap_ functions, and some of these functions are device-independent, while others are
dependent on the type of packet capture device. For example, we show that the BPF
implementation calls read, while the DLPI implementation calls getmsg and the Linux
implementation calls recvfrom.

Figure 29.17. Arrangement of function calls to read from packet
capture library.

Our function udp_check verifies numerous fields in the IP and UDP headers. It is shown in
Figure 29.19. We must do these verifications because when the packet is passed to us by
the packet capture device, the IP layer has not yet seen the packet. This differs from a raw
socket.

44 61 The packet length must include at least the IP and UDP headers. The IP version is
verified along with the IP header length and the IP header checksum. If the protocol field
indicates a UDP datagram, the function returns the pointer to the combined IP/UDP header.
Otherwise, the program terminates since the packet capture filter that we specified in our
call to pcap_setfilter in Figure 29.9 should not return any other type of packet.

Figure 29.18 cleanup function.

udpcksum/cleanup.c

 2 void

 3 cleanup(int signo)

 4 {

 5     struct pcap_stat stat;

 6     putc('\n', stdout);

 7     if(verbose) {

 8        if (pcap_stats(pd, &stat) < 0)

 9            err_quit("pcap_stats: %s\n", pcap_geterr(pd));

10        printf("%d packets received by filter\n", stat.ps_recv);

11        printf("%d packets dropped by kernel\n", stat.ps_drop);

12     }

13     exit(0);

Page 914

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


14 }

The cleanup function shown in Figure 29.18 is called by the main function immediately
before the program terminates, and also as the signal handler if the user aborts the
program (Figure 29.8).

Figure 29.19 udp_check function: verifies fields in IP and UDP headers.

udpcksum/udpread.c

38 struct udpiphdr *

39 udp_check(char *ptr, int len)

40 {

41     int     hlen;

42     struct ip *ip;

43     struct udpiphdr *ui;

44     if (len < sizeof(struct ip) + sizeof(struct udphdr))

45         err_quit("len = %d", len);

46         /* minimal verification of IP header */

47     ip = (struct ip *) ptr;

48     if (ip->ip_v != IPVERSION)

49         err_quit("ip_v = %d", ip->ip_v);

50     hlen = ip->ip_hl << 2;

51     if (hlen < sizeof(struct ip))

52         err_quit("ip_hl = %d", ip->ip_hl);

53     if (len < hlen + sizeof(struct udphdr))

54         err_quit("len = %d, hlen = %d", len, hlen);

55     if ( (ip->ip_sum = in_cksum((uint16_t *) ip, hlen)) != 0)

56         err_quit("ip checksum error");

57     if (ip->ip_p == IPPROTO_UDP) {

58         ui = (struct udpiphdr *) ip;

59         return (ui);

60     } else

61         err_quit("not a UDP packet");

62 }

Fetch and print packet capture statistics
7 12 pcap_stats fetches the packet capture statistics: the total number of packets
received by the filter and the number of packets dropped by the kernel.

Example
We first run our program with the -0 command-line option to verify that the name server
responds to datagrams that arrive with no checksum. We also specify the -v flag.

macosx # udpcksum -i en1 -0 -v bridget.rudoff.com domain

device = en1

localnet = 172.24.37.64, netmask = 255.255.255.224

cmd = udp and src host 206.168.112.96 and src port 53

datalink = 1

sent: 36 bytes of data

UDP checksums on

received UDP checksum = 9d15

Page 915

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


3 packets received by filter

0 packets dropped by kernel

Next, we run our program to a local name server (our system freebsd4) that does not have
UDP checksums enabled. (Note that it's increasingly rare to find a name server without
UDP checksums enabled.)

macosx # udpcksum -i en1 -v freebsd4.unpbook.com domain

device = en1

localnet = 172.24.37.64, netmask = 255.255.255.224

cmd = udp and src host 172.24.37.94 and src port 53

datalink = 1

sent: 36 bytes of data

UDP checksums off

received UDP checksum = 0

3 packets received by filter

0 packets dropped by kernel

libnet Output Functions
We now show versions of open_output and send_dns_query that use libnet instead of raw
sockets. As we will see, libnet takes care of many details for us, including the portability
problems with checksums and IP header byte order that we mentioned. The open_output
function for libnet is shown in Figure 29.20.

Declare libnet descriptor

7 libnet uses an opaque type, libnet_t, as a linkage to the library. The libnet_init
function returns a libnet_t pointer, which is then passed to further libnet functions to
indicate which instance is desired. In this way, it is similar to both socket and pcap
descriptors.

Initialize libnet

12 16 We call the libnet_init function, asking it to open an IPv4 raw socket by supplying
LIBNET_RAW4 as its first argument. If an error is encountered, libnet_init returns an error
in its errbuf argument, which we print if libnet_init returns NULL.

Figure 29.20 open_output function: prepares to use libnet.

udpcksum/senddnsquery-libnet.c

 7 static libnet_t *l;             /* libnet descriptor */

 8 void

 9 open_output(void)

10 {

11     char     errbuf[LIBNET_ERRBUF_SIZE];

12     /* Initialize libnet with an IPv4 raw socket */

13     l = libnet_init(LIBNET_RAW4, NULL, errbuf);

14     if (l == NULL) {

15         err_quit("Can't initialize libnet: %s", errbuf);

16     }

Page 916

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


17 }

Figure 29.21 send_dns_query function using libnet: sends a query to a
DNS server.

udpcksum/senddnsquery-libnet.c

18  void

19 send_dns_query(void)

20 {

21     char    qbuf[24], *ptr;

22     u_int16_t one;

23     int     packet_size = LIBNET_UDP_H + LIBNET_DNSV4_H + 24;

24     static libnet_ptag_t ip_tag, udp_tag, dns_tag;

25     /* build query portion of DNS packet */

26     ptr = qbuf;

27     memcpy(ptr, "\001a\014root-servers\003net\000", 20);

28     ptr += 20;

29     one = htons(1);

30     memcpy(ptr, &one, 2);   /* query type = A */

31     ptr += 2;

32     memcpy(ptr, &one, 2);   /* query class = 1 (IP addr) */

33     /* build DNS packet */

34     dns_tag = libnet_build_dnsv4(1234 /* identification */ ,

35                                  0x0100 /* flags: recursion desired */ ,

36                                  1 /* # questions */ , 0 /* # answer RRs */

,

37                                  0 /* # authority RRs */ ,

38                                  0 /* # additional RRs */ ,

39                                  qbuf /* query */ ,

40                                  24 /* length of query */ , l, dns_tag);

41     /* build UDP header */

42     udp_tag = libnet_build_udp(((struct sockaddr_in *) local)->

43                                sin_port /* source port */ ,

44                                ((struct sockaddr_in *) dest)->

45                                sin_port /* dest port */ ,

46                                packet_size /* length */ , 0 /* checksum */ ,

47                                NULL /* payload */ , 0 /* payload length */ ,

48                                l, udp_tag);

49     /* Since we specified the checksum as 0, libnet will automatically */

50     /* calculate the UDP checksum. Turn it off if the user doesn't want it.

*/

51     if (zerosum)

52         if (libnet_toggle_checksum(l, udp_tag, LIBNET_OFF) < 0)

53             err_quit("turning off checksums: %s\n", libnet_geterror(l));

54     /* build IP header */

55     ip_tag = libnet_build_ipv4(packet_size + LIBNET_IPV4_H /* len */,

56             0 /* tos */, 0 /* IP ID */, 0 /* fragment */,

57             TTL_OUT /* ttl */, IPPROTO_UDP /* protocol */,

58             0 /* checksum */,

59             ((struct sockaddr_in *) local)->sin_addr.s_addr /* source */,

60             ((struct sockaddr_in *) dest)->sin_addr.s_addr /* dest */,

61             NULL /* payload */, 0 /* payload length */, l, ip_tag);

62     if (libnet_write(l) < 0) {

63         err_quit("libnet_write: %s\n", libnet_geterror(l));

64     }

65     if (verbose)

66         printf("sent: %d bytes of data\n", packet_size);

67 }

Page 917

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


The send_dns_query function for libnet is shown in Figure 29.21. Compare it against the
send_dns_query (Figure 29.12) and udp_write (Figure 29.14) functions for raw sockets.

Build DNS query

25 32 We build the query portion of the DNS packet first, just as in lines 25 30 of Figure
29.12.

34 40 We then call the libnet_build_dnsv4 function, which accepts each field in the DNS
packet as a separate function argument. We only need to know the layout of the query
portion; the details of how to put together the DNS packet header are taken care of for us.

Fill in UDP header and arrange for UDP checksum calculation

42 48 Similarly, we build the UDP header by calling libnet_build_udp function. This also
accepts each header field as a separate function argument. When passing a checksum field
in as 0, libnet automatically calculates the checksum for that field. This is comparable to
lines 29 45 of Figure 29.14.

49 52 If the user requested that the checksum not be calculated, we must specifically turn
checksum calculation off.

Fill in IP header

53 65 To complete the packet, we build the IPv4 header using the libnet_build_ipv4
function. As with other libnet_build functions, we supply only the field contents and
libnet puts the header together for us. This is comparable to lines 46 58 of Figure 29.14.

Note that libnet automatically takes care of whether or not the ip_len field is in network
byte order. This is a sample of a portability improvement gained by using libnet.

Write UDP datagram

66 70 We call the function libnet_write to write the assembled datagram to the network.

Note that the libnet version of send_dns_query is only 67 lines, while the raw socket
version (send_dns_query and udp_write combined) is 96 lines and contains at least 2
portability "gotchas."

[ Team LiB ]

Page 918

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

29.8 Summary
With raw sockets, we have the capability to read and write IP datagrams that the kernel
does not understand, and with access to the datalink layer, we can extend that capability
to read and write any type of datalink frame, not just IP datagrams. tcpdump is probably
the most commonly used program that accesses the datalink layer directly.

Different operating systems have different ways of accessing the datalink layer. We looked
at the Berkeley-derived BPF, SVR4's DLPI, and the Linux SOCK_PACKET. But we can ignore
all their differences and still write portable code using the freely available packet capture
library, libpcap.

Writing raw datagrams can be different on different systems. The freely available libnet
library hides these differences and provides an interface to output both via raw sockets and
directly on the datalink.

[ Team LiB ]

Page 919

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Exercises
29.1 What is the purpose of the canjump flag in Figure 29.11?

29.2 In our udpcksum program, common error replies are an ICMP "port
unreachable" (the destination is not running a name server) or an ICMP
"host unreachable." In either case, we need not wait for a timeout of
our udp_read in Figure 29.10 because the ICMP error is essentially a
reply to our DNS query. Modify the program to catch these ICMP errors.

[ Team LiB ]

Page 920

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Chapter 30. Client/Server Design
Alternatives

Section 30.1.?Introduction

Section 30.2.?TCP Client Alternatives

Section 30.3.?TCP Test Client

Section 30.4.?TCP Iterative Server

Section 30.5.?TCP Concurrent Server, One Child per Client

Section 30.6.?TCP Preforked Server, No Locking Around accept

Section 30.7.?TCP Preforked Server, File Locking Around accept

Section 30.8.?TCP Preforked Server, Thread Locking Around accept

Section 30.9.?TCP Preforked Server, Descriptor Passing

Section 30.10.?TCP Concurrent Server, One Thread per Client

Section 30.11.?TCP Prethreaded Server, per-Thread accept

Section 30.12.?TCP Prethreaded Server, Main Thread accept

Section 30.13.?Summary

Exercises

[ Team LiB ]

Page 921

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

30.1 Introduction
We have several choices for the type of process control to use when writing a Unix server:

 Our first server, Figure 1.9, was an iterative server, but there are a limited number
of scenarios where this is recommended because the server cannot process a
pending client until it has completely serviced the current client.

 Figure 5.2 was our first concurrent server and it called fork to spawn a child process
for every client. Traditionally, most Unix servers fall into this category.

 In Section 6.8, we developed a different version of our TCP server consisting of a
single process using select to handle any number of clients.

 In Figure 26.3, we modified our concurrent server to create one thread per client
instead of one process per client.

There are two other modifications to the concurrent server design that we will look at in
this chapter:

 Preforking has the server call fork when it starts, creating a pool of child processes.
One process from the currently available pool handles each client request.

 Prethreading has the server create a pool of available threads when it starts, and
one thread from the pool handles each client.

There are numerous details with preforking and prethreading that we will examine in this
chapter: What if there are not enough processes or threads in the pool? What if there are
too many processes or threads in the pool? How can the parent and its children or threads
synchronize with each other?

Clients are typically easier to write than servers because there is less process control in a
client. Nevertheless, we have already examined various ways to write our simple echo
client and we summarize these in Section 30.2.

In this chapter, we will look at nine different server designs and we will run each server
against the same client. Our client/server scenario is typical of the Web: The client sends a
small request to the server and the server responds with data back to the client. Some of
the servers we have already discussed in detail (e.g., the concurrent server with one fork
per client), while the preforked and prethreaded servers are new and therefore discussed in
detail in this chapter.

We will run multiple instances of a client against each server, measuring the CPU time
required to service a fixed number of client requests. Instead of scattering all our CPU
timings throughout the chapter, we summarize them in Figure 30.1 and refer to this figure
throughout the chapter. We note that the times in this figure measure the CPU time
required only for process control and the iterative server is our baseline we subtract from
actual CPU time because an iterative server has no process control overhead. We include
the baseline time of 0.0 in this figure to reiterate this point. We use the term process
control CPU time in this chapter to denote this difference from the baseline for a given
system.

Figure 30.1. Timing comparisons of the various servers discussed in
this chapter.

Page 922

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


All these server timings were obtained by running the client shown in Figure 30.3 on two
different hosts on the same subnet as the server. For all tests, both clients spawned five
children to create five simultaneous connections to the server, for a maximum of 10
simultaneous connections at the server at any time. Each client requested 4,000 bytes
from the server across the connection. For those tests involving a preforked or a
prethreaded server, the server created 15 children or 15 threads when it started.

Some server designs involve creating a pool of child processes or a pool of threads. An item
to consider in these cases is the distribution of the client requests to the available pool. 
Figure 30.2 summarizes these distributions and we will discuss each column in the
appropriate section.

Figure 30.2. Number of clients or threads serviced by each of the 15
children or threads.

[ Team LiB ]

Page 923

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

30.2 TCP Client Alternatives
We have already examined various client designs, but it is worth summarizing their
strengths and weaknesses:

 Figure 5.5 was the basic TCP client. There were two problems with this program.
First, while it is blocked awaiting user input, it does not see network events such as
the peer closing the connection. Additionally, it operates in a stop-and-wait mode,
making it inefficient for batch processing.

 Figure 6.9 was the next iteration, and by using select, the client was notified of
network events while waiting for user input. However, this program did not handle
batch mode correctly. Figure 6.13 corrected this problem by using the shutdown
function.

 Figure 16.3 began the presentation of our client using nonblocking I/O.

 The first of our clients that went beyond the single-process, single-thread design
was Figure 16.10, which used fork with one process handling the client-to-server
data and the other process handling the server-to-client data.

 Figure 26.2 used two threads instead of two processes.

At the end of Section 16.2, we summarized the timing differences between these various
versions. As we noted there, although the nonblocking I/O version was the fastest, the
code was more complex and using either two processes or two threads simplifies the code.

[ Team LiB ]

Page 924

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

30.3 TCP Test Client
Figure 30.3 shows the client that we will use to test all the variations of our server.

10 12 Each time we run the client, we specify the hostname or IP address of the server,
the server's port, the number of children for the client to fork (allowing us to initiate
multiple connections to the same server concurrently), the number of requests each child
should send to the server, and the number of bytes to request the server to return each
time.

17 30 The parent calls fork for each child, and each child establishes the specified number
of connections with the server. On each connection, the child sends a line specifying the
number of bytes for the server to return, and then the child reads that amount of data from
the server. The parent just waits for all the children to terminate. Notice that the client
closes each TCP connection, so TCP's TIME_WAIT state occurs on the client, not on the
server. This is a difference between our client/server and normal HTTP connections.

When we measure the various servers in this chapter, we execute the client as

% client 192.168.1.20 8888 5 500 4000

This creates 2,500 TCP connections to the server: 500 connections from each of five
children. On each connection, 5 bytes are sent from the client to the server ("4000\n") and
4,000 bytes are transferred from the server back to the client. We run the client from two
different hosts to the same server, providing a total of 5,000 TCP connections, with a
maximum of 10 simultaneous connections at the server at any given time.

Sophisticated benchmarks exist for testing various Web servers. One is called WebStone
and is available from http://www.mindcraft.com/webstone. However, we do not need
anything this sophisticated to make some general comparisons of the various server design
alternatives that we will examine in this chapter.

We now present the nine different server designs.

Figure 30.3 TCP client program for testing our various servers.

server/client.c

 1 #include    "unp.h"

 2 #define MAXN    16384     /* max # bytes to request from server */

 3 int

 4 main(int argc, char **argv)

 5 {

 6     int     i, j, fd, nchildren, nloops, nbytes;

 7     pid_t   pid;

 8     ssize_t n;

 9     char    request[MAXLINE], reply[MAXN];

10     if (argc != 6)

11         err_quit("usage: client <hostname or IPaddr> <port> <#children> "

12                   "<#loops/child> <#bytes/request>");

13     nchildren = atoi(argv[3]);

Page 925

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.mindcraft.com/webstone
http://www.mindcraft.com/webstone
http://www.processtext.com/abcchm.html


14     nloops = atoi(argv[4]);

15     nbytes = atoi(argv[5]);

16     snprintf(request, sizeof(request), "%d\n", nbytes); /* newline at end */

17     for (i = 0; i < nchildren; i++) {

18         if ( (pid = Fork()) == 0) { /* child */

19             for (j = 0; j < nloops; j++) {

20                 fd = Tcp_connect(argv[1], argv[2]);

21                 Write(fd, request, strlen(request));

22                 if ( (n = Readn(fd, reply, nbytes)) != nbytes)

23                     err_quit("server returned %d bytes", n);

24                 Close(fd);       /* TIME_WAIT on client, not server */

25             }

26             printf("child %d done\n", i);

27             exit(0);

28         }

29         /* parent loops around to fork() again */

30     }

31     while (wait(NULL) > 0)     /* now parent waits for all children */

32         ;

33     if (errno != ECHILD)

34         err_sys("wait error");

35     exit(0);

36 }

[ Team LiB ]

Page 926

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

30.4 TCP Iterative Server
An iterative TCP server processes each client's request completely before moving on to the
next client. Iterative TCP servers are rare, but we showed one in Figure 1.9: a simple
daytime server.

We do, however, have a use for an iterative server in comparing the various servers in this
chapter. If we run the client as

% client 192.168.1.20 8888 1 5000 4000

to an iterative server, we get the same number of TCP connections (5,000) and the same
amount of data transferred across each connection. But since the server is iterative, there
is no process control whatsoever performed by the server. This gives us a baseline
measurement of the CPU time required to handle this number of clients that we can then
subtract from all the other server measurements. From a process control perspective, the
iterative server is the fastest possible because it performs no process control. We then
compare the differences from this baseline in Figure 30.1.

We do not show our iterative server as it is a trivial modification to the concurrent server
that we will present in the next section.

[ Team LiB ]

Page 927

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

30.5 TCP Concurrent Server, One Child per Client
Traditionally, a concurrent TCP server calls fork to spawn a child to handle each client. This
allows the server to handle numerous clients at the same time, one client per process. The
only limit on the number of clients is the OS limit on the number of child processes for the
user ID under which the server is running. Figure 5.12 is an example of a concurrent server
and most TCP servers are written in this fashion.

The problem with these concurrent servers is the amount of CPU time it takes to fork a
child for each client. Years ago (the late 1980s), when a busy server handled hundreds or
perhaps even a few thousand clients per day, this was acceptable. But the explosion of the
Web has changed this attitude. Busy Web servers measure the number of TCP connections
per day in the millions. This is for an individual host, and the busiest sites run multiple
hosts, distributing the load among the hosts. (Section 14.2 of TCPv3 talks about a common
way to distribute this load using what is called "DNS round robin.") Later sections will
describe various techniques that avoid the per-client fork incurred by a concurrent server,
but concurrent servers are still common.

Figure 30.4 shows the main function for our concurrent TCP server.

Figure 30.4 main function for TCP concurrent server.

server/serv01.c

 1 #include     "unp.h"

 2 int

 3 main(int argc, char **argv)

 4 {

 5     int     listenfd, connfd;

 6     pid_t   childpid;

 7     void    sig_chld(int), sig_int(int), web_child(int);

 8     socklen_t clilen, addrlen;

 9     struct sockaddr *cliaddr;

10     if (argc == 2)

11         listenfd = Tcp_listen(NULL, argv[1], &addrlen);

12     else if (argc == 3)

13         listenfd = Tcp_listen(argv[1], argv[2], &addrlen);

14     else

15         err_quit("usage: serv01 [ <host> ] <port#>");

16     cliaddr = Malloc(addrlen);

17     Signal(SIGCHLD, sig_chld);

18     Signal(SIGINT, sig_int);

19     for ( ; ; ) {

20         clilen = addrlen;

21         if  ( (connfd = accept(listenfd, cliaddr, &clilen)) < 0) {

22              if (errno == EINTR)

23                  continue;      /* back to for() */

24              else

25                  err_sys("accept error");

26         }

27         if ( (childpid = Fork()) == 0) { /* child process */

28             Close(listenfd);     /* close listening socket */

Page 928

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


29             web_child(connfd);   /* process request */

30             exit(0);

31         }

32         Close(connfd);            /* parent closes connected socket */

33     }

34 }

This function is similar to Figure 5.12: It calls fork for each client connection and handles
the SIGCHLD signals from the terminating children. This function, however, we have made
protocol-independent by calling our tcp_listen function. We do not show the sig_chld
signal handler: It is the same as Figure 5.11, with the printf removed.

We also catch the SIGINT signal, generated when we type our terminal interrupt key. We
type this key after the client completes, to print the CPU time required for the program. 
Figure 30.5 shows the signal handler. This is an example of a signal handler that does not
return.

Figure 30.5 Signal handler for SIGINT.

server/serv01.c

35 void

36 sig_int(int signo)

37 {

38     void    pr_cpu_time(void);

39     pr_cpu_time();

40     exit(0);

41 }

Figure 30.6 shows the pr_cpu_time function that is called by the signal handler.

Figure 30.6 pr_cpu_time function: prints total CPU time.

server/pr_cpu_time.c

 1 #include    "unp.h"

 2 #include    <sys/resource.h>

 3 #ifndef HAVE_GETRUSAGE_PROTO

 4 int     getrusage(int, struct rusage *);

 5 #endif

 6 void

 7 pr_cpu_time(void)

 8 {

 9     double user, sys;

10     struct rusage myusage, childusage;

11     if (getrusage(RUSAGE_SELF, &myusage) < 0)

12         err_sys("getrusage error");

13     if (getrusage(RUSAGE_CHILDREN, &childusage) < 0)

14         err_sys("getrusage error");

15     user = (double) myusage.ru_utime.tv_sec +

16         myusage.ru_utime.tv_usec / 1000000.0;

17     user += (double) childusage.ru_utime.tv_sec +

18         childusage.ru_utime.tv_usec / 1000000.0;

19     sys = (double) myusage.ru_stime.tv_sec +

20         myusage.ru_stime.tv_usec / 1000000.0;

21     sys += (double) childusage.ru_stime.tv_sec +

Page 929

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


22         childusage.ru_stime.tv_usec / 1000000.0;

23     printf("\nuser time = %g, sys time = %g\n", user, sys);

24 }

The getrusage function is called twice to return the resource utilization of both the calling
process (RUSAGE_SELF) and all the terminated children of the calling process (
RUSAGE_CHILDREN). The values printed are the total user time (CPU time spent in the user
process) and total system time (CPU time spent within the kernel, executing on behalf of
the calling process).

The main function in Figure 30.4 calls the function web_child to handle each client
request. Figure 30.7 shows this function.

Figure 30.7 web_child function to handle each client's request.

server/web_child.c

 1 #include    "unp.h"

 2 #define MAXN    16384     /* max # bytes client can request */

 3 void

 4 web_child(int sockfd)

 5 {

 6     int     ntowrite;

 7     ssize_t nread;

 8     char    line[MAXLINE], result[MAXN];

 9     for ( ; ; ) {

10         if ( (nread = Readline(sockfd, line, MAXLINE)) == 0)

11             return;             /* connection closed by other end */

12             /* line from client specifies #bytes to write back */

13         ntowrite = atol(line);

14         if ((ntowrite <= 0) || (ntowrite > MAXN))

15             err_quit("client request for %d bytes", ntowrite);

16         Writen(sockfd, result, ntowrite);

17     }

18 }

After the client establishes the connection with the server, the client writes a single line
specifying the number of bytes the server must return to the client. This is some-what
similar to HTTP: The client sends a small request and the server responds with the desired
information (often an HTML file or a GIF image, for example). In the case of HTTP, the
server normally closes the connection after sending back the requested data, although
newer versions are using persistent connections, holding the TCP connection open for
additional client requests. In our web_child function, the server allows additional requests
from the client, but we saw in Figure 30.3 that our client sends only one request per
connection and the client then closes the connection.

Row 1 of Figure 30.1 shows the timing result for this concurrent server. When compared to
the subsequent lines in this figure, we see that the concurrent server requires the most
CPU time, which is what we expect with one fork per client.

One server design that we do not measure in this chapter is one invoked by inetd, which
we covered in Section 13.5. From a process control perspective, a server invoked by inetd
involves a fork and an exec, so the CPU time will be even greater than the times shown in
row 1 of Figure 30.1.

Page 930

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Page 931

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

30.6 TCP Preforked Server, No Locking Around accept
Our first of the "enhanced" TCP servers uses a technique called preforking. Instead of
generating one fork per client, the server preforks some number of children when it starts,
and then the children are ready to service the clients as each client connection arrives. 
Figure 30.8 shows a scenario where the parent has preforked N children and two clients are
currently connected.

Figure 30.8. Preforking of children by server.

The advantage of this technique is that new clients can be handled without the cost of a 
fork by the parent. The disadvantage is that the parent must guess how many children to
prefork when it starts. If the number of clients at any time ever equals the number of
children, additional clients are ignored until a child is available. But recall from Section 4.5
that the clients are not completely ignored. The kernel will complete the three-way
handshake for any additional clients, up to the listen backlog for this socket, and then
pass the completed connections to the server when it calls accept. But, the client
application can notice a degradation in response time because even though its connect
might return immediately, its first request might not be handled by the server for some
time.

With some extra coding, the server can always handle the client load. What the parent
must do is continually monitor the number of available children, and if this value drops
below some threshold, the parent must fork additional children. Also, if the number of
available children exceeds another threshold, the parent can terminate some of the excess
children, because as we'll see later in this chapter, having too many available children can
degrade performance, too.

But before worrying about these enhancements, let's examine the basic structure of this
type of server. Figure 30.9 shows the main function for the first version of our preforked
server.

Figure 30.9 main function for preforked server.

server/serv02.c

 1 #include    "unp.h"

 2 static int nchildren;

 3 static pid_t *pids;

 4 int

 5 main(int argc, char **argv)

 6 {

Page 932

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


 7     int     listenfd, i;

 8     socklen_t addrlen;

 9     void    sig_int(int);

10     pid_t   child_make(int, int, int);

11     if (argc == 3)

12         listenfd = Tcp_listen(NULL, argv[1], &addrlen);

13     else if (argc == 4)

14         listenfd = Tcp_listen(argv[1], argv[2], &addrlen);

15     else

16         err_quit("usage: serv02 [ <host> ] <port#> <#children>");

17     nchildren = atoi(argv[argc - 1]);

18     pids = Calloc(nchildren, sizeof(pid_t));

19     for (i = 0; i < nchildren; i++)

20         pids[i] = child_make(i, listenfd, addrlen); /* parent returns */

21     Signal(SIGINT, sig_int);

22     for ( ; ; )

23         pause();                /* everything done by children */

24 }

11 18 An additional command-line argument is the number of children to prefork. An array
is allocated to hold the PIDs of the children, which we need when the program terminates
to allow the main function to terminate all the children.

19 20 Each child is created by child_make, which we will examine in Figure 30.11.

Our signal handler for SIGINT, which we show in Figure 30.10, differs from Figure 30.5.

30 34 getrusage reports on the resource utilization of terminated children, so we must
terminate all the children before calling pr_cpu_time. We do this by sending SIGTERM to
each child, and then we wait for all the children.

Figure 30.11 shows the child_make function, which is called by main to create each child.

7 9 fork creates each child and only the parent returns. The child calls the function
child_main, which we show in Figure 30.12 and which is an infinite loop.

Figure 30.10 Singal handler for SIGINT.

server/serv02.c

25 void

26 sig_int(int signo)

27 {

28     int     i;

29     void    pr_cpu_time(void);

30         /* terminate all children */

31     for (i = 0; i < nchildren; i++)

32         kill(pids[i], SIGTERM);

33     while (wait(NULL) > 0)     /* wait for all children */

34         ;

35     if (errno != ECHILD)

36         err_sys("wait error");

37     pr_cpu_time();

38     exit(0);

39 }

Page 933

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


Figure 30.11 child_make function: creates each child.

server/child02.c

 1 #include    "unp.h"

 2 pid_t

 3 child_make(int i, int listenfd, int addrlen)

 4 {

 5     pid_t   pid;

 6     void    child_main(int, int, int);

 7     if ( (pid = Fork()) > 0)

 8         return (pid);            /* parent */

 9     child_main(i, listenfd, addrlen);     /* never returns */

10 }

Figure 30.12 child_main function: infinite loop executed by each child.

server/child02.c

11 void

12 child_main(int i, int listenfd, int addrlen)

13 {

14     int     connfd;

15     void    web_child(int);

16     socklen_t clilen;

17     struct sockaddr *cliaddr;

18     cliaddr = Malloc(addrlen);

19     printf("child %ld starting\n", (long) getpid());

20     for ( ; ; ) {

21         clilen = addrlen;

22         connfd = Accept(listenfd, cliaddr, &clilen);

23         web_child(connfd);      /* process the request */

24         Close(connfd);

25     }

26 }

20 25 Each child calls accept, and when this returns, the function web_child (Figure 30.7)
handles the client request. The child continues in this loop until terminated by the parent.

4.4BSD Implementation
If you have never seen this type of arrangement (multiple processes calling accept on the
same listening descriptor), you probably wonder how it can even work. It's worth a short
digression on how this is implemented in Berkeley-derived kernels (e.g., as presented in
TCPv2).

The parent creates the listening socket before spawning any children, and if you recall, all
descriptors are duplicated in each child each time fork is called. Figure 30.13 shows the
arrangement of the proc structures (one per process), the one file structure for the
listening descriptor, and the one socket structure.

Figure 30.13. Arrangement of proc, file, and socket structures.

Page 934

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


Descriptors are just an index in an array in the proc structure that reference a file
structure. One of the properties of the duplication of descriptors in the child that occurs
with fork is that a given descriptor in the child references the same file structure as that
same descriptor in the parent. Each file structure has a reference count that starts at one
when the file or socket is opened and is incremented by one each time fork is called or
each time the descriptor is duped. In our example with N children, the reference count in
the file structure would be N + 1 (don't forget the parent that still has the listening
descriptor open, even though the parent never calls accept).

When the program starts, N children are created, and all N call accept and all are put to
sleep by the kernel (line 140, p. 458 of TCPv2). When the first client connection arrives,
all N children are awakened. This is because all N have gone to sleep on the same "wait
channel," the so_timeo member of the socket structure, because all N share the same
listening descriptor, which points to the same socket structure. Even though all N are
awakened, the first of the N to run will obtain the connection and the remaining N - 1 will
all go back to sleep, because when each of the remaining N - 1 execute the statement on
line 135 of p. 458 of TCPv2, the queue length will be 0 since the first child to run already
took the connection.

This is sometimes called the thundering herd problem because all N are awakened even
though only one will obtain the connection. Nevertheless, the code works, with the
performance side effect of waking up too many processes each time a connection is ready
to be accepted. We now measure this performance effect.

Effect of Too Many Children
The CPU time of 1.8 for the server in row 2 of Figure 30.1 is for 15 children and a
maximum of 10 simultaneous clients. We can measure the effect of the thundering herd
problem by just increasing the number of children for the same maximum number of
clients (10). We don't show the results of increasing the number of children because the
individual test results aren't that interesting. Since any number greater than 10 introduces
superfluous children, the thundering herd problem worsens and the timing results
increase.

Some Unix kernels have a function, often named wakeup_one, that wakes up only one
process that is waiting for some event, instead of waking up all processes waiting for the
event [Schimmel 1994].

Distribution of Connections to the Children

Page 935

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


The next thing to examine is the distribution of the client connections to the pool of
available children that are blocked in the call to accept. To collect this information, we
modify the main function to allocate an array of long integer counters in shared memory,
one counter per child. This is done with the following:

long   *cptr, *meter(int);     /* for counting # clients/child */

cptr = meter(nchildren);       /* before spawning children */

Figure 30.14 shows the meter function.

We use anonymous memory mapping, if supported (e.g., 4.4BSD), or the mapping of 
/dev/zero (e.g., SVR4). Since the array is created by mmap before the children are
spawned, the array is then shared between this process (the parent) and all its children
created later by fork.

We then modify our child_main function (Figure 30.12) so that each child increments its
counter when accept returns and our SIGINT handler prints this array after all the children
are terminated.

Figure 30.14 meter function to allocate an array in shared memory.

server/meter.c

 1 #include    "unp.h"

 2 #include    <sys/mman.h>

 3 /*

 4  * Allocate an array of "nchildren" longs in shared memory that can

 5  * be used as a counter by each child of how many clients it services.

 6  * See pp. 467-470 of "Advanced Programming in the Unix Environment."

 7  */

 8 long *

 9 meter(int nchildren)

10 {

11     int     fd;

12     long   *ptr;

13 #ifdef MAP_ANON

14     ptr = Mmap(0, nchildren * sizeof(long), PROT_READ | PROT_WRITE,

15                MAP_ANON | MAP_SHARED, -1, 0);

16 #else

17     fd = Open("/dev/zero", O_RDWR, 0);

18     ptr = Mmap(0, nchildren * sizeof(long), PROT_READ | PROT_WRITE,

19                 MAP_SHARED, fd, 0);

20     Close(fd);

21 #endif

22     return (ptr);

23 }

Figure 30.2 shows the distribution. When the available children are blocked in the call to
accept, the kernel's scheduling algorithm distributes the connections uniformly to all the
children.

Page 936

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


select Collisions
While looking at this example under 4.4BSD, we can also examine another poorly
understood, but rare phenomenon. Section 16.13 of TCPv2 talks about collisions with the
select function and how the kernel handles this possibility. A collision occurs when
multiple processes call select on the same descriptor, because room is allocated in the
socket structure for only one process ID to be awakened when the descriptor is ready. If
multiple processes are waiting for the same descriptor, the kernel must wake up all
processes that are blocked in a call to select since it doesn't know which processes are
affected by the descriptor that just became ready.

We can force select collisions with our example by preceding the call to accept in Figure
30.12 with a call to select, waiting for readability on the listening socket. The children will
spend their time blocked in this call to select instead of in the call to accept. Figure 30.15
shows the portion of the child_main function that changes, using plus signs to note the
lines that have changed from Figure 30.12.

Figure 30.15 Modification to Figure 30.12 to block in select instead of
accept.

     printf("child %ld starting\n", (long) getpid());

+    FD_ZERO(&rset);

     for   ( ; ; ) {

+          FD_SET(listenfd, &rset);

+          Select(listenfd+1, &rset, NULL, NULL, NULL);

+          if (FD_ISSET(listenfd, &rset) == 0)

+              err_quit("listenfd readable");

+

           clilen = addrlen;

           connfd = Accept(listenfd, cliaddr, &clilen);

           web_child(connfd);      /* process request */

           Close(connfd);

     }

If we make this change and then examine the kernel's select collision counter before and
after, we see 1,814 collisions one time we run the sever and 2,045 collisions the next time.
Since the two clients create a total of 5,000 connections for each run of the server, this
corresponds to about 35 40% of the calls to select invoking a collision.

If we compare the server's CPU time for this example, the value of 1.8 in Figure 30.1
increases to 2.9 when we add the call to select. Part of this increase is probably because
of the additional system call (since we are calling select and accept instead of just accept
), and another part is probably because of the kernel overhead in handling the collisions.

The lesson to be learned from this discussion is when multiple processes are blocking on
the same descriptor, it is better to block in a function such as accept instead of blocking
in select.

[ Team LiB ]

Page 937

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

30.7 TCP Preforked Server, File Locking Around accept
The implementation that we just described for 4.4BSD, which allows multiple processes to
call accept on the same listening descriptor, works only with Berkeley-derived kernels that
implement accept within the kernel. System V kernels, which implement accept as a
library function, may not allow this. Indeed, if we run the server from the previous section
on such a system, soon after the clients start connecting to the server, a call to accept in
one of the children returns EPROTO, which means a protocol error.

The reasons for this problem with the SVR4 library version of accept arise from the
STREAMS implementation (Chapter 31) and the fact that the library accept is not an
atomic operation. Solaris fixes this, but the problem still exists in most other SVR4
implementations.

The solution is for the application to place a lock of some form around the call to accept, so
that only one process at a time is blocked in the call to accept. The remaining children will
be blocked trying to obtain the lock.

There are various ways to provide this locking around the call to accept, as we described in
the second volume of this series. In this section, we will use POSIX file locking with the 
fcntl function.

The only change to the main function (Figure 30.9) is adding a call to our my_lock_init
function before the loop that creates the children.

+    my_lock_init("/tmp/lock.XXXXXX"); /* one lock file for all children */

     for (i = 0; i < nchildren; i++)

         pids[i] = child_make(i, listenfd, addrlen); /* parent returns */

The child_make function remains the same as Figure 30.11. The only change to our
child_main function (Figure 30.12) is to obtain a lock before calling accept and release the
lock after accept returns.

     for ( ; ; ) {

         clilen = addrlen;

+        my_lock_wait();

         connfd = Accept(listenfd, cliaddr, &clilen);

+        my_lock_release();

         web_child(connfd);        /* process request */

         Close(connfd);

Figure 30.16 shows our my_lock_init function, which uses POSIX file locking.

Figure 30.16 my_lock_init function using POSIX file locking.

server/lock_fcntl.c

 1 #include    "unp.h"

 2 static struct flock lock_it, unlock_it;

Page 938

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


 3 static int lock_fd = -1;

 4                     /* fcntl() will fail if my_lock_init() not called */

 5 void

 6 my_lock_init(char *pathname)

 7 {

 8     char     lock_file[1024];

 9         /* must copy caller's string, in case it's a constant */

10     strncpy(lock_file, pathname, sizeof(lock_file));

11     lock_fd = Mkstemp(lock_file);

12     Unlink(lock_file);          /* but lock_fd remains open */

13     lock_it.l_type = F_WRLCK;

14     lock_it.l_whence = SEEK_SET;

15     lock_it.l_start = 0;

16     lock_it.l_len = 0;

17     unlock_it.l_type = F_UNLCK;

18     unlock_it.l_whence = SEEK_SET;

19     unlock_it.l_start = 0;

20     unlock_it.l_len = 0;

21 }

9 12 The caller specifies a pathname template as the argument to my_lock_init, and the
mktemp function creates a unique pathname based on this template. A file is then created
with this pathname and immediately unlinked. By removing the pathname from the
directory, if the program crashes, the file completely disappears. But as long as one or
more processes have the file open (i.e., the file's reference count is greater than 0), the file
itself is not removed. (This is the fundamental difference between removing a pathname
from a directory and closing an open file.)

13 20 Two flock structures are initialized: one to lock the file and one to unlock the file.
The range of the file that is locked starts at byte offset 0 (a l_whence of SEEK_SET with
l_start set to 0). Since l_len is set to 0, this specifies that the entire file is locked. We
never write anything to the file (its length is always 0), but that is fine. The advisory lock is
still handled correctly by the kernel.

It may be tempting to initialize these structures using

static struct flock lock_it = { F_WRLCK, 0, 0, 0, 0 };

static struct flock unlock_it = { F_UNLCK, 0, 0, 0, 0 };

but there are two problems. First, there is no guarantee that the constant SEEK_SET is 0.
But more importantly, there is no guarantee by POSIX as to the order of the members in
the structure. The l_type member may be the first one in the structure, but not on all
systems. All POSIX guarantees is that the members that POSIX requires are present in the
structure. POSIX does not guarantee the order of the members, and POSIX also allows
additional, non-POSIX members to be in the structure. Therefore, initializing a structure to
anything other than all zeros should always be done by actual C code, and not by an
initializer when the structure is allocated.

An exception to this rule is when the structure initializer is provided by the
implementation. For example, when initializing a Pthread mutex lock in Chapter 26, we
wrote

Page 939

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


pthread_mutex_t mlock = PTHREAD_MUTEX_INITIALIZER;

The pthread_mutex_t datatype is often a structure, but the initializer is provided by the
implementation and can differ from one implementation to the next.

Figure 30.17 shows the two functions that lock and unlock the file. These are just calls to
fcntl, using the structures that were initialized in Figure 30.16.

This new version of our preforked server now works on SVR4 systems by assuring that only
one child process at a time is blocked in the call to accept. Comparing rows 2 and 3 in
Figure 30.1 shows that this type of locking adds to the server's process control CPU time.

The Apache Web server, http://www.apache.org, preforks its children and then uses either
the technique in the previous section (all children blocked in the call to accept), if the
implementation allows this, or file locking around the accept.

Effect of Too Many Children
We can check this version to see if the same thundering herd problem exists, which we
described in the previous section. We check by increasing the number of (unneeded)
children and noticing that the timing results get worse proportionally.

Figure 30.17 my_lock_wait and my_lock_release functions using fcntl.

server/lock_fcntl.c

22 void

23 my_lock_wait()

24 {

25     int     rc;

26     while ( (rc = fcntl(lock_fd, F_SETLKW, &lock_it)) < 0) {

27         if (errno == EINTR)

28             continue;

29         else

30             err_sys("fcntl error for my_lock_wait");

31     }

32 }

33 void

34 my_lock_release()

35 {

36     if (fcntl(lock_fd, F_SETLKW, &unlock_it) < 0)

37         err_sys("fcntl error for my_lock_release");

38 }

Distribution of Connections to the Children
We can examine the distribution of the clients to the pool of available children by using the
function we described with Figure 30.14. Figure 30.2 shows the result. The OS distributes
the file locks uniformly to the waiting processes (and this behavior was uniform across
several operating systems we tested).

[ Team LiB ]

Page 940

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.apache.org/default.htm
http://www.apache.org
http://www.processtext.com/abcchm.html


[ Team LiB ]

30.8 TCP Preforked Server, Thread Locking Around 
accept

As we mentioned, there are various ways to implement locking between processes. The
POSIX file locking in the previous section is portable to all POSIX-compliant systems, but it
involves filesystem operations, which can take time. In this section, we will use thread
locking, taking advantage of the fact that this can be used not only for locking between the
threads within a given process, but also for locking between different processes.

Our main function remains the same as in the previous section, as do our child_make and
child_main functions. The only thing that changes is our three locking functions. To use
thread locking between different processes requires that: (i) the mutex variable must be
stored in memory that is shared between all the processes; and (ii) the thread library must
be told that the mutex is shared among different processes.

Also, the thread library must support the PTHREAD_PROCESS_SHARED attribute.

There are various ways to share memory between different processes, as we described in
the second volume of this series. In our example, we will use the mmap function with the
/dev/zero device, which works under Solaris and other SVR4 kernels. Figure 30.18 shows
our my_lock_init function.

Figure 30.18 my_lock_init function using Pthread locking between
processes.

server/lock_pthread.c

 1 #include    "unpthread.h"

 2 #include    <sys/mman.h>

 3 static pthread_mutex_t *mptr;    /* actual mutex will be in shared memory */

 4 void

 5 my_lock_init(char *pathname)

 6 {

 7     int     fd;

 8     pthread_mutexattr_t mattr;

 9     fd = Open("/dev/zero", O_RDWR, 0);

10     mptr = Mmap(0, sizeof(pthread_mutex_t), PROT_READ | PROT_WRITE,

11                 MAP_SHARED, fd, 0);

12     Close(fd);

13     Pthread_mutexattr_init(&mattr);

14     Pthread_mutexattr_setpshared(&mattr, PTHREAD_PROCESS_SHARED);

15     Pthread_mutex_init(mptr, &mattr);

16 }

9 12 We open/dev/zero and then call mmap. The number of bytes that are mapped is equal
to the size of a pthread_mutex_t variable. The descriptor is then closed, which is fine,
because the memory mapped to /dev/zero will remain mapped.

13 15 In our previous Pthread mutex examples, we initialized the global or static mutex
variable using the constant PTHREAD_MUTEX_INITIALIZER (e.g., Figure 26.18). But with a
mutex in shared memory, we must call some Pthread library functions to tell the library
that the mutex is in shared memory and that it will be used for locking between different

Page 941

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


processes. We first initialize a pthread_mutexattr_t structure with the default attributes
for a mutex and then set the PTHREAD_PROCESS_SHARED attribute. (The default for this
attribute is PTHREAD_PROCESS_PRIVATE, allowing use only within a single process.)
pthread_mutex_init then initializes the mutex with these attributes.

Figure 30.19 shows our my_lock_wait and my_lock_release functions. Each is now just a
call to a Pthread function to lock or unlock the mutex.

Comparing rows 3 and 4 in Figure 30.1 for the Solaris server shows that thread mutex
locking is faster than file locking.

[ Team LiB ]

Page 942

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

30.9 TCP Preforked Server, Descriptor Passing
The final modification to our preforked server is to have only the parent call accept and
then "pass" the connected socket to one child. This gets around the possible need for
locking around the call to accept in all the children, but requires some form of descriptor
passing from the parent to the children. This technique also complicates the code
somewhat because the parent must keep track of which children are busy and which are
free to pass a new socket to a free child.

Figure 30.19 my_lock_wait and my_lock_release functions using Pthread
locking.

server/lock_pthread.c

17 void

18 my_lock_wait()

19 {

20     Pthread_mutex_lock(mptr);

21 }

22 void

23 my_lock_release()

24 {

25     Pthread_mutex_unlock(mptr);

26 }

In the previous preforked examples, the process never cared which child received a client
connection. The OS handled this detail, giving one of the children the first call to accept, or
giving one of the children the file lock or the mutex lock. The first two columns of Figure
30.2 also show that the OS that we are measuring does this in a fair, round-robin fashion.

With this example, we need to maintain a structure of information about each child. We
show our child.h header that defines our Child structure in Figure 30.20.

Figure 30.20 Child structure.

server/child.h

1 typedef struct {

2     pid_t   child_pid;         /* process ID */

3     int     child_pipefd;      /* parent's stream pipe to/from child */

4     int     child_status;      /* 0 = ready */

5     long    child_count;       /* # connections handled */

6 } Child;

7 Child *cptr;                   /* array of Child structures; calloc'ed */

We store the child's PID, the parent's stream pipe descriptor that is connected to the child,
the child's status, and a count of the number of clients the child has handled. We will print
this counter in our SIGINT handler to see the distribution of the client requests among the
children.

Let us first look at the child_make function, which we show in Figure 30.21. We create a
stream pipe, a Unix domain stream socket (Chapter 15), before calling fork. After the child
is created, the parent closes one descriptor (sockfd[1]) and the child closes the other
descriptor (sockfd[0]). Furthermore, the child duplicates its end of the stream pipe (
sockfd[1]) onto standard error, so that each child just reads and writes to standard error

Page 943

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


to communicate with the parent. This gives us the arrangement shown in Figure 30.22.

Figure 30.21 child_make function descriptor passing preforked server.

server/child05.c

 1 #include     "unp.h"

 2 #include     "child.h"

 3 pid_t

 4 child_make(int i, int listenfd, int addrlen)

 5 {

 6     int     sockfd[2];

 7     pid_t   pid;

 8     void    child_main(int, int, int);

 9     Socketpair(AF_LOCAL, SOCK_STREAM, 0, sockfd);

10     if ( (pid = Fork()) > 0) {

11         Close(sockfd[1]);

12         cptr[i].child_pid = pid;

13         cptr[i].child_pipefd = sockfd[0];

14         cptr[i].child_status = 0;

15         return (pid);           /* parent */

16     }

17     Dup2(sockfd[1], STDERR_FILENO); /* child's stream pipe to parent */

18     Close(sockfd[0]);

19     Close(sockfd[1]);

20     Close(listenfd);            /* child does not need this open */

21     child_main(i, listenfd, addrlen);   /* never returns */

22 }

Figure 30.22. Stream pipe after parent and child both close one end.

After all the children are created, we have the arrangement shown in Figure 30.23. We
close the listening socket in each child, as only the parent calls accept. We show that the
parent must handle the listening socket along with all the stream sockets. As you might
guess, the parent uses select to multiplex all these descriptors.

Figure 30.23. Stream pipes after all children have been created.

Page 944

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


Figure 30.24 shows the main function. The changes from previous versions of this function
are that descriptor sets are allocated and the bits corresponding to the listening socket
along with the stream pipe to each child are turned on in the set. The maximum descriptor
value is also calculated. We allocate memory for the array of Child structures. The main
loop is driven by a call to select.

Figure 30.24 main function that uses descriptor passing.

server/serv05.c

 1 #include    "unp.h"

 2 #include    "child.h"

 3 static int nchildren;

 4 int

 5 main(int argc, char **argv)

 6 {

 7     int     listenfd, i, navail, maxfd, nsel, connfd, rc;

 8     void    sig_int(int);

 9     pid_t   child_make(int, int, int);

10     ssize_t n;

11     fd_set  rset, masterset;

12     socklen_t addrlen, clilen;

13     struct sockaddr *cliaddr;

14     if (argc == 3)

15         listenfd = Tcp_listen(NULL, argv[1], &addrlen);

16     else if (argc == 4)

17         listenfd = Tcp_listen(argv[1], argv[2], &addrlen);

18     else

19         err_quit("usage: serv05 [ <host> ] <port#> <#children>");

20     FD_ZERO(&masterset);

21     FD_SET(listenfd, &masterset);

22     maxfd = listenfd;

23     cliaddr = Malloc(addrlen);

24     nchildren = atoi(argv[argc - 1]);

25     navail = nchildren;

26     cptr = Calloc(nchildren, sizeof(Child));

27         /* prefork all the children */

Page 945

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


28     for (i = 0; i < nchildren; i++) {

29         child_make(i, listenfd, addrlen);     /* parent returns */

30         FD_SET(cptr[i].child_pipefd, &masterset);

31         maxfd = max(maxfd, cptr[i].child_pipefd);

32     }

33      Signal(SIGINT, sig_int);

34      for ( ; ; ) {

35          rset = masterset;

36          if (navail <= 0)

37              FD_CLR(listenfd, &rset);        /* turn off if no available

children */

38          nsel = Select(maxfd + 1, &rset, NULL, NULL, NULL);

39              /* check for new connections */

40          if (FD_ISSET(listenfd, &rset)) {

41              clilen = addrlen;

42              connfd = Accept(listenfd, cliaddr, &clilen);

43              for (i = 0; i < nchildren; i++)

44                  if (cptr[i].child_status == 0)

45                      break;      /* available */

46              if (i == nchildren)

47                  err_quit("no available children");

48              cptr[i].child_status = 1;   /* mark child as busy */

49              cptr[i].child_count++;

50              navail--;

51              n = Write_fd(cptr[i].child_pipefd, "", 1, connfd);

52              Close(connfd);

53              if (--nsel == 0)

54                  continue;       /* all done with select() results */

55          }

56              /* find any newly-available children */

57          for (i = 0; i < nchildren; i++) {

58              if (FD_ISSET(cptr[i].child_pipefd, &rset)) {

59                  if ( (n = Read(cptr[i].child_pipefd, &rc, 1)) == 0)

60                      err_quit("child %d terminated unexpectedly", i);

61                  cptr[i].child_status = 0;

62                  navail++;

63                  if (--nsel == 0)

64                      break;      /* all done with select() results */

65              }

66          }

67      }

68 }

Turn off listening socket if no available children
36 37 The counter navail keeps track of the number of available children. If this counter is
0, the listening socket is turned off in the descriptor set for select. This prevents us from
accepting a new connection for which there is no available child. The kernel still queues
these incoming connections, up to the listen backlog, but we do not want to accept them
until we have a child ready to process the client.

accept new connection

Page 946

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


39 55 If the listening socket is readable, a new connection is ready to accept. We find the
first available child and pass the connected socket to the child using our write_fd function
from Figure 15.13. We write one byte along with the descriptor, but the recipient does not
look at the contents of this byte. The parent closes the connected socket.

We always start looking for an available child with the first entry in the array of Child
structures. This means the first children in the array always receive new connections to
process before later elements in the array. We will verify this when we discuss Figure 30.2
and look at the child_count counters after the server terminates. If we didn't want this
bias toward earlier children, we could remember which child received the most recent
connection and start our search one element past that each time, circling back to the first
element when we reach the end. There is no advantage in doing this (it really doesn't
matter which child handles a client request if multiple children are available), unless the
OS scheduling algorithm penalizes processes with longer total CPU times. Spreading the
load more evenly among all the children would tend to average out their total CPU times.

Handle any newly available children
56 66 We will see that our child_main function writes a single byte back to the parent
across the stream pipe when the child has finished with a client. That makes the parent's
end of the stream pipe readable. We read the single byte (ignoring its value) and then
mark the child as available. Should the child terminate unexpectedly, its end of the stream
pipe will be closed, and the read returns 0. We catch this and terminate, but a better
approach is to log the error and spawn a new child to replace the one that terminated.

Our child_main function is shown in Figure 30.25.

Wait for descriptor from parent
32 33 This function differs from the ones in the previous two sections because our child no
longer calls accept. Instead, the child blocks in a call to read_fd, waiting for the parent to
pass it a connected socket descriptor to process.

Tell parent we are ready
38 When we have finished with the client, we write one byte across the stream pipe to tell
the parent we are available.

Comparing rows 4 and 5 in Figure 30.1, we see that this server is slower than the version
in the previous section that used thread locking between the children. Passing a descriptor
across the stream pipe to each child and writing a byte back across the stream pipe from
the child takes more time than locking and unlocking either a mutex in shared memory or
a file lock.

Figure 30.25 child_main function: descriptor passing, preforked server.

server/child05.c

23 void

24 child_main(int i, int listenfd, int addrlen)

25 {

26     char    c;

27     int     connfd;

28     ssize_t n;

29     void    web_child(int);

30     printf("child %ld starting\n", (long) getpid());

31     for ( ; ; ) {

32         if ( (n = Read_fd(STDERR_FILENO, &c, 1, &connfd)) == 0)

Page 947

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


33             err_quit("read_fd returned 0");

34         if (connfd < 0)

35             err_quit("no descriptor from read_fd");

36         web_child(connfd);      /* process request */

37         Close(connfd);

38         Write(STDERR_FILENO, "", 1);    /* tell parent we're ready again */

39     }

40 }

Figure 30.2 shows the distribution of the child_count counters in the Child structure,
which we print in the SIGINT handler when the server is terminated. The earlier children do
handle more clients, as we discussed with Figure 30.24.

[ Team LiB ]

Page 948

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

30.10 TCP Concurrent Server, One Thread per Client
The last five sections have focused on one process per client, both one fork per client and
preforking some number of children. If the server supports threads, we can use threads
instead of child processes.

Our first threaded version is shown in Figure 30.26. It is a modification of Figure 30.4 that
creates one thread per client, instead of one process per client. This version is very similar
to Figure 26.3.

Main thread loop
19 23 The main thread blocks in a call to accept and each time a client connection is
returned, a new thread is created by pthread_create. The function executed by the new
thread is doit and its argument is the connected socket.

Per-thread function
25 33 The doit function detaches itself so the main thread does not have to wait for it and
calls our web_client function (Figure 30.3). When that function returns, the connected
socket is closed.

Figure 30.26 main function for TCP threaded server.

server/serv06.c

 1 #include    "unpthread.h"

 2 int

 3 main(int argc, char **argv)

 4 {

 5     int     listenfd, connfd;

 6     void    sig_int(int);

 7     void   *doit(void *);

 8     pthread_t tid;

 9     socklen_t clilen, addrlen;

10     struct sockaddr *cliaddr;

11     if (argc == 2)

12         listenfd = Tcp_listen(NULL, argv[1], &addrlen);

13     else if (argc == 3)

14         listenfd = Tcp_listen(argv[1], argv[2], &addrlen);

15     else

16         err_quit("usage: serv06 [ <host> ] <port#>");

17     cliaddr = Malloc(addrlen);

18     Signal(SIGINT, sig_int);

19     for ( ; ; ) {

20         clilen = addrlen;

21         connfd = Accept(listenfd, cliaddr, &clilen);

22         Pthread_create(&tid, NULL, &doit, (void *) connfd);

23     }

24 }

25 void *

Page 949

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


26 doit(void *arg)

27 {

28     void    web_child(int);

29     Pthread_detach(pthread_self());

30     web_child((int) arg);

31     Close((int) arg);

32     return (NULL);

33 }

We note from Figure 30.1 that this simple threaded version is faster than even the fastest
of the preforked versions. This one-thread-per-client version is also many times faster than
the one-child-per-client version (row 1).

In Section 26.5 we noted three alternatives for converting a function that is not
thread-safe into one that is thread-safe. Our web_child function calls our readline
function, and the version shown in Figure 3.18 is not thread-safe. Alternatives 2 and 3
from Section 26.5 were timed with the example in Figure 30.26. The speedup from
alternative 3 to alternative 2 was less than one percent, probably because readline is used
only to read the five-character count from the client. Therefore, for simplicity we use the
less efficient version from Figure 3.17 for the threaded server examples in this chapter.

[ Team LiB ]

Page 950

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

30.11 TCP Prethreaded Server, per-Thread accept
We found earlier in this chapter that it is faster to prefork a pool of children than to create
one child for every client. On a system that supports threads, it is reasonable to expect a
similar speedup by creating a pool of threads when the server starts, instead of creating a
new thread for every client. The basic design of this server is to create a pool of threads
and then let each thread call accept. Instead of having each thread block in the call to
accept, we will use a mutex lock (similar to Section 30.8) that allows only one thread at a
time to call accept. There is no reason to use file locking to protect the call to accept from
all the threads, because with multiple threads in a single process, we know that a mutex
lock can be used.

Figure 30.27 shows the pthread07.h header that defines a Thread structure that maintains
some information about each thread.

Figure 30.27 pthread07.h header.

server/pthread07.h

1 typedef struct {

2     pthread_t thread_tid;      /* thread ID */

3     long    thread_count;      /* # connections handled */

4 } Thread;

5 Thread *tptr;                  /* array of Thread structures; calloc'ed */

6 int     listenfd, nthreads;

7 socklen_t addrlen;

8 pthread_mutex_t mlock;

We also declare a few globals, such as the listening socket descriptor and a mutex variable
that all the threads need to share.

Figure 30.28 shows the main function.

Figure 30.28 main function for prethreaded TCP server.

server/serv07.c

 1 #include    "unpthread.h"

 2 #include    "pthread07.h"

 3 pthread_mutex_t mlock = PTHREAD_MUTEX_INITIALIZER;

 4 int

 5 main(int argc, char **argv)

 6 {

 7     int     i;

 8     void    sig_int(int), thread_make(int); 

 9     if (argc == 3)

10         listenfd = Tcp_listen(NULL, argv[1], &addrlen);

11     else if (argc == 4)

12         listenfd = Tcp_listen(argv[1], argv[2], &addrlen);

13     else

14         err_quit("usage: serv07 [ <host> ] <port#> <#threads>");

15     nthreads = atoi(argv[argc - 1]);

16     tptr = Calloc(nthreads, sizeof(Thread));

Page 951

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


17     for (i = 0;  i < nthreads; i++)

18         thread_make(i);          /* only main thread returns */

19     Signal(SIGINT, sig_int);

20     for ( ; ; )

21         pause();                 /* everything done by threads */

22 }

The thread_make and thread_main functions are shown in Figure 30.29.

Figure 30.29 thread_make and thread_main functions.

server/pthread07.c

 1 #include    "unpthread.h"

 2 #include    "pthread07.h"

 3 void

 4 thread_make(int i)

 5 {

 6     void     *thread_main(void *);

 7     Pthread_create(&tptr[i].thread_tid, NULL, &thread_main, (void *) i);

 8     return;                     /* main thread returns */

 9 }

10 void *

11 thread_main(void *arg)

12 {

13     int     connfd;

14     void    web_child(int);

15     socklen_t clilen;

16     struct sockaddr *cliaddr;

17     cliaddr = Malloc(addrlen);

18     printf("thread %d starting\n", (int) arg);

19     for ( ; ; ) {

20         clilen = addrlen;

21         Pthread_mutex_lock(&mlock);

22         connfd = Accept(listenfd, cliaddr, &clilen);

23         Pthread_mutex_unlock(&mlock);

24         tptr[(int) arg].thread_count++;

25         web_child(connfd);      /* process request */

26         Close(connfd);

27     }

28 }

Create thread
7 Each thread is created and executes the thread_main function. The only argument is the
index number of the thread.

21 23 The thread_main function calls the functions pthread_mutex_lock and
pthread_mutex_unlock around the call to accept.

Comparing rows 6 and 7 in Figure 30.1, we see that this latest version of our server is
faster than the create-one-thread-per-client version. We expect this, since we create the

Page 952

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


pool of threads only once, when the server starts, instead of creating one thread per client.
Indeed, this version of our server is the fastest on these two hosts.

Figure 30.2 shows the distribution of the thread_count counters in the Thread structure,
which we print in the SIGINT handler when the server is terminated. The uniformity of this
distribution is caused by the thread scheduling algorithm that appears to cycle through all
the threads in order when choosing which thread receives the mutex lock.

On a Berkeley-derived kernel, we do not need any locking around the call to accept and
can make a version of Figure 30.29 without any mutex locking and unlocking. Doing so,
however, increases the process control CPU time. If we look at the two components of the
CPU time, the user time and the system time, without any locking, the user time decreases
(because the locking is done in the threads library, which executes in user space), but the
system time increases (the kernel's thundering herd as all threads blocked in accept are
awakened when a connection arrives). Since some form of mutual exclusion is required to
return each connection to a single thread, it is faster for the threads to do this themselves
than for the kernel.

[ Team LiB ]

Page 953

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

30.12 TCP Prethreaded Server, Main Thread accept
Our final server design using threads has the main thread create a pool of threads when it
starts, and then only the main thread calls accept and passes each client connection to
one of the available threads in the pool. This is similar to the descriptor passing version in 
Section 30.9.

The design problem is how does the main thread "pass" the connected socket to one of the
available threads in the pool? There are various ways to implement this. We could use
descriptor passing, as we did earlier, but there's no need to pass a descriptor from one
thread to another since all the threads and all the descriptors are in the same process. All
the receiving thread needs to know is the descriptor number. Figure 30.30 shows the
pthread08.h header that defines a Thread structure, which is identical to Figure 30.27.

Figure 30.30 pthread08.h header.

server/pthread08.h

1 typedef struct {

2     pthread_t thread_tid;       /* thread ID */

3     long    thread_count;       /* # connections handled */

4 } Thread;

5 Thread *tptr;                   /* array of Thread structures; calloc'ed */

6 #define MAXNCLI 32

7 int     clifd[MAXNCLI], iget, iput;

8 pthread_mutex_t clifd_mutex;

9 pthread_cond_t clifd_cond;

Define shared array to hold connected sockets
6 9 We also define a clifd array in which the main thread will store the connected socket
descriptors. The available threads in the pool take one of these connected sockets and
service the corresponding client. iput is the index into this array of the next entry to be
stored into by the main thread and iget is the index of the next entry to be fetched by one
of the threads in the pool. Naturally, this data structure that is shared between all the
threads must be protected and we use a mutex along with a condition variable.

Figure 30.31 is the main function.

Create pool of threads
23 25 thread_make creates each of the threads.

Wait for each client connection
27 38 The main thread blocks in the call to accept, waiting for each client connection to
arrive. When one arrives, the connected socket is stored in the next entry in the clifd
array, after obtaining the mutex lock on the array. We also check that the iput index has
not caught up with the iget index, which indicates that our array is not big enough. The
condition variable is signaled and the mutex is released, allowing one of the threads in the
pool to service this client.

The thread_make and thread_main functions are shown in Figure 30.32. The former is
identical to the version in Figure 30.29.

Page 954

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


Wait for client descriptor to service
17 26 Each thread in the pool tries to obtain a lock on the mutex that protects the clifd
array. When the lock is obtained, there is nothing to do if the iget and iput indexes are
equal. In that case, the thread goes to sleep by calling pthread_cond_wait. It will be
awakened by the call to pthread_cond_signal in the main thread after a connection is
accepted. When the thread obtains a connection, it calls web_child.

The times in Figure 30.1 show that this server is slower than the one in the previous
section, in which each thread called accept after obtaining a mutex lock. The reason is that
this section's example requires both a mutex and a condition variable, compared to just a
mutex in Figure 30.29.

If we examine the histogram of the number of clients serviced by each thread in the pool,
it is similar to the final column in Figure 30.2. This means the threads library cycles
through all the available threads when doing the wakeup based on the condition variable
when the main thread calls pthread_cond_signal.

Figure 30.31 main function for prethreaded server.

server/serv08.c

 1 #include    "unpthread.h"

 2 #include    "pthread08.h"

 3 static int nthreads;

 4 pthread_mutex_t clifd_mutex = PTHREAD_MUTEX_INITIALIZER;

 5 pthread_cond_t clifd_cond = PTHREAD_COND_INITIALIZER;

 6 int

 7 main(int argc, char **argv)

 8 {

 9     int     i, listenfd, connfd;

10     void    sig_int(int), thread_make(int);

11     socklen_t addrlen, clilen;

12     struct sockaddr *cliaddr;

13     if (argc == 3)

14         listenfd = Tcp_listen(NULL, argv[1], &addrlen);

15     else if (argc == 4)

16         listenfd = Tcp_listen(argv[1], argv[2], &addrlen);

17     else

18         err_quit("usage: serv08 [ <host> ] <port#> <#threads>");

19     cliaddr = Malloc(addrlen);

20     nthreads = atoi(argv[argc - 1]);

21     tptr = Calloc(nthreads, sizeof(Thread));

22     iget = iput = 0;

23         /* create all the threads */

24     for (i = 0; i < nthreads; i++)

25         thread_make(i);         /* only main thread returns */

26     Signal(SIGINT, sig_int);

27     for ( ; ; ) {

28         clilen = addrlen;

29         connfd = Accept(listenfd, cliaddr, &clilen);

Page 955

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


30         Pthread_mutex_lock(&clifd_mutex);

31         clifd[iput] = connfd;

32         if (++iput == MAXNCLI)

33             iput = 0;

34         if (iput == iget)

35             err_quit("iput = iget = %d", iput);

36         Pthread_cond_signal(&clifd_cond);

37         Pthread_mutex_unlock(&clifd_mutex);

38     }

39 }

Figure 30.32 thread_make and thread_main functions.

server/pthread08.c

 1 #include    "unpthread.h"

 2 #include    "pthread08.h"

 3 void

 4 thread_make(int i)

 5 {

 6     void   *thread_main(void *);

 7     Pthread_create(&tptr[i].thread_tid, NULL, &thread_main, (void *) i);

 8     return;                    /* main thread returns */

 9 }

10 void *

11 thread_main(void *arg)

12 {

13     int     connfd;

14     void    web_child(int);

15     printf("thread %d starting\n", (int) arg);

16     for ( ; ; ) {

17         Pthread_mutex_lock(&clifd_mutex);

18         while (iget == iput)

19             Pthread_cond_wait(&clifd_cond, &clifd_mutex);

20         connfd = clifd[iget];   /* connected socket to service */

21         if (++iget == MAXNCLI)

22             iget = 0;

23         Pthread_mutex_unlock(&clifd_mutex);

24         tptr[(int) arg].thread_count++;

25         web_child(connfd);      /* process request */

26         Close(connfd);

27     }

28 }

[ Team LiB ]

Page 956

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

30.13 Summary
In this chapter, we looked at nine different server designs and ran them all against the
same Web-style client, comparing the amount of CPU time spent performing process
control:

0. Iterative server (baseline measurement; no process control)

1. Concurrent server, one fork per client

2. Preforked, with each child calling accept

3. Preforked, with file locking to protect accept

4. Preforked, with thread mutex locking to protect accept

5. Preforked, with parent passing socket descriptor to child

6. Concurrent server, create one thread per client request

7. Prethreaded with mutex locking to protect accept

8. Prethreaded with main thread calling accept

We can make a few summary comments:

 First, if the server is not heavily used, the traditional concurrent server model, with
one fork per client, is fine. This can even be combined with inetd, letting it handle
the accepting of each connection. The remainder of our comments are meant for
heavily used servers, such as Web servers.

 Creating a pool of children or a pool of threads reduces the process control CPU time
compared to the traditional one-fork-per-client design by a factor of 10 or more.
The coding is not complicated, but what is required, above and beyond the
examples that we have shown, is monitoring the number of free children and
increasing or decreasing this number as the number of clients being served changes
dynamically.

 Some implementations allow multiple children or threads to block in a call to accept
, while on other implementations, we must place some type of lock around the call
to accept. Either file locking or Pthread mutex locking can be used.

 Having all the children or threads call accept is normally simpler and faster than
having the main thread call accept and then pass the descriptor to the child or
thread.

 Having all the children or threads block in a call to accept is preferable over
blocking in a call to select because of the potential for select collisions.

 Using threads is normally faster than using processes. But, the choice of
one-child-per-client or one-thread-per-client depends on what the OS provides and
can also depend on what other programs, if any, are invoked to service each client.
For example, if the server that accepts the client's connection calls fork and exec,
it can be faster to fork a single threaded process than to fork a multithreaded
process.

[ Team LiB ]

Page 957

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Exercises
30.1 In Figure 30.13, why does the parent keep the listening socket open

instead of closing it after all the children are created?

30.2 Can you recode the server in Section 30.9 to use a Unix domain
datagram socket instead of a Unix domain stream socket? What
changes?

30.3 Run the client and as many of the servers as your environment will
support and compare your results with those reported in this chapter.

[ Team LiB ]

Page 958

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Chapter 31. Streams
Section 31.1.?Introduction

Section 31.2.?Overview

Section 31.3.?getmsg and putmsg Functions

Section 31.4.?getpmsg and putpmsg Functions

Section 31.5.?ioctl Function

Section 31.6.?Transport Provider Interface (TPI)

Section 31.7.?Summary

Exercises

[ Team LiB ]

Page 959

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

31.1 Introduction
In this chapter, we will provide an overview of the STREAMS system and the functions
used by an application to access a stream. Our goal is to understand the implementation of
networking protocols within the STREAMS framework. We will also develop a simple TCP
client using the Transport Provider Interface (TPI), the interface into the transport layer
that sockets normally use on a system based on STREAMS. Additional information on
STREAMS, including information on writing kernel routines that utilize STREAMS, can be
found in [Rago 1993].

STREAMS were designed by Dennis Ritchie [Ritchie 1984] and were first made widely
available with SVR3 in 1986. The POSIX specification defines STREAMS as an option group,
which means a system may not implement STREAMS, but if it does, the implementation
must comply with the POSIX specification. Any system derived from System V should
provide POSIX, but the various 4.xBSD releases do not provide POSIX.

Be careful to distinguish between STREAMS, the stream I/O system that we are describing
in this chapter, versus "standard I/O streams." The latter term is used when talking about
the standard I/O library (e.g., functions such as fopen, fgets, printf, and the like).

[ Team LiB ]

Page 960

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

31.2 Overview
STREAMS provide a full-duplex connection between a process and a driver, as shown in
Figure 31.1. Although we describe the bottom box as a driver, this does not need to be
associated with a hardware device; it can also be a pseudo-device driver (e.g., a software
driver).

Figure 31.1. A stream shown between a process and a driver.

The stream head consists of the kernel routines that are invoked when the application
makes a system call for a STREAMS descriptor (e.g., read, putmsg, ioctl, and the like).

A process can dynamically add and remove intermediate processing modules between the
stream head and the driver. A module performs some type of filtering on the messages
going up and down a stream. We show this in Figure 31.2.

Figure 31.2. A stream with a processing module.

Any number of modules can be pushed onto a stream. When we say "push," we mean that
each new module gets inserted just below the stream head.

A special type of pseudo-device driver is a multiplexor, which accepts data from multiple
sources. A STREAMS-based implementation of the TCP/IP protocol suite, as found on SVR4,
for example, could be set up as shown in Figure 31.3.

Figure 31.3. A potential implementation of TCP/IP using STREAMS.

Page 961

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


 When a socket is created, the module sockmod is pushed onto the stream by the
sockets library. It is the combination of the sockets library and the sockmod
STREAMS module that provides the sockets API to the process.

 When an XTI endpoint is created, the module timod is pushed onto the stream by
the XTI library. It is the combination of the XTI library and the timod STREAMS
module that provides the X/Open Transport Interface (XTI) API to the process.

This is one of the few places where we mention XTI. An earlier edition of this book
described the XTI API in great detail, but it fell out of common use and even the
POSIX specification no longer covers it, so we dropped the coverage from this book. 
Figure 31.3 shows where the XTI implemention typically lives and we touch on it
briefly in this chapter, but we stop short of providing any detail since there's rarely
a reason to use XTI anymore.

 The STREAMS module tirdwr must normally be pushed onto a stream to use read
and write with an XTI endpoint. The middle process using TCP in Figure 31.3 has
done this. This process has probably abandoned the use of XTI by doing this, so we
have not shown the XTI library there.

 Various service interfaces define the format of the networking messages exchanged
up and down a stream. We describe the three most common. TPI [Unix
International 1992b] defines the interface provided by a transport-layer provider
(e.g., TCP and UDP) to the modules above it. The Network Provider Interface (NPI)
[Unix International 1992a] defines the interface provided by a network-layer
provider (e.g., IP). DLPI is the Data Link Provider Interface [Unix International
1991]. An alternate reference for TPI and DLPI, which contains sample C code, is
[Rago 1993].

Each component in a stream the stream head, all processing modules, and the driver 
contains at least one pair of queues: a write queue and a read queue. We show this in
Figure 31.4.

Figure 31.4. Each component in a stream has at least one pair of
queues.

Page 962

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


Message Types
STREAMS messages can be categorized as high priority, priority band, or normal. There are
256 different priority bands, between 0 and 255, with normal messages in band 0. The
priority of a STREAMS message is used for both queueing and flow control. By convention,
high-priority messages are unaffected by flow control.

Figure 31.5 shows the ordering of the messages on a given queue.

Figure 31.5. Ordering of STREAMS messages on a queue, based on
priority.

Although the STREAMS system supports 256 different priority bands, networking protocols
often use band 1 for expedited data and band 0 for normal data.

TCP's out-of-band data is not considered true expedited data by TPI. Indeed, TCP uses
band 0 for both normal data and its out-of-band data. The use of band 1 for expedited data
is for protocols in which the expedited data (not just the urgent pointer, as in TCP) is sent
ahead of normal data.

Beware of the term "normal". In releases before SVR4, there were no priority bands; there
were just normal messages and priority messages. SVR4 implemented priority bands,
requiring the getpmsg and putpmsg functions, which we will describe shortly. The older
priority messages were renamed high-priority. The question is what to call the new
messages, with priority bands between 1 and 255. Common terminology [Rago 1993]
refers to everything other than high-priority messages as normal-priority messages and
then subdivides these normal-priority messages into priority bands. The term "normal
message" should always refer to a message with a band of 0.

Although we talk about normal-priority messages and high-priority messages, there are
about a dozen normal-priority message types and around 18 high-priority message types.
From an application's perspective, and the getmsg and putmsg functions we are about to
describe, we are interested in only three different types of messages: M_DATA, M_PROTO,
and M_PCPROTO (PC stands for "priority control" and implies a high-priority message).

Page 963

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


Figure 31.6 shows how these three different message types are generated by the write
and putmsg functions.

Figure 31.6. STREAMS message types generated by write and putmsg.

[ Team LiB ]

Page 964

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

31.3 getmsg and putmsg Functions
The data transferred up and down a stream consists of messages, and each message
contains control, data, or both. If we use read and write on a stream, these transfer only
data. To allow a process to read and write both data and control information, two new
functions were added.

#include <stropts.h>

int getmsg(int fd, struct strbuf *ctlptr, struct strbuf *dataptr, int *flagsp) ;

int putmsg(int fd, const struct strbuf *ctlptr, const struct strbuf *dataptr, int
 flags) ;

Both return: non-negative value if OK (see text),  1 on error

Both the control and data portions of the message are described by the following strbuf
structure:

struct strbuf {

  int    maxlen;     /* maximum size of buf */

  int    len;        /* actual amount of data in buf */

  char  *buf;        /* data */

};

Note the similarity between the strbuf structure and the netbuf structure. The names of
the three elements in each structure are identical.

But the two lengths in the netbuf structure are unsigned integers, while the two lengths in
the strbuf structure are signed integers. The reason why is that some of the STREAMS
functions use a len or maxlen value of  1 to indicate something special.

We can send only control information, only data, or both using putmsg. To indicate the
absence of control information, we can either specify ctlptr as a null pointer or set
ctlptr->len to  1. The same technique is used to indicate no data.

If there is no control information, an M_DATA message is generated by putmsg (Figure 31.6
); otherwise, either an M_PROTO or an M_PCPROTO message is generated, depending on the
flags. The flags argument to putmsg is 0 for a normal message or RS_HIPRI for a
high-priority message.

The final argument to getmsg is a value-result argument. If the integer pointed to by flagsp
is 0 when the function is called, the first message on the stream is returned (which can be
normal- or high-priority). If the integer value is RS_HIPRI when the function is called, the
function waits for a high-priority message to arrive at the stream head. In both cases, the
value stored in the integer pointed to by flagsp will be 0 or RS_HIPRI, depending on the
type of message returned.

Assuming we pass non-null ctlptr and dataptr values to getmsg, if there is no control
information to return (i.e., an M_DATA message is being returned), this is indicated by
setting ctlptr->len to  1 on return. Similarly, dataptr->len is set to  1 if there is no data
to return.

Page 965

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


The return value from putmsg is 0 if all is okay, or  1 on an error. But, getmsg returns 0
only if the entire message was returned to the caller. If the control buffer is too small for
all the control information, the return value is MORECTL (which is guaranteed to be
non-negative). Similarly, if the data buffer is too small, MOREDATA can be returned. If both
are too small, the logical OR of these two flags is returned.

[ Team LiB ]

Page 966

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

31.4 getpmsg and putpmsg Functions
When support for different priority bands was added to STREAMS with SVR4, the following
two variants of getmsg and putmsg were added:

#include <stropts.h>

int getpmsg(int fd, struct strbuf *ctlptr, struct strbuf *dataptr, int *bandp,
int *flagsp) ;

int putpmsg(int fd, const struct strbuf *ctlptr, const struct strbuf *dataptr,
int band, int flags) ;

Both return: non-negative value if OK,  1 on error

The band argument to putpmsg must be between 0 and 255, inclusive. If the flags
argument is MSG_BAND, then a message is generated in the specified priority band. Setting
flags to MSG_BAND and specifying a band of 0 is equivalent to calling putmsg. If flags is
MSG_HIPRI, band must be 0, and a high-priority message is generated. (Note that this flag
is named differently from the RS_HIPRI flag for putmsg.)

The two integers pointed to by bandp and flagsp are value-result arguments for getpmsg.
The integer pointed to by flagsp for getpmsg can be MSG_HIPRI (to read a high-priority
message), MSG_BAND (to read a message whose priority band is at least equal to the integer
pointed to by bandp), or MSG_ANY (to read any message). On return, the integer pointed to
by bandp contains the band of the message that was read and the integer pointed to by
flagsp contains MSG_HIPRI (if a high-priority message was read) or MSG_BAND (if some other
message was read).

[ Team LiB ]

Page 967

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

31.5 ioctl Function
With STREAMS, we again encounter the ioctl function that was described in Chapter 17.

#include <stropts.h>

int ioctl(int fd, int request, ... /* void *arg */ ) ;

Returns: 0 if OK,  1 on error

The only change from the function prototype shown in Section 17.2 is the headers that
must be included when dealing with STREAMS.

There are about 30 requests that affect a stream head. Each request begins with I_ and
they are normally documented on the streamio man page.

[ Team LiB ]

Page 968

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

31.6 Transport Provider Interface (TPI)
In Figure 31.3, we showed that TPI is the service interface into the transport layer from
above. Both sockets and XTI use this interface in a STREAMS environment. In Figure 31.3,
it is a combination of the sockets library and sockmod, along with a combination of the XTI
library and timod, that exchange TPI messages with TCP and UDP.

TPI is a message-based interface. It defines the messages that are exchanged up and
down a stream between the application (e.g., the sockets library) and the transport layer:
the format of these messages and what operation each message performs. In many
instances, the application sends a request to the provider (such as "bind this local
address") and the provider sends back a response ("OK" or "error"). Some events occur
asynchronously at the provider (the arrival of a connection request for a server), causing a
message or a signal to be sent up the stream.

We are able to bypass both sockets and XTI and use TPI directly. In this section, we will
rewrite our simple daytime client using TPI instead of sockets (Figure 1.5). Using
programming languages as an analogy, using sockets is like programming in a high-level
language such as C or Pascal, while using TPI directly is like programming in assembly
language. We are not advocating the use of TPI directly in real applications. But examining
how TPI works and developing this example give us a better understanding of how the
sockets library works in a STREAMS environment.

Figure 31.7 is our tpi_daytime.h header.

Figure 31.7 Our tpi_daytime.h header.

streams/tpi_daytime.h

1 #include     "unpxti.h"

2 #include     <sys/stream.h>

3 #include     <sys/tihdr.h>

4 void    tpi_bind(int, const void *, size_t);

5 void    tpi_connect(int, const void *, size_t);

6 ssize_t tpi_read(int, void *, size_t);

7 void    tpi_close(int);

We need to include one additional STREAMS header along with <sys/tihdr.h>, which
contains the definitions of the structures for all TPI messages.

Figure 31.8 is the main function for our daytime client.

Figure 31.8 main function for our daytime client written to TPI.

streams/tpi_daytime.c

 1 #include    "tpi_daytime.h"

 2 int

 3 main(int argc, char **argv)

 4 {

 5     int     fd, n;

 6     char    recvline[MAXLINE + 1];

 7     struct sockaddr_in myaddr, servaddr;

 8     if (argc != 2)

 9         err_quit("usage: tpi_daytime <IPaddress>");

Page 969

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


10     fd = Open(XTI_TCP, O_RDWR, 0);

11         /* bind any local address */

12     bzero(&myaddr, sizeof(myaddr));

13     myaddr.sin_family = AF_INET;

14     myaddr.sin_addr.s_addr = htonl(INADDR_ANY);

15     myaddr.sin_port = htons(0);

16     tpi_bind(fd, &myaddr, sizeof(struct sockaddr_in));

17         /* fill in server's address */

18     bzero(&servaddr, sizeof(servaddr));

19     servaddr.sin_family = AF_INET;

20     servaddr.sin_port = htons(13);  /* daytime server */

21     Inet_pton(AF_INET, argv[1], &servaddr.sin_addr);

22     tpi_connect(fd, &servaddr, sizeof(struct sockaddr_in));

23     for ( ; ; ) {

24         if ( (n = tpi_read(fd, recvline, MAXLINE)) <= 0) {

25             if (n == 0)

26                 break;

27             else

28                 err_sys("tpi_read error");

29         }

30         recvline[n] = 0;        /* null terminate */

31         fputs(recvline, stdout);

32     }

33     tpi_close(fd);

34     exit(0);

35 }

Open transport provider, bind local address
10 16 We open the device corresponding to the transport provider (normally /dev/tcp).
We fill in an Internet socket address structure with INADDR_ANY and a port of 0, telling TCP
to bind any local address to our endpoint. We call our own function tpi_bind (shown
shortly) to do the bind.

Fill in server's address, establish connection
17 22 We fill in another Internet socket address structure with the server's IP address
(taken from the command line) and port (13). We call our tpi_connect function to
establish the connection.

Read data from server, copy to standard output
23 33 As in our other daytime clients, we just copy data from the connection to standard
output, stopping when we receive the EOF from the server (e.g., the FIN). We then call
our tpi_close function to close our endpoint.

Our tpi_bind function is shown in Figure 31.9.

Fill in T_bind_req structure
16 20 The <sys/tihdr.h> header defines the T_bind_req structure.

Page 970

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


struct T_bind_req {

  t_scalar_t     PRIM_type;      /* T_BIND_REQ */

  t_scalar_t     ADDR_length;    /* address length */

  t_scalar_t     ADDR_offset;    /* address offset */

  t_uscalar_t    CONIND_number;  /* connect indications requested */

      /* followed by the protocol address for bind */

};

All TPI requests are defined as a structure that begins with a long integer type field. We
define our own bind_req structure that begins with the T_bind_req structure, followed by
a buffer containing the local address to be bound. TPI says nothing about the contents of
this buffer; it is defined by the provider. TCP providers expect this buffer to contain a 
sockaddr_in structure.

We fill in the T_bind_req structure, setting the ADDR_length member to the size of the
address (16 bytes for an Internet socket address structure) and ADDR_offset to the byte
offset of the address (it immediately follows the T_bind_req structure). We are not
guaranteed that this location is suitably aligned for the sockaddr_in structure that is
stored there, so we call memcpy to copy the caller's structure into our bind_req structure.
We set CONIND_number to 0 because we are a client, not a server.

Call putmsg
21 23 TPI requires the structure that we just built to be passed to the provider as one
M_PROTO message. We therefore call putmsg, specifying our bind_req structure as the
control information, with no data and with a flag of 0.

Call getmsg to read high-priority message
24 30 The response to our T_BIND_REQ request will be either a T_BIND_ACK message or a
T_ERROR_ACK message. These acknowledgment messages are sent as high-priority
messages (M_PCPROTO) so we read them using getmsg with a flag of RS_HIPRI. Since the
reply is a high-priority message, it will bypass any normal-priority messages on the
stream.

Figure 31.9 tpi_bind function: binds a local address to an endpoint.

streams/tpi_bind.c

 1 #include    "tpi_daytime.h"

 2 void

 3 tpi_bind(int fd, const void *addr, size_t addrlen)

 4 {

 5     struct {

 6         struct T_bind_req msg_hdr;

 7         char    addr[128];

 8     } bind_req;

 9     struct {

10         struct T_bind_ack msg_hdr;

11         char    addr[128];

12     } bind_ack;

13     struct strbuf ctlbuf;

14     struct T_error_ack *error_ack;

15     int     flags;

16     bind_req.msg_hdr.PRIM_type = T_BIND_REQ;

17     bind_req.msg_hdr.ADDR_length = addrlen;

18     bind_req.msg_hdr.ADDR_offset = sizeof(struct T_bind_req);

Page 971

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


19     bind_req.msg_hdr.CONIND_number = 0;

20     memcpy(bind_req.addr, addr, addrlen);   /* sockaddr_in{} */

21     ctlbuf.len = sizeof(struct T_bind_req) + addrlen;

22     ctlbuf.buf = (char *) &bind_req;

23     Putmsg(fd, &ctlbuf, NULL, 0);

24     ctlbuf.maxlen = sizeof(bind_ack);

25     ctlbuf.len = 0;

26     ctlbuf.buf = (char *) &bind_ack;

27     flags = RS_HIPRI;

28     Getmsg(fd, &ctlbuf, NULL, &flags);

29     if (ctlbuf.len < (int) sizeof(long))

30         err_quit("bad length from getmsg");

31     switch (bind_ack.msg_hdr.PRIM_type) {

32     case T_BIND_ACK:

33         return;

34     case T_ERROR_ACK:

35         if (ctlbuf.len < (int) sizeof(struct T_error_ack))

36             err_quit("bad length for T_ERROR_ACK");

37         error_ack = (struct T_error_ack *) &bind_ack.msg_hdr;

38         err_quit("T_ERROR_ACK from bind (%d, %d)",

39                  error_ack->TLI_error, error_ack->UNIX_error);

40     default:

41         err_quit("unexpected message type: %d", bind_ack.msg_hdr.PRIM_type);

42     }

43 }

These two messages are as follows:

struct T_bind_ack {

  t_scalar_t     PRIM_type;     /* T_BIND_ACK */

  t_scalar_t     ADDR_length;   /* address length */

  t_scalar_t     ADDR_offset;   /* address offset */

  t_uscalar_t    CONIND_number; /* connect ind to be queued */

      /* followed by the bound address */

};

struct T_error_ack {

  t_scalar_t     PRIM_type;     /* T_ERROR_ACK */

  t_scalar_t     ERROR_prim     /* primitive in error */

  t_scalar_t     TLI_error;     /* TLI error code */

  t_scalar_t     UNIX_error;    /* UNIX error code */

};

All these messages begin with the type, so we can read the reply assuming it is a 
T_BIND_ACK message, look at the type, and process the message accordingly. We do not
expect any data from the provider, so we specify a null pointer as the third argument to 
getmsg.

When we verify that the amount of control information returned is at least the size of a
long integer, we must be careful to cast the sizeof value to an integer. The sizeof
operator returns an unsigned integer value, but it is possible for the returned len field to
be  1. But since the less-than comparison is comparing a signed value on the left to an

Page 972

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


unsigned value on the right, the compiler casts the signed value to an unsigned value. On
a two's-complement architecture,  1, considered as an unsigned value, is very large,
causing  1 to be greater than 4 (if we assume a long integer occupies 4 bytes).

Process reply
31 33 If the reply is T_BIND_ACK, the bind was successful and we return. The actual
address that was bound to the endpoint is returned in the addr member of our bind_ack
structure, which we ignore.

34 39 If the reply is T_ERROR_ACK, we verify that the entire message was received and then
print the three return values in the structure. In this simple program, we terminate when
an error occurs; we do not return to the caller.

We can see these errors from the bind request by changing our main function to bind some
port other than 0. For example, if we try to bind port 1 (which requires superuser
privileges, since it is a port less than 1024), we get

solaris % tpi_daytime 127.0.0.1

T_ERROR_ACK from bind (3, 0)

The error TACCES has the value 3 on this system. If we change the port to a value greater
than 1023, but one that is currently in use by another TCP endpoint, we get

solaris % tpi_daytime 127.0.0.1

T_ERROR_ACK from bind (23, 0)

The error TADDRBUSY has the value 23 on this system.

The next function, shown in Figure 31.10, is tpi_connect, which establishes the
connection with the server.

Fill in request structure and send to provider
18 26 TPI defines a T_conn_req structure that contains the protocol address and options
for the connection.

struct T_conn_req {

  t_scalar_t     PRIM_type;   /* T_CONN_REQ */

  t_scalar_t     DEST_length; /* destination address length */

  t_scalar_t     DEST_offset; /* destination address offset */

  t_scalar_t     OPT_length;  /* options length */

  t_scalar_t     OPT_offset;  /* options offset */

      /* followed by the protocol address and options for connection */

};

As in our tpi_bind function, we define our own structure named conn_req, which includes
a T_conn_req structure along with room for the protocol address. We fill in our conn_req
structure, setting the two members dealing with options to 0. We call putmsg with only
control information and a flag of 0 to send an M_PROTO message down the stream.

Page 973

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


Figure 31.10 tpi_connect function: establishes connection with server.

streams/tpi_connect.c

 1 #include    "tpi_daytime.h"

 2 void

 3 tpi_connect(int fd, const void *addr, size_t addrlen)

 4 {

 5     struct {

 6         struct T_conn_req msg_hdr;

 7         char    addr[128];

 8     } conn_req;

 9     struct {

10         struct T_conn_con msg_hdr;

11         char    addr[128];

12     } conn_con;

13     struct strbuf ctlbuf;

14     union T_primitives rcvbuf;

15     struct T_error_ack *error_ack;

16     struct T_discon_ind *discon_ind;

17     int     flags;

18     conn_req.msg_hdr.PRIM_type = T_CONN_REQ;

19     conn_req.msg_hdr.DEST_length = addrlen;

20     conn_req.msg_hdr.DEST_offset = sizeof(struct T_conn_req);

21     conn_req.msg_hdr.OPT_length = 0;

22     conn_req.msg_hdr.OPT_offset = 0;

23     memcpy(conn_req.addr, addr, addrlen);   /* sockaddr_in{} */

24     ctlbuf.len = sizeof(struct T_conn_req) + addrlen;

25     ctlbuf.buf = (char *) &conn_req;

26     Putmsg(fd, &ctlbuf, NULL, 0);

27     ctlbuf.maxlen = sizeof(union T_primitives);

28     ctlbuf.len = 0;

29     ctlbuf.buf = (char *) &rcvbuf;

30     flags = RS_HIPRI;

31     Getmsg(fd, &ctlbuf, NULL, &flags);

32     if (ctlbuf.len < (int) sizeof(long))

33         err_quit("tpi_connect: bad length from getmsg");

34     switch (rcvbuf.type) {

35     case T_OK_ACK:

36         break;

37     case T_ERROR_ACK:

38         if (ctlbuf.len < (int) sizeof(struct T_error_ack))

39             err_quit("tpi_connect: bad length for T_ERROR_ACK");

40         error_ack = (struct T_error_ack *) &rcvbuf;

41         err_quit("tpi_connect: T_ERROR_ACK from conn (%d, %d)",

42                  error_ack->TLI_error, error_ack->UNIX_error);

43     default:

44         err_quit("tpi_connect: unexpected message type: %d", rcvbuf.type);

45     }

46     ctlbuf.maxlen = sizeof(conn_con);

Page 974

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


47     ctlbuf.len = 0;

48     ctlbuf.buf = (char *) &conn_con;

49     flags = 0;

50     Getmsg(fd, &ctlbuf, NULL, &flags);

51     if (ctlbuf.len < (int) sizeof(long))

52         err_quit("tpi_connect2: bad length from getmsg");

53     switch (conn_con.msg_hdr.PRIM_type) {

54     case T_CONN_CON:

55         break;

56     case T_DISCON_IND:

57         if (ctlbuf.len < (int) sizeof(struct T_discon_ind))

58             err_quit("tpi_connect2: bad length for T_DISCON_IND");

59         discon_ind = (struct T_discon_ind *) &conn_con.msg_hdr;

60         err_quit("tpi_connect2: T_DISCON_IND from conn (%d)",

61                  discon_ind->DISCON_reason);

62     default:

63         err_quit("tpi_connect2: unexpected message type: %d",

64                  conn_con.msg_hdr.PRIM_type);

65     }

66 }

Read response
27 45 We call getmsg, expecting to receive either a T_OK_ACK message if the connection
establishment was started, or a T_ERROR_ACK message (which we showed earlier).

struct T_ok_ack {

  t_scalar_t    PRIM_type;        /* T_OK_ACK */

  t_scalar_t    CORRECT_prim;     /* correct primitive */

};

In case of an error, we terminate. Since we do not know what type of message we will
receive, a union named T_primitives is defined as the union of all the possible requests
and replies, and we allocate one of these that we use as the input buffer for the control
information when we call getmsg.

Wait for connection to be established
46 65 The successful T_OK_ACK message that was just received only tells us that the
connection establishment was started. We must now wait for a T_CONN_CON message to tell
us that the other end has confirmed the connection request.

struct T_conn_con {

  t_scalar_t     PRIM_type;      /* T_CONN_CON */

  t_scalar_t     RES_length;     /* responding address length */

  t_scalar_t     RES_offset;     /* responding address offset */

  t_scalar_t     OPT_length;     /* option length */

  t_scalar_t     OPT_offset;     /* option offset */

      /* followed by peer's protocol address and options */

};

Page 975

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


We call getmsg again, but the expected message is sent as an M_PROTO message, not an
M_PCPROTO message, so we set the flags to 0. If we receive the T_CONN_CON message, the
connection is established and we return, but if the connection was not established (either
the peer process was not running, a timeout occurred, or whatever), a T_DISCON_IND
message is sent up the stream instead.

struct T_discon_ind {

  t_scalar_t     PRIM_type;      /* T_DISCON_IND */

  t_scalar_t     DISCON_reason;  /* disconnect reason */

  t_scalar_t     SEQ_number;     /* sequence number */

};

We can see the different errors that are returned by the provider. We first specify the IP
address of a host that is not running the daytime server.

solaris % tpi_daytime 192.168.1.10

tpi_connect2: T_DISCON_IND from conn (146)

The error of 146 corresponds to ECONNREFUSED. Next, we specify an IP address that is not
connected to the Internet.

solaris % tpi_daytime 192.3.4.5

tpi_connect2: T_DISCON_IND from conn (145)

The error this time is ETIMEDOUT. But if we run our program again, specifying the same IP
address, we get a different error.

solaris % tpi_daytime 192.3.4.5

tpi_connect2: T_DISCON_IND from conn (148)

The error this time is EHOSTUNREACH. The difference in the last two results is that the first
time, no ICMP "host unreachable" errors were returned, while the next time, this error was
returned.

The next function is tpi_read, shown in Figure 31.11. It reads data from a stream.

Figure 31.11 tpi_read function: reads data from a stream.

streams/tpi_read.c

 1 #include    "tpi_daytime.h"

 2 ssize_t

 3 tpi_read(int fd, void *buf, size_t len)

 4 {

 5     struct strbuf ctlbuf;

 6     struct strbuf datbuf;

 7     union T_primitives rcvbuf;

 8     int     flags;

Page 976

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


 9     ctlbuf.maxlen = sizeof(union T_primitives);

10     ctlbuf.buf = (char *) &rcvbuf;

11     datbuf.maxlen = len;

12     datbuf.buf = buf;

13     datbuf.len = 0;

14     flags = 0;

15     Getmsg(fd, &ctlbuf, &datbuf, &flags);

16     if (ctlbuf.len >= (int) sizeof(long)) {

17         if (rcvbuf.type == T_DATA_IND)

18             return (datbuf.len);

19         else if (rcvbuf.type == T_ORDREL_IND)

20             return (0);

21         else

22             err_quit("tpi_read: unexpected type %d", rcvbuf.type);

23     } else if (ctlbuf.len == -1)

24         return (datbuf.len);

25     else

26         err_quit("tpi_read: bad length from getmsg");

27 }

Read control and data; process reply
9 26 This time, we call getmsg to read both control information and data. The strbuf
structure for the data points to the caller's buffer. Four different scenarios can occur on the
stream:

 The data can arrive as an M_DATA message, which is indicated by the returned
control length being set to  1. The data was copied into the caller's buffer by
getmsg, and we just return the length of this data as the return value of the
function.

 The data can arrive as a T_DATA_IND message, in which case, the control information
will be a T_data_ind structure.




 struct T_data_ind {

   t_scalar_t    PRIM_type;     /* T_DATA_IND */

   t_scalar_t    MORE_flag;     /* more data */

 };



If this message is returned, we ignore the MORE_flag member (it will never be set
for a stream protocol such as TCP) and just return the length of the data that was
copied into the caller's buffer by getmsg.

 A T_ORDREL_IND message is returned if all the data has been consumed and the
next item is a FIN.




 struct T_ordrel_ind {

   t_scalar_t    PRIM_type;     /* T_ORDREL_IND */

 };



Page 977

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


This is the orderly release. We just return 0, indicating to the caller that the EOF has
been encountered on the connection.

 A T_DISCON_IND message is returned if a disconnect has been received.

Our final function is tpi_close, shown in Figure 31.12.

Figure 31.12 tpi_close function: sends an orderly release to the peer.

streams/tpi_close.c

 1 #include    "tpi_daytime.h"

 2 void

 3 tpi_close(int fd)

 4 {

 5     struct T_ordrel_req ordrel_req;

 6     struct strbuf ctlbuf;

 7     ordrel_req.PRIM_type = T_ORDREL_REQ;

 8     ctlbuf.len = sizeof(struct T_ordrel_req);

 9     ctlbuf.buf = (char *) &ordrel_req;

10     Putmsg(fd, &ctlbuf, NULL, 0);

11     Close(fd);

12 }

Send orderly release to peer
7 10 We build a T_ordrel_req structure

struct T_ordrel_req {

  long  PRIM_type;   /* T_ORDREL_REQ */

};

and send it as an M_PROTO message using putmsg.

This example has given us a flavor for TPI. The application sends messages down a stream
to the provider (requests) and the provider sends messages up the stream (replies). Some
exchanges follow a simple request-reply scenario (binding a local address), while others
may take a while (establishing a connection), allowing us to do something while we wait
for the reply. Our choice of writing a TCP client using TPI was done for simplicity; writing a
TCP server and handling connections are much harder.

We can compare the number of system calls required for the network operations that we
have seen in this chapter when using TPI versus a kernel that implements sockets within
the kernel. Binding a local address takes two system calls with TPI, but only one with
kernel sockets (TCPv2, p. 454). To establish a connection on a blocking descriptor takes
three system calls with TPI, but only one with kernel sockets (TCPv2, p. 466).

[ Team LiB ]

Page 978

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

31.7 Summary
Sockets are sometimes implemented using STREAMS. Four new functions are provided to
access the STREAMS subsystem: getmsg, getpmsg, putmsg, and putpmsg, plus the existing
ioctl function is heavily used by the STREAMS subsystem also.

TPI is the SVR4 STREAMS interface from the upper layers into the transport layer. It is
used by both sockets and XTI, as shown in Figure 31.3. We developed a version of our
daytime client using TPI directly as an example to show the message-based interface that
TPI uses.

[ Team LiB ]

Page 979

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Exercises
31.1 In Figure 31.12, we call putmsg to send the orderly release request

down the stream and then immediately close the stream. What
happens if our orderly release request is lost by the STREAMS
subsystem when the stream is closed?

[ Team LiB ]

Page 980

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Appendix A. IPv4, IPv6, ICMPv4, and
ICMPv6

Section A.1.?Introduction

Section A.2.?IPv4 Header

Section A.3.?IPv6 Header

Section A.4.?IPv4 Addresses

Section A.5.?IPv6 Addresses

Section A.6.?Internet Control Message Protocols (ICMPv4 and ICMPv6)

[ Team LiB ]

Page 981

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

A.1 Introduction
This appendix is an overview of IPv4, IPv6, ICMPv4, and ICMPv6. This material provides
additional background that may be helpful in understanding the discussion of TCP and UDP
in Chapter 2. Some features of IP and ICMP are also used in some of the later chapters: IP
options (Chapter 27), along with the ping and traceroute programs (Chapter 28), for
example.

[ Team LiB ]

Page 982

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

A.2 IPv4 Header
The IP layer provides a connectionless best-effort datagram delivery service (RFC 791
[Postel 1981a]). IP makes its best effort to deliver an IP datagram to the specified
destination, but there is no guarantee that the datagram will arrive, will arrive in order
relative to other packets, or will arrive only once. Any desired reliability, ordering, and
duplicate suppression must be added by the upper layers. In the case of a TCP or SCTP
application, this is performed by the transport layer. In the case of a UDP application, this
must be done by the application since UDP is unreliable; we show an example of this in 
Section 22.5.

One of the most important functions of the IP layer is routing. Every IP datagram contains
a source and destination address. Figure A.1 shows the format of an IPv4 header.

Figure A.1. Format of the IPv4 header.

 The 4-bit version field is 4. This has been the version of IP in use since the early
1980s.

 The header length field is the length of the entire IP header, including any options,
in whole 32-bit words. The maximum value for this 4-bit field is 15 (0xf), giving a
maximum IP header length of 60 bytes. Therefore, with the fixed portion of the
header occupying 20 bytes, this allows for up to 40 bytes of options.

 The 6-bit Differentiated Services Code Point (DSCP) field (RFC 2474 [Nichols et al.
1998]) and the 2-bit Explicit Congestion Notification (ECN) field (RFC 3168
[Ramakrishnan, Floyd, and Black 2001]) replace the historical 8-bit type-of-service
(TOS) field, which was described in RFC 1349 [Almquist 1992]. We can set all 8 bits
of this field with the IP_TOS socket option (Section 7.6), although the kernel may
overwrite any value we set to enforce Diffserv policy or implement ECN.

 The 16-bit total length field is the total length in bytes of the IP datagram, including
the IPv4 header. The amount of data in the datagram is this field minus 4 times the
header length (recall that the header length is in units of whole 32-bit words, or 4
bytes). This field is required because some datalinks pad the frame to some
minimum length (e.g., Ethernet) and it is possible for the size of a valid IP
datagram to be less than the datalink minimum.

 The 16-bit identification field is set to a different value for each IP datagram and
enables fragmentation and reassembly (Section 2.11). The value must be unique for
the packet's source, destination, and protocol, for the length of time that the

Page 983

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


datagram could be in transit. If there is no chance that the packet will be
fragmented, for instance, the DF bit is set, there is no need to set this field.

 The DF (don't fragment) bit, the MF (more fragments) bit, and the 13-bit fragment
offset field are also used with fragmentation and reassembly. The DF bit is also used
with path MTU discovery (Section 2.11).

 The 8-bit time-to-live (TTL) field is set by the sender and then decremented by 1
each time a router forwards the datagram. The datagram is discarded by any router
that decrements the value to 0. This limits the lifetime of any IP datagram to 255
hops. A common default for this field is 64, but we can query and change this
default with the IP_TTL and IP_MULTICAST_TTL socket options (Section 7.6).

 The 8-bit protocol field specifies the next layer protocol contained in the IP
datagram. Typical values are 1 (ICMPv4), 2 (IGMPv4), 6 (TCP), and 17 (UDP). These
values are specified in the IANA's "Protocol Numbers" registry [IANA].

 The 16-bit header checksum is calculated over just the IP header (including any
options). The algorithm is the standard Internet checksum algorithm, a simple
16-bit one's-complement addition, which we show in Figure 28.15.

 The source IPv4 address and the destination IPv4 address are both 32-bit fields.

 We describe the options field in Section 27.2 and show an example of the IPv4
source route option in Section 27.3.

[ Team LiB ]

Page 984

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

A.3 IPv6 Header
Figure A.2 shows the format of an IPv6 header (RFC 2460 [Deering and Hinden 1998]).

Figure A.2. Format of the IPv6 header.

 The 4-bit version field is 6. Since this field occupies the first 4 bits of the first byte
of the header (just like the IPv4 version, Figure A.1), it allows a receiving IP stack
to differentiate between the two versions. This differentiation is already done by
most link layers by using different encapsulation for IPv4 and IPv6.

During the development of IPv6 in the early 1990s, before the version number of 6
was assigned, the protocol was called IPng, for "IP next generation." You may still
encounter references to IPng.

 The 6-bit DSCP field (RFC 2474 [Nichols et al. 1998]) and the 2-bit ECN field (RFC
3168 [Ramakrishnan, Floyd, and Black 2001]) replace the historical 8-bit traffic
class field, which was described in RFC 2460. We can set all 8 bits of this field with
the IPV6_TCLASS socket option (Section 22.8), although the kernel may overwrite
any value we set to enforce Diffserv policy or implement ECN.

 The 20-bit flow label field can be chosen by the application or kernel for a given
socket. A flow is a sequence of packets from a particular source to a particular
destination for which the source desires special handling by intervening routers. For
a given flow, once the flow label is chosen by the source, it does not change. A flow
label of 0 (the default) identifies packets that do not belong to a flow. The flow label
does not change while flowing through the network. [Rajahalme et al. 2003]
describes the usage of the flow label more completely.

The interface for the flow label is yet to be completely defined. The sin6_flowinfo
member of the sockaddr_in6 socket address structure (Figure 3.4) is reserved for
future use. Some systems copy the lower 28 bits from the sin6_flowinfo directly
into the IPv6 packet header, overwriting the DSCP and ECN fields.

 The 16-bit payload length field is the length in bytes of everything following the
40-byte IPv6 header. Note that unlike IPv4, the payload length field does not
include the IPv6 header. A value of 0 means the length requires more than 16 bits

Page 985

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


to describe and is contained in a jumbo payload option (Figure 27.9). This is called
a jumbogram.

 The 8-bit next header field is similar to the IPv4 protocol field. Indeed, when the
upper layer protocol is basically unchanged from IPv4 to IPv6, the same values are
used, such as 6 for TCP and 17 for UDP. There were so many changes from ICMPv4
to ICMPv6 that the latter was assigned a new value of 58.

An IPv6 datagram can have numerous headers following the 40-byte IPv6 header.
That is why the field is called the "next header" and not the "protocol."

 The 8-bit hop limit field is similar to the IPv4 TTL field. The hop limit is decremented
by 1 each time a router forwards the datagram and the datagram is discarded by
any router that decrements the value to 0. The default value for this field can be set
and fetched with the IPV6_UNICAST_HOPS and IPV6_MULTICAST_HOPS (Sections 7.8
and 21.6) socket options. The IPV6_HOPLIMIT socket option also lets us set this field
and the IPV6_RECVHOPLIMIT socket option lets us obtain its value from a received
datagram.

Early specifications of IPv4 had routers decrement the TTL by either one or the
number of seconds that the router held the datagram, whichever was greater. Hence
the name "time-to-live." In reality, however, the field was always decremented by
one. IPv6 calls for its hop limit field to always be decremented by one, hence the
name change from IPv4.

 The source IPv6 address and the destination IPv6 address are both 128-bit fields.

The most significant change from IPv4 to IPv6 is, of course, the larger IPv6 address fields.
Another change is simplifying the IPv6 header as follows, to facilitate faster processing as a
datagram traverses the network:

 There is no IPv6 header length field since the IPv6 header length is fixed at 40
bytes. Optional headers may follow the fixed 40-byte IPv6 header, but each of these
has its own length field.

 The two IPv6 addresses end up aligned on a 64-bit boundary when the header itself
is 64-bit aligned. This can speed up processing on 64-bit architectures. IPv4
addresses are only 32-bit aligned in a 64-bit aligned IPv4 header.

 There are no fragmentation fields in the IPv6 header because there is a separate
fragmentation header for this purpose. This design decision was made because
fragmentation is the exception, and exceptions should not slow down normal
processing.

 The IPv6 header does not include its own checksum. This is because all the upper
layers TCP, UDP, and ICMPv6 have their own checksum that includes the
upper-layer header, the upper-layer data, and the following fields from the IPv6
header: IPv6 source address, IPv6 destination address, payload length, and next
header (RFC 2460 [Deering and Hinden 1998]). By omitting the checksum from the
header, routers that forward the datagram need not recalculate a header checksum
after they modify the hop limit. Again, speed of forwarding by routers is the key
point.

In case this is your first encounter with IPv6, we also note the following major differences
from IPv4 to IPv6:

 There is no broadcasting with IPv6 (Chapter 20). Multicasting (Chapter 21), which is
optional with IPv4, is mandatory with IPv6. The case of sending to all systems on a
subnet is handled with the all-nodes multicast group.

 IPv6 routers do not fragment packets they forward. If fragmentation is required, the

Page 986

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


router drops the packet and sends an ICMPv6 error (Section A.6). Fragmentation is
performed only by the originating host with IPv6.

 IPv6 requires support for path MTU discovery (Section 2.11). Technically, this
support is optional and could be omitted from minimal implementations such as
bootstrap loaders, but if a node does not implement this feature, it must not send
datagrams larger than the IPv6 minimum link MTU (1280 bytes). Section 22.9
describes socket options to control path MTU discovery behavior.

 IPv6 requires support for authentication and security options. These options appear
after the fixed header.

[ Team LiB ]

Page 987

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

A.4 IPv4 Addresses
IPv4 addresses are 32 bits long and are usually written as 4 decimal numbers, separated
by dots ("."). This is called dotted-decimal notation, and each decimal number represents
one of the 4 bytes of the 32-bit address. The first of the 4 decimal numbers identifies the
address type, as shown in Figure A.3. Although historically IPv4 addresses were divided
into five classes, as shown in Figure A.3, the three classes used for unicast addresses are
functionally equivalent, so we show them as one range.

Figure A.3. Ranges for the five different classes of IPv4 addresses.

Whenever we talk about an IPv4 network or subnet address, we talk about a 32-bit
network address and a corresponding 32-bit mask. Bits of 1 in the mask cover the network
address and bits of 0 in the mask cover the host. Since the bits of 1 in the mask are
usually contiguous from the leftmost bit, and the bits of 0 in the mask are always
contiguous from the rightmost bit, this address mask can also be specified as a prefix
length that denotes the number of contiguous bits of 1 starting from the left. For example,
a mask of 255.255.255.0 corresponds with a prefix length of 24. These are known as 
classless addresses, so called because the mask is explicitly specified instead of being
implied by the address class. IPv4 network addresses are normally written as a
dotted-decimal number, followed by a slash, followed by the prefix length. Figure 1.16
showed examples of this.

Discontiguous subnet masks were never ruled out by any RFC, but they are confusing and
cannot be represented in prefix notation. BGP4, the Internet interdomain routing protocol,
cannot represent discontiguous masks. IPv6 also requires that all address masks be
contiguous starting at the leftmost bit.

Using classless addresses requires classless routing, and this is normally called classless
interdomain routing (CIDR) (RFC 1519 [Fuller et al. 1993]). CIDR usage decreases the size
of the Internet backbone routing tables and reduces the rate of IPv4 address depletion. All
routes in CIDR must be accompanied by a mask or a prefix length. The class of the address
no longer implies the mask. Section 10.8 of TCPv1 talks more about CIDR.

Subnet Addresses
IPv4 addresses are often subnetted (RFC 950 [Mogul and Postel 1985]). This adds another
level to the address hierarchy:

 Network ID (assigned to site)

 Subnet ID (chosen by site)

 Host ID (chosen by site)

The boundary between the network ID and the subnet ID is fixed by the prefix length of
the assigned network address. This prefix length is normally assigned by the organization's
Internet service provider (ISP). But, the boundary between the subnet ID and the host ID
is chosen by the site. All the hosts on a given subnet share a common subnet mask, and
this mask specifies the boundary between the subnet ID and the host ID. Bits of 1 in the
subnet mask cover the network ID and subnet ID, and bits of 0 cover the host ID.

As an example, consider a site that is assigned the prefix 192.168.42.0/24 by its ISP. If it

Page 988

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


chooses to use a 3-bit subnet ID, 5 bits are left for the host ID, as shown in Figure A.4.

Figure A.4. 24-bit network address with 3-bit subnet ID and 5-bit host
ID.

This division results in the subnets shown in Figure A.5.

Figure A.5. Subnet list for 3-bit subnet ID and 5-bit host ID.

This gives us 6 to 8 subnets (subnet IDs 1 6 or 0 7), each supporting 30 systems (host
IDs 1 30). RFC 950 recommends not using the two subnets with a subnet ID of all zero
bits or all one bits (the ones marked with a dagger in Figure A.5. Most systems today
support these two forms of subnet IDs. The highest host ID (31, in this case) is reserved
for the broadcast address. The host ID 0 is reserved for identifying the network and to
avoid problems with old systems that used host ID 0 as the broadcast address. However,
on controlled networks with no such systems, it may be possible to use host ID 0. In
general, network programs need not care about specific subnet or host IDs and should
treat IP addresses as opaque values.

Loopback Addresses
By convention, the address 127.0.0.1 is assigned to the loopback interface. Anything sent
to this IP address loops around and becomes IP input without ever leaving the machine.
We often use this address when testing a client and server on the same host. This address
is normally known by the name INADDR_LOOPBACK.

Any address on the network 127/8 can be assigned to the loopback interface, but
127.0.0.1 is and is often configured automatically by the IP stack.

Unspecified Address
The address consisting of 32 zero bits is the IPv4 unspecified address. In an IPv4 packet, it
is only permitted to appear as the source address in packets sent by a node that is
bootstrapping before the node learns its IP address. In the sockets API, this address is
called the wildcard address and is normally known by the name INADDR_ANY. Also,
specifying it in the sockets API, for example, to bind for a listening TCP socket, indicates
that the socket will accept client connections destined to any of the node's IPv4 addresses.

Private Addresses

Page 989

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


RFC 1918 [Rekhter et al. 1996] sets aside three address ranges for "private Internets,"
that is, networks that do not connect to the public Internet without a NAT or proxies in
between. These address ranges are shown in Figure A.6:

Figure A.6. Ranges for private IPv4 addresses.

These addresses must never appear on the Internet; they are reserved for use in private
networks. Many small sites use these private addresses and NAT to a single public IP
address visible to the Internet.

Multihoming and Address Aliases
Traditionally, the definition of a multihomed host has been a host with multiple interfaces:
two Ethernets, for example, or an Ethernet and a point-to-point link. Each interface must
generally have a unique IPv4 address. When counting interfaces to determine if a host is
multihomed, the loopback interface does not count.

A router, by definition, is multihomed since it forwards packets that arrive on one interface
out another interface. But, a multihomed host is not a router unless it forwards packets.
Indeed, a multihomed host must not assume it is a router just because the host has
multiple interfaces; it must not act as a router unless it has been configured to do so
(typically by the administrator enabling a configuration option).

The term "multihoming," however, is more general and covers two different scenarios
(Section 3.3.4 of RFC 1122 [Braden 1989]):

 A host with multiple interfaces is multihomed and each interface must in general
have its own IP address. ("Unnumbered" interfaces need not have IP addresses, but
we mostly encounter these on routers.) This is the traditional definition.

 Newer hosts have the capability of assigning multiple IP addresses to a given
physical interface. Each additional IP address, after the first (primary), is called an 
alias or logical interface. Often, aliased IP addresses share the same subnet address
as the primary address but have different host IDs. But, it is also possible for aliases
to have a completely different network address or subnet addresses from the
primary. We show an example of aliased addresses in Section 17.6.

Hence, the definition of a multihomed host is one with multiple interfaces visible to the IP
layer, regardless of whether those interfaces are physical or logical.

It is common to give a high-usage server multiple connections to the same Ethernet
switch, and to aggregate these connections to appear as one higher bandwidth interface.
Although such a system has multiple physical interfaces, it is not considered to be
multihomed since only one logical interface is visible to IP.

The term "multihoming" is also used in another context. A network that has multiple
connections to the Internet is also called multihomed. For example, some sites have two
connections to the Internet instead of one, providing a backup capability. The SCTP
transport protocol can potentially take advantage of these multiple connections by
communicating that the site is multihomed to its peer.

[ Team LiB ]

Page 990

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

A.5 IPv6 Addresses
IPv6 addresses are 128 bits long and are usually written as eight 16-bit hexadecimal
numbers. The high-order bits of the 128-bit address imply the type of address (RFC 3513
[Hinden and Deering 2003]). Figure A.7 shows the different values of the high-order bits
and what type of address these bits imply.

Figure A.7. Meaning of high-order bits of IPv6 addresses.

These high-order bits are called the format prefix. For example, if the high-order 3 bits are
001, the address is called a global unicast address. If the high-order 8 bits are 11111111 (
0xff), it is a multicast address.

Global Unicast Addresses
The IPv6 addressing architecture has evolved based on lessons learned from deployment
and from IPv4. The original definition of aggregatable global unicast addresses, which in 
Figure A.7 begin with a 3-bit prefix of 001, had a fixed structure built into the address. This
structure was removed by RFC 3587 [Hinden, Deering, and Nordmark 2003], and while the
addresses beginning with the 001 prefix will be the first ones assigned, there is no
difference between them and any other global address. These addresses will be used where
IPv4 unicast addresses are used today.

The format of aggregation-based unicast addresses is defined in RFC 3513 [Hinden and
Deering 2003] and RFC 3587 [Hinden, Deering, and Nordmark 2003] and contains the
following fields, starting at the leftmost bit and going right:

 Global routing prefix (n bits)

 Subnet ID (64 n bits)

 Interface identifier (64 bits)

Figure A.8 illustrates the format of a global unicast address.

Figure A.8. IPv6 aggregatable global unicast addresses.

The interface ID must be constructed in modified EUI-64 format. This is a variation of IEEE
EUI-64 format [IEEE 1997], which is a superset of the 48-bit IEEE 802 MAC addresses that
are assigned to most LAN interface cards. This identifier should be automatically assigned
for an interface based on its hardware MAC address when possible. Details for constructing

Page 991

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


modified EUI-64-based interface identifiers are in Appendix A of RFC 3513 [Hinden and
Deering 2003].

Since a modified EUI-64 can be a globally unique identifier for a given interface, and an
interface can identify a user, the modified EUI-64 format raises certain privacy concerns. It
may be possible to track the actions and movements of a given user, for example, where
they bring their roaming laptop, just from the modified EUI-64 value in their IPv6 address.
RFC 3041 [Narten and Draves 2001] describes privacy extensions to generate interface
identifiers that change several times per day to avoid this privacy concern.

6 bone Test Addresses
The 6bone is a virtual network used for early testing of the IPv6 protocols (Section B.3).
Although aggregatable global unicast addresses are being assigned, sites that do not
qualify for address space based on the rules used by regional registries can use a special
format of these addresses on the 6bone (RFC 2471 [Hinden, Fink, and Postel 1998]), as
shown in Figure A.9.

Figure A.9. IPv6 test addresses for 6bone.

These addresses are considered temporary, and nodes using these addresses will have to
renumber when aggregatable global unicast addresses are assigned.

The high-order two bytes are 0x3ffe. The 6bone site ID is assigned by the chair of the
6bone activity. These assignments are meant to reflect how IPv6 addresses would be
assigned in real-world environments. 6bone activity is winding down [Fink and Hinden
2003] now that IPv6 production deployment is well underway (in 2002, more production
address allocations were made than the 6bone had allocated in eight years). The subnet ID
and interface ID are used as above for subnet and node identification.

In Section 11.2, we showed the IPv6 address for the host freebsd in Figure 1.16 as
3ffe:b80:1f8d:1:a00:20ff:fea7:686b. The 6bone site ID is 0x0b801f8d and the subnet
ID is 0x1. The low-order 64 bits are the modified EUI-64 constructed from the MAC address
of the host's Ethernet card.

IPv4-Mapped IPv6 Addresses
IPv4-mapped IPv6 addresses allow IPv6 applications on hosts supporting both IPv4 and
IPv6 to communicate with IPv4-only hosts during the transition of the Internet to IPv6.
These addresses are automatically created by DNS resolvers (Figure 11.8) when a query is
made by an IPv6 application for the IPv6 addresses of a host that has only IPv4 addresses.

We saw in Figure 12.4 that using this type of address with an IPv6 socket causes an IPv4
datagram to be sent to the IPv4 host. These addresses are not stored in any DNS data
files; they are created when needed by a resolver.

Figure A.10 shows the format of these addresses The low-order 32 bits contain an IPv4
address.

Figure A.10. IPv4-mapped IPv6 address.

When writing an IPv6 address, a consecutive string of zeros can be abbreviated with two
colons. Also, the embedded IPv4 address is written using dotted-decimal notation. For
example, we can abbreviate the IPv4-mapped IPv6 address 

Page 992

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


0:0:0:0:0:FFFF:12.106.32.254 as ::FFFF:12.106.32.254.

IPv4-Compatible IPv6 Addresses
IPv4-compatible IPv6 addresses were also planned to be used during the transition from
IPv4 to IPv6 (RFC 2893 [Gilligan and Nordmark 2000]). The administrator for a host
supporting both IPv4 and IPv6 that does not have a neighbor IPv6 router should create a
DNS AAAA record containing an IPv4-compatible IPv6 address. Any other IPv6 host with
an IPv6 datagram to send to an IPv4-compatible IPv6 address will then encapsulate the
IPv6 datagram with an IPv4 header; this is called an automatic tunnel. However,
deployment concerns have reduced the usage of this feature. We will talk more about
tunneling in Section B.3 and show an example of this type of IPv6 datagram encapsulated
within an IPv4 header in Figure B.2.

Figure A.11 shows the format of an IPv4-compatible IPv6 address.

Figure A.11. IPv4-compatible IPv6 address.

An example of this type of address is ::12.106.32.254.

IPv4-compatible IPv6 addresses can also appear in the source or destination of
nontunnelled IPv6 packets when using the SIIT IPv4/IPv6 transition mechanism (RFC
2765 [Nordmark 2000]).

Loopback Address
An IPv6 address consisting of 127 zero bits and a single one bit, written as ::1, is the IPv6
loopback address. In the sockets API, it is referenced as in6addr_loopback or
IN6ADDR_LOOPBACK_INIT.

Unspecified Address
An IPv6 address consisting of 128 zero bits, written as 0::0, or just ::, is the IPv6
unspecified address. In an IPv6 packet, the unspecified address can appear only as the
source address in packets sent by a node that is bootstrapping, before the node learns its
IPv6 address.

In the sockets API, this address is called the wildcard address. Specifying it, for example,
to bind for a listening TCP socket, indicates that the socket will accept client connections
destined to any of the node's addresses. It is referenced as in6addr_any or
IN6ADDR_ANY_INIT.

Link-Local Address
A link-local address is used on a single link when it is known that the datagram will not be
forwarded beyond the local network. Example uses are automatic address configuration at
bootstrap time and neighbor discovery (similar to IPv4's ARP). Figure A.12 shows the
format of these addresses.

Figure A.12. IPv6 link-local address.

These addresses always begin with 0xfe80. An IPv6 router must not forward a datagram
with a link-local source or destination address to another link. In Section 11.2, we show

Page 993

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


the link-local address associated with the name aix-6ll.

Site-Local Address
As of this writing, the IETF IPv6 working group has decided to deprecate site-local
addresses in their current form. The forthcoming replacement may or may not finally use
the same address range as was originally defined for site-local addresses (fec0/10).
Site-local addresses were meant to be used for addressing within a site without the need
for a global prefix. Figure A.13 shows the originally defined format of these addresses.

Figure A.13. IPv6 site-local address.

An IPv6 router must not forward a datagram with a site-local source or destination address
outside of that site.

[ Team LiB ]

Page 994

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

A.6 Internet Control Message Protocols (ICMPv4 and
ICMPv6)
ICMP is a required and integral part of any IPv4 or IPv6 implementation. ICMP is normally
used to communicate error or informational messages between IP nodes, both routers and
hosts, but it is occasionally used by applications. The ping and traceroute applications (
Chapter 28), for example, both use ICMP.

The first 32 bits of both ICMPv4 and ICMPv6 messages are the same and are shown in 
Figure A.14. RFC 792 [Postel 1981b] documents ICMPv4 and RFC 2463 [Conta and Deering
1998] documents ICMPv6.

Figure A.14. Format of ICMPv4 and ICMPv6 messages.

The 8-bit type is the type of the ICMPv4 or ICMPv6 message and some types have an
8-bit code with additional information. The checksum is the standard Internet checksum,
although in ICMPv4, the checksum covers only the ICMP payload starting with the type
field, while the ICMPv6 checksum also includes the IPv6 pseudoheader.

From a network programming perspective, we need to understand which ICMP messages
can be returned to an application, what causes an error, and how an error is returned to
the application. Figure A.15 lists all the ICMPv4 messages and how they are handled by
FreeBSD. Figure A.16 lists the ICMPv6 messages. The third column indicates the errno
value returned by those messages that trigger an error to be returned to the application.
When using TCP, the error is noted but is not immediately returned. If TCP later gives up
on the connection due to a timeout, any ICMP error indication is then returned. When using
UDP, the next send or receive operation receives the error, but only when using a
connected socket, as described in Section 8.9.

Figure A.15. Handling of the ICMP message types by FreeBSD.

Page 995

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


*-"port unreachable" is only used by transport protocols that do not have their own
mechanism for signalling that no process is listening on a port. For example, TCP sends an
RST message so it does not need the "port unreachable" message.

-redirects are ignored by systems acting as routers by forwarding packets.

Figure A.16. ICMPv6 messages.

**-"RFC2463bis" designates the revision in progress of RFC 2463 [Conta and Deering
2001].

The notation "user process" means that the kernel does not process the message and it is
up to a user process with a raw socket to handle the message. No error return is triggered

Page 996

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


for these messages. We must also note that different implementations may handle certain
messages differently. For example, although Unix systems normally handle router
solicitations and router advertisements in a user process, other implementations might
handle these messages in the kernel.

ICMPv6 clears the high-order bit of the type field for the error messages (types 1 4) and
sets this bit for the informational messages (types 128 137).

[ Team LiB ]

Page 997

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Appendix B. Virtual Networks
Section B.1.?Introduction

Section B.2.?The MBone

Section B.3.?The 6bone

Section B.4.?IPv6 Transition: 6to4

[ Team LiB ]

Page 998

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

B.1 Introduction
When a new feature is added to TCP, such as the long fat pipe support defined in RFC
1323, support is required only in the hosts using TCP; no changes are required in the
routers. These RFC 1323 changes, for example, are slowly appearing in host
implementations of TCP, and when a new TCP connection is established, each end can
determine if the other end supports the new feature. If both hosts support the feature, it
can be used.

This differs from changes being made to the IP layer, such as multicasting at the end of
the 1980s and IPv6 in the mid-1990s, because these new features require changes in all
the hosts and all the routers. But, what if people want to start using the new features
without having to wait for all the systems to be upgraded? To do this, a virtual network is
established on top of the existing IPv4 Internet using tunnels.

[ Team LiB ]

Page 999

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

B.2 The MBone
Our first example of a virtual network that is built using tunnels is the MBone, which
started around 1992 [Eriksson 1994]. If two or more hosts on a LAN support multicasting,
multicast applications can be run on all these hosts and communicate with each other. To
connect this LAN to some other LAN that also has multicast-capable hosts, a tunnel is
configured between one host on each of the LANs, as shown in Figure B.1. We show the
following numbered steps in this figure:

Figure B.1. IPv4-in-IPv4 encapsulation used on MBone.

1. An application on the source host, MH1, sends a multicast datagram to a class D
address.

2. We show this as a UDP datagram, since most multicast applications use UDP. We
talk more about multicasting and how to send and receive multicast datagrams in 
Chapter 21.

3. The datagram is received by all the multicast-capable hosts on the LAN, including
MR2. We note that MR2 is also functioning as a multicast router, running the 
mrouted program, which performs multicast routing.

4. MR2 prepends another IPv4 header at the front of the datagram with the destination
IPv4 address of this new header set to the unicast address of the tunnel endpoint,
MR5. This unicast address is configured by the administrator of MR2 and is read by
the mrouted program when it starts up. Similarly, the unicast address of MR2 is
configured for MR5, the other end of the tunnel. The protocol field in the new IPv4
header is set to 4, which is the value for IPv4-in-IPv4 encapsulation. The datagram
is sent to the next-hop router, UR3, which we explicitly denote as a unicast router.
That is, UR3 does not understand multicasting, which is the whole reason why we
are using a tunnel. The shaded portion of the IPv4 datagram has not changed from
what was sent in Step 1, other than the decrementing of the TTL field in the shaded
IPv4 header.

5. UR3 looks at the destination IPv4 address in the outermost IPv4 header and
forwards the datagram to the next-hop router, UR4, another unicast router.

6. UR4 delivers the datagram to its destination, MR5, the tunnel endpoint.

7. MR5 receives the datagram, and since the protocol field indicates IPv4-in-IPv4

Page 1000

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


encapsulation, it removes the first IPv4 header and then outputs the remainder of
the datagram (a copy of what was multicast on the top LAN) as a multicast
datagram on its LAN.

8. All the multicast-capable hosts on the lower LAN receive the multicast datagram.

The result is that the multicast datagram sent on the top LAN also gets transmitted as a
multicast datagram on the lower LAN. This occurs even though the two routers that we
show attached to these two LANs, and all the Internet routers between these two routers,
are not multicast-capable.

In this example, we show the multicast routing function being performed by the mrouted
program running on one host on each LAN. This is how the MBone started. But around
1996, multicast routing functionality started appearing in the routers from most major
router vendors. If the two unicast routers UR3 and UR4 in Figure B.1 were
multicast-capable, then we would not need to run mrouted at all, and UR3 and UR4 would
function as multicast routers. But if there are still other routers between UR3 and UR4 that
are not multicast-capable, then a tunnel is required. The tunnel endpoints would then be
MR3 (a multicast-capable replacement for UR3) and MR4 (a multicast-capable replacement
for UR4), not MR2 and MR5.

In the scenario that we show in Figure B.1, every multicast packet appears twice on the
top LAN and twice on the bottom LAN: once as a multicast packet, and again as a unicast
packet within the tunnel as the packet goes between the host running mrouted and the
next-hop unicast router (e.g., between MR2 and UR3, and between UR4 and MR5). This
extra copy is the cost of tunneling. The advantage in replacing the two unicast routers UR3
and UR4 in Figure B.1 with multicast-capable routers (what we called MR3 and MR4) is to
avoid this extra copy of every multicast packet from appearing on the LANs. Even if MR3
and MR4 must establish a tunnel between themselves because some intermediate routers
between them (that we do not show) are not multicast-capable, this is still advantageous
since it avoids the duplicate copies on each LAN.

In fact, the MBone is virtually nonexistent at this point, having been replaced with native
multicast in this manner. There are probably still tunnels present in the Internet's
multicast infrastructure, but they are commonly between native multicast routers inside a
service provider's network and are invisible to the end-user.

[ Team LiB ]

Page 1001

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

B.3 The 6bone
The 6bone is a virtual network that was created in 1996 for reasons similar to the MBone:
users with islands of IPv6-capable hosts wanted to connect them together using a virtual
network without waiting for all the intermediate routers to become IPv6-capable. As of this
writing, it is being phased out in favor of native IPv6 deployment; it is expected that the
6bone will cease to operate by June 2006 [Fink and Hinden 2003]. We cover the 6bone
here because the examples still demonstrate configured tunnels. We will expand the
example to include dynamic tunnels in Section B.4.

Figure B.2 shows an example of two IPv6-capable LANs connected with a tunnel across
IPv4-only routers. We show the following numbered steps in this figure:

Figure B.2. IPv6-in-IPv4 encapsulation on 6bone.

1. Host H1 on the top LAN sends an IPv6 datagram containing a TCP segment to host
H4 on the bottom LAN. We designate these two hosts as "IPv6 hosts," but both
probably run IPv4 also. The IPv6 routing table on H1 specifies that host HR2 is the
next-hop router and an IPv6 datagram is sent to this host.

2. Host HR2 has a configured tunnel to host HR3. This configured tunnel allows IPv6
datagrams to be sent between the two tunnel endpoints across an IPv4 Internet by
encapsulating the IPv6 datagram in an IPv4 datagram (called "IPv6-in-IPv4
encapsulation"). The IPv4 protocol field has a value of 41. We note that the two
IPv4/IPv6 hosts at the ends of the tunnel, HR2 and HR3, are both acting as IPv6
routers since they are forwarding IPv6 datagrams that they receive on one interface
out another interface. The configured tunnel counts as an interface, even though it
is a virtual interface and not a physical interface.

3. The tunnel endpoint, HR3, receives the encapsulated datagram, strips off the IPv4
header, and sends the IPv6 datagram onto its LAN.

4. The destination, H4, receives the IPv6 datagram.

[ Team LiB ]

Page 1002

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

B.4 IPv6 Transition: 6to4
The 6to4 transition mechanism, fully described in "Connection of IPv6 Domains via IPv4
Clouds" (RFC 3056 [Carpenter and Moore 2001]), is a method of dynamically creating the
tunnels shown in Figure B.2. Unlike previously designed dynamic tunnel mechanisms,
which required that each host involved have an IPv4 address and be aware of the tunneling
mechanism, 6to4 only involves routers in the tunneling process. This allows for simpler
configuration and a central location to enforce security policy. It also permits colocation of
6to4 functionality with the common NAT/firewall function that is often at the edge of a
network (e.g., a small NAT/firewall device at the customer's end of a DSL or cable-modem
connection).

6to4 addresses are in the range 2002/16. The IPv4 address follows in the next four bytes of
the address, as shown in Figure B.3; the 16-bit 2002 prefix and the 32-bit IPv4 address
create a 48-bit public topology identifier. This leaves two bytes for the subnet ID before
the 64-bit interface ID. For example, the 6to4 prefix corresponding to our host freebsd,
with IPv4 address 12.106.32.254, is 2002:c6a:20fe/48.

Figure B.3. 6to4 addresses.

The advantage of 6to4 over the 6bone is that the tunnels making up the 6to4
infrastructure are built automatically; there is no prearranged configuration required. A site
using 6to4 configures a default router using a well-known IPv4 anycast address, 
192.88.99.1 (RFC 3068 [Huitema 2001]). This corresponds to the IPv6 address
2002:c058:6301::. Routers in the native IPv6 infrastructure that are willing to act as 6to4
gateways advertise a route to 2002/16 and encapsulate any traffic to the IPv4 address
embedded in the 6to4 address. Such routers can be local to a site, regional, or global,
depending on the scope of their route advertisements.

The goal for these virtual networks is that over time, as intermediate routers gain the
required functionality (e.g., IPv6 routing in terms of the 6bone and other IPv6 transition
mechanisms), the virtual networks will disappear.

[ Team LiB ]

Page 1003

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Appendix C. Debugging Techniques
This appendix contains some hints and techniques for debugging network applications. No
single technique is the answer for everyone; instead, there are various tools that we should
be familiar with, and then use whatever works in our environment.

[ Team LiB ]

Page 1004

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

C.1 System Call Tracing
Many versions of Unix provide a system call tracing facility. This can often provide a
valuable debugging technique.

Working at this level, we need to differentiate between a system call and a function. The
former is an entry point into the kernel, and that is what we are able to trace with the tools
we will look at in this section. POSIX and most other standards use the term "function" to
describe what appears to the user to be functions, even though on some implementations,
they may be system calls. For example, on a Berkeley-derived kernel, socket is a system
call even though it appears to be a normal C function to the application programmer. But
under SVR4, we will see shortly that it is a library function in the sockets library that issues
calls to putmsg and getmsg, these latter two being actual system calls.

In this section, we will examine the system calls involved in running our daytime client.
We showed this client in Figure 1.5.

BSD Kernel Sockets
We start with FreeBSD, a Berkeley-derived kernel in which all the socket functions are
system calls. The ktrace program is provided by FreeBSD to run a program and trace the
system calls that are executed. This writes the trace information to a file (whose default
name is ktrace.out), which we print with kdump. We execute our sockets client as

freebsd % ktrace daytimetcpcli 192.168.42.2

Tue Aug 19 23:35:10 2003

We then execute kdump to output the trace information to standard output.

 3211 daytimetcpcli CALL socket(0x2,0x1,0)

 3211 daytimetcpcli RET  socket 3

 3211 daytimetcpcli CALL connect(0x3,0x7fdffffe820,0x10)

 3211 daytimetcpcli RET  connect 0

 3211 daytimetcpcli CALL read(0x3,0x7fdffffe830,0x1000)

 3211 daytimetcpcli GIO  fd 3 read 26 bytes

      "Tue Aug 19 23:35:10 2003

      "

 3211 daytimetcpcli RET  read 26/0x1a

...

 3211 daytimetcpcli CALL write(0x1,0x204000,0x1a)

 3211 daytimetcpcli GIO  fd 1 wrote 26 bytes

      "Tue Aug 19 23:35:10 2003/r

      "

 3211 daytimetcpcli RET  write 26/0x1a

 3211 daytimetcpcli CALL read(0x3,0x7fdffffe830,0x1000)

 3211 daytimetcpcli GIO  fd 3 read 0 bytes

      ""

Page 1005

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


 3211 daytimetcpcli RET  read 0

 3211 daytimetcpcli CALL exit(0)

3211 is the PID. CALL identifies a system call, RET is the return, and GIO stands for generic
process I/O. We see the calls to socket and connect, followed by the call to read that
returns 26 bytes. Our client writes these bytes to standard output and the next call to read
returns 0 (EOF).

Solaris 9 Kernel Sockets
Solaris 2.x is based on SVR4 and all the releases before 2.6 have implemented sockets as
shown in Figure 31.3. One problem, however, with all SVR4 implementations that
implement sockets in this fashion is that they rarely provide 100% compatibility with
Berkeley-derived kernel sockets. To provide additional compatibility, versions starting with
Solaris 2.6 changed the implementation technique and implemented sockets using a 
sockfs filesystem. This provides kernel sockets, as we can verify using truss on our
sockets client.

solaris % truss -v connect daytimetcpcli 127.0.0.1

Mon Sep  8 12:16:42 2003

After the normal library linking, the first system call we see is to so_socket, a system call
invoked by our call to socket.

so_socket(PF_INET, SOCK_STREAM, IPPROTO_IP, "", 1) = 3

connect(3, 0xFFBFDEF0, 16, 1)                   =0

        AF_INET  name = 127.0.0.1  port = 13

read(3, " M o n   S e p     8   1".., 4096)     = 26

Mon Sep  8 12:48:06 2003

write(1, " M o n   S e p     8   1".., 26)      = 26

read(3, 0xFFBFDF03, 4096)                       = 0

_exit(0)

The first three arguments to so_socket are our three arguments to socket.

We see that connect is a system call, and truss, when invoked with the -v connect flag,
prints the contents of the socket address structure pointed to by the second argument (the
IP address and port number). The only system calls that we have replaced with ellipses are
a few dealing with standard input and standard output.

[ Team LiB ]

Page 1006

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

C.2 Standard Internet Services
Be familiar with the standard Internet services described in Figure 2.18. We have used the
daytime service many times for testing our clients. The discard service is a convenient port
to which we can send data. The echo service is similar to the echo server we have used
throughout this text.

Many sites now prevent access to these services through their firewalls because of some
denial-of-service attacks using these services in 1996 (Exercise 13.3). Nevertheless, you
can hopefully use these services within your own network.

[ Team LiB ]

Page 1007

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

C.3 sock Program
Stevens' sock program first appeared in TCPv1, where it was frequently used to generate
special case conditions, most of which were then examined in the text using tcpdump. The
handy thing about the program is that it generates so many different scenarios, saving us
from having to write special test programs.

We do not show the source code for the program in this text (it is over 2,000 lines of C),
but the source code is freely available (see the Preface).

The program operates in one of four modes, and each mode can use either TCP or UDP:

 Standard input, standard output client (Figure C.1):

Figure C.1. sock client, standard input, standard output.

In the client mode, everything read from standard input is written to the network,
and everything received from the network is written to standard output. The server's
IP address and port must be specified, and in the case of TCP, an active open is
performed.

 Standard input, standard output server This mode is similar to the previous mode,
except the program binds a well-known port to its socket, and in the case of TCP,
performs a passive open.

 Source client (Figure C.2):

Figure C.2. sock program as source client.

The program performs a fixed number of writes to a network of some specified size.

 Sink server (Figure C.3):

Figure C.3. sock program as sink server.

The program performs a fixed number of reads from a network.

These four operating modes correspond to the following four commands:

Page 1008

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


sock [options] hostname service

sock [options] -s [hostname] service

sock [options] -i hostname service

sock [options] -is [hostname] service

where hostname is a hostname or IP address and service is a service name or port number.
In the two server modes, the wildcard address is bound, unless the optional hostname is
specified.

About 40 command-line options can also be specified, and these drive the optional features
of the program. We will not detail these options here, but many of the socket options
described in Chapter 7 can be set. Executing the program without any arguments prints a
summary of the options.

-b n  bind n as client's local port number

-c    convert newline to CR/LF & vice versa

-f a.b.c.d.p foreign IP address = a.b.c.d, foreign port # = p

-g a.b.c.d loose source route

-h    issue TCP half-close on standard input EOF

-i    "source" data to socket, "sink" data from socket (w/-s)

-j a.b.c.d join multicast group

-k    write or writev in chunks

-l a.b.c.d.p  client's local IP address = a.b.c.d, local port # = p

-n n  # buffers to write for "source" client (default 1024)

-o    do NOT connect UDP client

-p n  # ms to pause before each read or write (source/sink)

-q n  size of listen queue for TCP server (default 5)

-r n  # bytes per read() for "sink" server (default 1024)

-s    operate as server instead of client

-t n  set multicast ttl

-u    use UDP instead of TCP

-v    verbose

-w n  # bytes per write() for "source" client (default 1024)

-x n  # ms for SO_RCVTIMEO (receive timeout)

-y n  # ms for SO_SNDTIMEO (send timeout)

-A    SO_REUSEADDR option

-B    SO_BROADCAST option

-C    set terminal to cbreak mode

-D    SO_DEBUG option

-E    IP_RECVDSTADDR option

-F    fork after connection accepted (TCP concurrent server)

-G a.b.c.d strict source route

-H n  IP_TOS option (16=min del, 8=max thru, 4=max rel, 2=min cost)

-I    SIGIO signal

-J n  IP_TTL option

-K    SO_KEEPALIVE option

-L n  SO_LINGER option, n = linger time

-N    TCP_NODELAY option

-O n  # ms to pause after listen, but before first accept

-P n  # ms to pause before first read or write (source/sink)

-Q n  # ms to pause after receiving FIN, but before close

-R n  SO_RCVBUF option

-S n  SO_SNDBUF option

-T    SO_REUSEPORT option

Page 1009

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


-U n  enter urgent mode before write number n (source only)

-V    use writev() instead of write(); enables -k too

-W    ignore write errors for sink client

-X n  TCP_MAXSEG option (set MSS)

-Y    SO_DONTROUTE option

-Z    MSG_PEEK

[ Team LiB ]

Page 1010

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

C.4 Small Test Programs
Another useful debugging technique, one that the authors use all the time, is writing small
test programs to see how one specific feature works in a carefully constructed test case. It
helps when writing small test programs to have a set of library wrapper functions and
some simple error functions, such as the ones we have used throughout this text. This
reduces the amount of code that we have to write, but still provides the required testing
for errors.

[ Team LiB ]

Page 1011

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

C.5 tcpdump Program
An invaluable tool when dealing with network programming is a tool like tcpdump. This
program reads packets from a network and prints lots of information about the packets. It
also has the capability of printing only those packets that match some criteria that we
specify. For example,

% tcpdump '(udp and port daytime) or icmp'

prints only the UDP datagrams with a source or destination port of 13 (the daytime server),
or ICMP packets. The following command:

% tcpdump 'tcp and port 80 and tcp[13:1] & 2 != 0'

prints only the TCP segments with a source or destination port of 80 (the HTTP server) that
have the SYN flag set. The SYN flag has a value of 2 in the byte with an offset of 13 from
the start of the TCP header. The following command:

% tcpdump 'tcp and tcp[0:2] > 7000 and tcp[0:2] <= 7005'

prints only TCP segments with a source port between 7001 and 7005. The source port
starts at byte offset 0 in the TCP header and occupies 2 bytes.

Appendix A of TCPv1 details the operation of this program in more detail.

This program is available from http://www.tcpdump.org/ and works under many different
flavors of Unix. It was originally written by Van Jacobson, Craig Leres, and Steven McCanne
at LBL, and is now maintained by a team at tcpdump.org.

Some vendors supply a program of their own with similar functionality. For example,
Solaris 2.x provides the snoop program. The advantage of tcpdump is that it works under so
many versions of Unix, and using a single tool in a heterogeneous environment, instead of
a different tool for each environment, is a big advantage.

[ Team LiB ]

Page 1012

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.tcpdump.org/default.htm
http://www.tcpdump.org/
http://www.processtext.com/abcchm.html


[ Team LiB ]

C.6 netstat Program
We have used the netstat program many times throughout the text. This program serves
multiple purposes:

 It shows the status of networking endpoints. We showed this in Section 5.6, when
we followed the status of our endpoint as we started our client and server.

 It shows the multicast groups that a host belongs to on each interface. The -ia flags
are the normal way to show this, or the -g flag under Solaris 2.x.

 It shows the per-protocol statistics with the -s option. We showed this in Section
8.13, when looking at the lack of flow control with UDP.

 It displays the routing table with the -r option and the interface information with
the -i option. We showed this in Section 1.9, where we used netstat to discover
the topology of our network.

There are other uses of netstat and most vendors have added their own features. Check
the man page on your system.

[ Team LiB ]

Page 1013

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

C.7 lsof Program
The name lsof stands for "list open files." Like tcpdump, it is a publicly available tool that
is handy for debugging and has been ported to many versions of Unix.

One common use for lsof with networking is to find which process has a socket open on a
specified IP address or port. netstat tells us which IP addresses and ports are in use, and
the state of the TCP connections, but it does not identify the process. For example, to find
out which process provides the daytime server, we execute the following:

freebsd % lsof -i TCP:daytime

COMMAND   PID USER    FD       TYPE             DEVICE SIZE/OFF NODE NAME

inetd     561 root     5u      IPv4 0xfffff8003027a260      0t0  TCP *:daytime

(LISTEN)

inetd     561 root     7u      IPv6 0xfffff800302b6720      0t0  TCP *:daytime

This tells us the command (this service is provided by the inetd server), its PID, the
owner, descriptor (5 for IPv4 and 7 for IPv6, and the u means it is open for read/write),
type of socket, address of the protocol control block, size or offset of the file (not
meaningful for a socket), protocol type, and name.

One common use for this program is when we start a server that binds its well-known port
and get the error that the address is already in use. We then use lsof to find the process
that is using the port.

Since lsof reports on open files, it cannot report on network endpoints that are not
associated with an open file: TCP endpoints in the TIME_WAIT state.

ftp://lsof.itap.purdue.edu/pub/tools/unix/lsof/ is the location for this program. It
was written by Vic Abell.

Some vendors supply their own utility that does similar things. For example, FreeBSD
supplies the fstat program. The advantage in lsof is that it works under so many versions
of Unix, and using a single tool in a heterogeneous environment, instead of a different tool
for each environment, is a big advantage.

[ Team LiB ]

Page 1014

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

ftp://lsof.itap.purdue.edu/pub/tools/unix/lsof/
http://www.processtext.com/abcchm.html


[ Team LiB ]

Appendix D. Miscellaneous Source Code
Section D.1.?unp.h Header

Section D.2.?config.h Header

Section D.3.?Standard Error Functions

[ Team LiB ]

Page 1015

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

D.1 unp.h Header
Almost every program in the text includes our unp.h header, shown in Figure D.1. This
header includes all the standard system headers that most network programs need, along
with some general system headers. It also defines constants such as MAXLINE, ANSI C
function prototypes for the functions we define in the text (e.g., readline), and all the
wrapper functions we use. We do not show these prototypes.

Figure D.1 Our header unp.h.

lib/unp.h

  1 /* Our own header. Tabs are set for 4 spaces, not 8 */

 

  2 #ifndef __unp_h

  3 #define __unp_h

  4 #include    "../config.h"      /* configuration options for current OS */

  5                            /* "../config.h" is generated by configure */

  6 /* If anything changes in the following list of #includes, must change

  7    acsite.m4 also, for configure's tests. */

  8 #include    <sys/types.h>       /* basic system data types */

  9 #include    <sys/socket.h>      /* basic socket definitions */

 10 #include    <sys/time.h>        /* timeval{} for select() */

 11 #include    <time.h>            /* timespec{} for pselect() */

 12 #include    <netinet/in.h>      /* sockaddr_in{} and other Internet defns

*/

 13 #include    <arpa/inet.h>       /* inet(3) functions */

 14 #include    <errno.h>

 15 #include    <fcntl.h>           /* for nonblocking */

 16 #include    <netdb.h>

 17 #include    <signal.h>

 18 #include    <stdio.h>

 19 #include    <stdlib.h>

 20 #include    <string.h>

 21 #include    <sys/stat.h>        /* for S_xxx file mode constants */

 22 #include    <sys/uio.h>         /* for iovec{} and readv/writev */

 23 #include    <unistd.h>

 24 #include    <sys/wait.h>

 25 #include    <sys/un.h>          /* for Unix domain sockets */

 26 #ifdef  HAVE_SYS_SELECT_H

 27 # include   <sys/select.h>      /* for convenience */

 28 #endif

 29 #ifdef  HAVE_SYS_SYSCTL_H

 30 # include   <sys/sysctl.h>

 31 #endif

 32 #ifdef  HAVE_POLL_H

 33 # include  <poll.h>             /* for convenience */

 34 #endif

 35 #ifdef  HAVE_SYS_EVENT_H

 36 # include   <sys/event.h>       /* for kqueue */

Page 1016

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


 37 #endif

 38 #ifdef  HAVE_STRINGS_H

 39 # include   <strings.h>         /* for convenience */

 40 #endif

 41 /* Three headers are normally needed for socket/file ioctl's:

 42  * <sys/ioctl.h>, <sys/filio.h>, and <sys/sockio.h>.

 43  */

 44 #ifdef  HAVE_SYS_IOCTL_H

 45 # include   <sys/ioctl.h>

 46 #endif

 47 #ifdef  HAVE_SYS_FILIO_H

 48 # include   <sys/filio.h>

 49 #endif

 50 #ifdef  HAVE_SYS_SOCKIO_H

 51 # include   <sys/sockio.h>

 52 #endif

 53 #ifdef  HAVE_PTHREAD_H

 54 # include   <pthread.h>

 55 #endif

 56 #ifdef  HAVE_NET_IF_DL_H

 57 # include    <net/if_dl.h>

 58 #endif

 59 #ifdef  HAVE_NETINET_SCTP_H

 60 #include     <netinet/sctp.h>

 61 #endif

 62 /* OSF/1 actually disables recv() and send() in <sys/socket.h> */

 63 #ifdef  __osf__

 64 #undef  recv

 65 #undef  send

 66 #define recv(a,b,c,d)   recvfrom(a,b,c,d,0,0)

 67 #define send(a,b,c,d)   sendto(a,b,c,d,0,0)

 68 #endif

 69 #ifndef INADDR_NONE

 70 #define INADDR_NONE 0xffffffff  /* should have been in <netinet/in.h> */

 71 #endif

 72 #ifndef SHUT_RD                 /* these three POSIX names are new */

 73 #define SHUT_RD     0           /* shutdown for reading */

 74 #define SHUT_WR     1           /* shutdown for writing */

 75 #define SHUT_RDWR   2           /* shutdown for reading and writing */

 76 #endif

 77 #ifndef INET_ADDRSTRLEN

 78 #define INET_ADDRSTRLEN     16  /* "ddd.ddd.ddd.ddd\0"

 79                                    1234567890123456 */

 80 #endif

 81 /* Define following even if IPv6 not supported, so we can always allocate

 82    an adequately sized buffer without #ifdefs in the code. */

 83 #ifndef INET6_ADDRSTRLEN

 84 #define INET6_ADDRSTRLEN    46  /* max size of IPv6 address string:

 85                    "xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx" or

 86                    "xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:ddd.ddd.ddd.ddd\0"

Page 1017

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


 87                     1234567890123456789012345678901234567890123456 */

 88 #endif

 89 /* Define bzero() as a macro if it's not in standard C library. */

 90 #ifndef HAVE_BZERO

 91 #define bzero(ptr,n)        memset (ptr, 0, n)

 92 #endif

 93 /* Older resolvers do not have gethostbyname2() */

 94 #ifndef HAVE_GETHOSTBYNAME2

 95 #define gethostbyname2(host,family)     gethostbyname((host))

 96 #endif

 97 /* The structure returned by recvfrom_flags() */

 98 struct unp_in_pktinfo {

 99     struct in_addr ipi_addr;    /* dst IPv4 address */

100     int     ipi_ifindex;        /* received interface index */

101 };

102 /* We need the newer CMSG_LEN() and CMSG_SPACE() macros, but few

103    implementations support them today. These two macros really need

104     an ALIGN() macro, but each implementation does this differently. */

105 #ifndef CMSG_LEN

106 #define CMSG_LEN(size)      (sizeof(struct cmsghdr) + (size))

107 #endif

108 #ifndef CMSG_SPACE

109 #define CMSG_SPACE(size)    (sizeof(struct cmsghdr) + (size))

110 #endif

111 /* POSIX requires the SUN_LEN() macro, but not all implementations define

112    it (yet). Note that this 4.4BSD macro works regardless whether there is

113    a length field or not. */

114 #ifndef SUN_LEN

115 # define    SUN_LEN (su) \

116     (sizeof (*(su)) - sizeof ((su)->sun_path) + strlen((su)->sun_path))

117 #endif

118 /* POSIX renames "Unix domain" as "local IPC."

119    Not all systems define AF_LOCAL and PF_LOCAL (yet). */

120 #ifndef AF_LOCAL

121 #define AF_LOCAL    AF_UNIX

122 #endif

123 #ifndef PF_LOCAL

124 #define PF_LOCAL    PF_UNIX

125 #endif

126 /* POSIX requires that an #include of <poll.h> define INFTIM, but many

127    systems still define it in <sys/stropts.h>. We don't want to include

128    all the STREAMS stuff if it's not needed, so we just define INFTIM here.

129    This is the standard value, but there's no guarantee it is -1. */

130 #ifndef INFTIM

131 #define INFTIM          (-1)     /* infinite poll timeout */

132 #ifdef HAVE_POLL_H

133 #define INFTIM_UNPH              /* tell unpxti.h we defined it */

134 #endif

135 #endif

136 /* Following could be derived from SOMAXCONN in <sys/socket.h>, but many

137    kernels still #define it as 5, while actually supporting many more */

138 #define LISTENQ     1024         /* 2nd argument to listen () */

Page 1018

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


139 /* Miscellaneous constants */

140 #define MAXLINE     4096         /* max text line length */

141 #define BUFFSIZE    8192         /* buffer size for reads and writes */

142 /* Define some port number that can be used for our examples */

143 #define SERV_PORT        9877    /* TCP and UDP */

144 #define SERV_PORT_STR   "9877"   /* TCP and UDP */

145 #define UNIXSTR_PATH    "/tmp/unix.str" /* Unix domain stream */

146 #define UNIXDG_PATH     "/tmp/unix.dg"  /* Unix domain datagram */

147 /* Following shortens all the typecasts of pointer arguments: */

148 #define SA struct sockaddr

149 #define HAVE_STRUCT_SOCKADDR_STORAGE

150 #ifndef HAVE_STRUCT_SOCKADDR_STORAGE

151 /*

152  * RFC 3493: protocol-independent placeholder for socket addresses

153  */

154 #define __SS_MAXSIZE    128

155 #define __SS_ALIGNSIZE  (sizeof(int64_t))

156 #ifdef HAVE_SOCKADDR_SA_LEN

157 #define __SS_PAD1SIZE   (__SS_ALIGNSIZE - sizeof(u_char) -

sizeof(sa_family_t))

158 #else

159 #define __SS_PAD1SIZE   (__SS_ALIGNSIZE - sizeof(sa_family_t))

160 #endif

161 #define __SS_PAD2SIZE   (__SS_MAXSIZE - 2*__SS_ALIGNSIZE)

162 struct sockaddr_storage {

163 #ifdef HAVE_SOCKADDR_SA_LEN

164     u_char  ss_len;

165 #endif

166     sa_family_t ss_family;

167     char    __ss_pad1[__SS_PAD1SIZE];

168     int64_t __ss_align;

169     char    __ss_pad2[__SS_PAD2SIZE];

170 };

171 #endif

172 #define FILE_MODE   (S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH)

173                     /* default file access permissions for new files */

174 #define DIR_MODE    (FILE_MODE | S_IXUSR | S_IXGRP | S_IXOTH)

175                     /* default permissions for new directories */

176 typedef void Sigfunc (int);     /* for signal handlers */

177 #define min(a,b)    ((a) < (b) ? (a) : (b))

178 #define max(a,b)    ((a) > (b) ? (a) : (b))

179 #ifndef HAVE_ADDRINFO_STRUCT

180 # include   "../lib/addrinfo.h"

181 #endif

182 #ifndef HAVE_IF_NAMEINDEX_STRUCT

183 struct if_nameindex {

184     unsigned int if_index;      /* 1, 2, ... */

185     char *if_name;              /* null-terminated name: "le0", ... */

186 };

187 #endif

Page 1019

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


188 #ifndef HAVE_TIMESPEC_STRUCT

189 struct timespec {

190     time_t tv_sec;              /* seconds */

191     long     tv_nsec;           /* and nanoseconds */

192 };

193 #endif

[ Team LiB ]

Page 1020

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

D.2 config.h Header
The GNU autoconf tool was used to aid in the portability of all the source code in this text.
It is available from http://ftp.gnu.org/gnu/autoconf. This tool generates a shell script
named configure that you must run after downloading the software onto your system.
This script determines the features provided by your Unix system: Do socket address
structures have a length field? Is multicasting supported? Are datalink socket address
structures supported? and so on, generating a header named config.h. This header is the
first header included by our unp.h header in the previous section. Figure D.2 shows the
config.h header for FreeBSD 5.1.

The lines beginning with #define in column 1 are for features that the system provides.
The lines that are commented out and contain #undef are features that the system does
not provide.

Figure D.2 Our config.h header for FreeBSD 5.1.

sparc64-unknown-freebsd5.1/config.h

  1 /* config.h. Generated automatically by configure. */

  2 /* config.h.in. Generated automatically from configure.in by autoheader. */

  3 /* CPU, vendor, and operating system */

  4 #define CPU_VENDOR_OS "sparc64-unknown-freebsd5.1"

  5 /* Define if <netdb.h> defines struct addrinfo */

  6 #define HAVE_ADDRINFO_STRUCT 1

  7 /* Define if you have the <arpa/inet.h> header file. */

  8 #define HAVE_ARPA_INET_H 1

  9 /* Define if you have the bzero function. */

 10 #define HAVE_BZERO 1

 11 /* Define if the /dev/streams/xtiso/tcp device exists */

 12 /* #undef HAVE_DEV_STREAMS_XTISO_TCP */

 13 /* Define if the /dev/tcp device exists */

 14 /* #undef HAVE_DEV_TCP */

 15 /* Define if the /dev/xti/tcp device exists */

 16 /* #undef HAVE_DEV_XTI_TCP */

 17 /* Define if you have the <errno.h> header file. */

 18 #define HAVE_ERRNO_H 1

 19 /* Define if you have the <fcntl.h> header file. */

 20 #define HAVE_FCNTL_H 1

 21 /* Define if you have the getaddrinfo function. */

 22 #define HAVE_GETADDRINFO 1

 23 /* define if getaddrinfo prototype is in <netdb.h> */

 24 #define HAVE_GETADDRINFO_PROTO 1

Page 1021

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

ftp://ftp.gnu.org/gnu/autoconf
http://ftp.gnu.org/gnu/autoconf
http://www.processtext.com/abcchm.html


 25 /* Define if you have the gethostbyname2 function. */

 26 #define HAVE_GETHOSTBYNAME2 1

 27 /* Define if you have the gethostbyname_r function. */

 28 /* #undef HAVE_GETHOSTBYNAME_R */

 29 /* Define if you have the gethostname function. */

 30 #define HAVE_GETHOSTNAME 1

 31 /* define if gethostname prototype is in <unistd.h> */

 32 #define HAVE_GETHOSTNAME_PROTO 1

 33 /* Define if you have the getnameinfo function. */

 34 #define HAVE_GETNAMEINFO 1

 35 /* define if getnameinfo prototype is in <netdb.h> */

 36 #define HAVE_GETNAMEINFO_PROTO 1

 37 /* define if getrusage prototype is in <sys/resource.h> */

 38 #define HAVE_GETRUSAGE_PROTO 1

 39 /* Define if you have the hstrerror function. */

 40 #define HAVE_HSTRERROR 1

 41 /* define if hstrerror prototype is in <netdb.h> */

 42 #define HAVE_HSTRERROR_PROTO 1

 43 /* Define if <net/if.h> defines struct if_nameindex */

 44 #define HAVE_IF_NAMEINDEX_STRUCT 1

 45 /* Define if you have the if_nametoindex function. */

 46 #define HAVE_IF_NAMETOINDEX 1

 47 /* define if if_nametoindex prototype is in <net/if.h> */

 48 #define HAVE_IF_NAMETOINDEX_PROTO 1

 49 /* Define if you have the inet_aton function. */

 50 #define HAVE_INET_ATON 1

 51 /* define if inet_aton prototype is in <arpa/inet.h> */

 52 #define HAVE_INET_ATON_PROTO 1

 53 /* Define if you have the inet_pton function. */

 54 #define HAVE_INET_PTON 1

 55 /* define if inet_pton prototype is in <arpa/inet.h> */

 56 #define HAVE_INET_PTON_PROTO 1

 57 /* Define if you have the kevent function. */

 58 #define HAVE_KEVENT 1

 59 /* Define if you have the kqueue function. */

 60 #define HAVE_KQUEUE 1

 61 /* Define if you have the nsl library (-lnsl). */

 62 /* #undef HAVE_LIBNSL */

 63 /* Define if you have the pthread library (-lpthread). */

 64 /* #undef HAVE_LIBPTHREAD */

Page 1022

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


 65 /* Define if you have the pthreads library (-lpthreads). */

 66 /* #undef HAVE_LIBPTHREADS */

 67 /* Define if you have the resolv library (-lresolv). */

 68 /* #undef HAVE_LIBRESOLV */

 69 /* Define if you have the xti library (-lxti). */

 70 /* #undef HAVE_LIBXTI */

 71 /* Define if you have the mkstemp function. */

 72 #define HAVE_MKSTEMP 1

 73 /* define if struct msghdr contains the msg_control element */

 74 #define HAVE_MSGHDR_MSG_CONTROL 1

 75 /* Define if you have the <netconfig.h> header file. */

 76 #define HAVE_NETCONFIG_H 1

 77 /* Define if you have the <netdb.h> header file. */

 78 #define HAVE_NETDB_H 1

 79 /* Define if you have the <netdir.h> header file. */

 80 /* #undef HAVE_NETDIR_H */

 81 /* Define if you have the <netinet/in.h> header file. */

 82 #define HAVE_NETINET_IN_H 1

 83 /* Define if you have the <net/if_dl.h> header file. */

 84 #define HAVE_NET_IF_DL_H 1

 85 /* Define if you have the poll function. */

 86 #define HAVE_POLL 1

 87 /* Define if you have the <poll.h> header file. */

 88 #define HAVE_POLL_H 1

 89 /* Define if you have the pselect function. */

 90 #define HAVE_PSELECT 1

 91 /* define if pselect prototype is in <sys/stat.h> */

 92 #define HAVE_PSELECT_PROTO 1

 93 /* Define if you have the <pthread.h> header file. */

 94 #define HAVE_PTHREAD_H 1

 95 /* Define if you have the <signal.h> header file. */

 96 #define HAVE_SIGNAL_H 1

 97 /* Define if you have the snprintf function. */

 98 #define HAVE_SNPRINTF 1

 99 /* define if snprintf prototype is in <stdio.h> */

100 #define HAVE_SNPRINTF_PROTO 1

101 /* Define if <net/if_dl.h> defines struct sockaddr_dl */

102 #define HAVE_SOCKADDR_DL_STRUCT 1

103 /* define if socket address structures have length fields */

104 #define HAVE_SOCKADDR_SA_LEN 1

Page 1023

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


105 /* Define if you have the sockatmark function. */

106 #define HAVE_SOCKATMARK 1

107 /* define if sockatmark prototype is in <sys/socket.h> */

108 #define HAVE_SOCKATMARK_PROTO 1

109 /* Define if you have the <stdio.h> header file. */

110 #define HAVE_STDIO_H 1

111 /* Define if you have the <stdlib.h> header file. */

112 #define HAVE_STDLIB_H 1

113 /* Define if you have the <strings.h> header file. */

114 #define HAVE_STRINGS_H 1

115 /* Define if you have the <string.h> header file. */

116 #define HAVE_STRING_H 1

117 /* Define if you have the <stropts.h> header file. */

118 /* #undef HAVE_STROPTS_H */

119 /* Define if ifr_mtu is member of struct ifreq. */

120 #define HAVE_STRUCT_IFREQ_IFR_MTU 1

121 /* Define if the system has the type struct sockaddr_storage. */

122 #define HAVE_STRUCT_SOCKADDR_STORAGE 1

123 /* Define if you have the <sys/event.h> header file. */

124 #define HAVE_SYS_EVENT_H 1

125 /* Define if you have the <sys/filio.h> header file. */

126 #define HAVE_SYS_FILIO_H 1

127 /* Define if you have the <sys/ioctl.h> header file. */

128 #define HAVE_SYS_IOCTL_H 1

129 /* Define if you have the <sys/select.h> header file. */

130 #define HAVE_SYS_SELECT_H 1

131 /* Define if you have the <sys/socket.h> header file. */

132 #define HAVE_SYS_SOCKET_H 1

133 /* Define if you have the <sys/sockio.h> header file. */

134 #define HAVE_SYS_SOCKIO_H 1

135 /* Define if you have the <sys/stat.h> header file. */

136 #define HAVE_SYS_STAT_H 1

137 /* Define if you have the <sys/sysctl.h> header file. */

138 #define HAVE_SYS_SYSCTL_H 1

139 /* Define if you have the <sys/time.h> header file. */

140 #define HAVE_SYS_TIME_H 1

141 /* Define if you have the <sys/types.h> header file. */

142 #define HAVE_SYS_TYPES_H 1

143 /* Define if you have the <sys/uio.h> header file. */

144 #define HAVE_SYS_UIO_H 1

Page 1024

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


145 /* Define if you have the <sys/un.h> header file. */

146 #define HAVE_SYS_UN_H 1

147 /* Define if you have the <sys/wait.h> header file. */

148 #define HAVE_SYS_WAIT_H 1

149 /* Define if <time.h> defines struct timespec */

150 #define HAVE_TIMESPEC_STRUCT 1

151 /* Define if you have the <time.h> header file. */

152 #define HAVE_TIME_H 1

153 /* Define if you have the <unistd.h> header file. */

154 #define HAVE_UNISTD_H 1

155 /* Define if you have the vsnprintf function. */

156 #define HAVE_VSNPRINTF 1

157 /* Define if you have the <xti.h> header file. */

158 /* #undef HAVE_XTI_H */

159 /* Define if you have the <xti_inet.h> header file. */

160 /* #undef HAVE_XTI_INET_H */

161 /* Define if the system supports IPv4 */

162 #define IPV4 1

163 /* Define if the system supports IPv6 */

164 #define IPV6 1

165 /* Define if the system supports IPv4 */

166 #define IPv4 1

167 /* Define if the system supports IPv6 */

168 #define IPv6 1

169 /* Define if the system supports IP Multicast */

170 #define MCAST 1

171 /* the size of the sa_family field in a socket address structure */

172 /* #undef SA_FAMILY_T */

173 /* Define if you have the ANSI C header files. */

174 #define STDC_HEADERS 1

175 /* Define if you can safely include both <sys/time.h> and <time.h>. */

176 #define TIME_WITH_SYS_TIME 1

177 /* Define if the system supports UNIX domain sockets */

178 #define UNIXDOMAIN 1

179 /* Define if the system supports UNIX domain sockets */

180 #define UNIXdomain 1

181 /* 16 bit signed type */

182 /* #undef int16_t */

183 /* 32 bit signed type */

184 /* #undef int32_t */

Page 1025

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


185 /* the type of the sa_family struct element */

186 /* #undef sa_family_t */

187 /* unsigned integer type of the result of the sizeof operator */

188 /* #undef size_t */

189 /* a type appropriate for address */

190 /* #undef socklen_t */

191 /* define to __ss_family if sockaddr_storage has that instead of ss_family

*/

192 /* #undef ss_family */

193 /* a signed type appropriate for a count of bytes or an error indication */

194 /* #undef ssize_t */

195 /* scalar type */

196 #define t_scalar_t int32_t

197 /* unsigned scalar type */

198 #define t_uscalar_t uint32_t

199 /* 16 bit unsigned type */

200 /* #undef uint16_t */

201 /* 32 bit unsigned type */

202 /* #undef uint32_t */

203         /* -bit unsigned type */

204 /* #undef uint8_t */

[ Team LiB ]

Page 1026

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

D.3 Standard Error Functions
We define our own set of error functions that are used throughout the text to handle error
conditions. The reason for using our own error functions is to let us write our error handling
with a single line of C code, as in

if (error condition)

    err_sys (printf format with any number of arguments);

instead of

if (error condition) {

    char buff [2002];

    snprintf(buff, sizeof (buff), printf format with any number of arguments);

    perror(buff);

    exit (1);

}

Our error functions use the variable-length argument list facility from ANSI C. See Section
7.3 of [Kernighan and Ritchie 1988] for additional details.

Figure D.3 lists the differences between the various error functions. If the global integer
daemon_proc is nonzero, the message is passed to syslog with the indicated level;
otherwise, the error is output to standard error.

Figure D.3. Summary of our standard error functions.

Figure D.4 shows the first five functions from Figure D.3.

Figure D.4 Our standard error functions.

lib/error.c

 1 #include    "unp.h"

 2 #include    <stdarg.h>          /* ANSI C header file */

 3 #include    <syslog.h>          /* for syslog() */

 4 int     daemon_proc;            /* set nonzero by daemon_init() */

 5 static void err_doit(int, int, const char *, va_list);

 6 /* Nonfatal error related to system call

 7  * Print message and return */

Page 1027

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


 8 void

 9 err_ret(const char *fmt, ...)

10 {

11     va_list ap;

12     va_start(ap, fmt);

13     err_doit(1, LOG_INFO, fmt, ap);

14     va_end(ap);

15     return;

16 }

17 /* Fatal error related to system call

18  * Print message and terminate */

19 void

20 err_sys(const char *fmt, ...)

21 {

22     va_list ap;

23     va_start(ap, fmt);

24     err_doit(1, LOG_ERR, fmt, ap);

25     va_end(ap);

26     exit(1);

27 }

28 /* Fatal error related to system call

29  * Print message, dump core, and terminate */

30 void

31 err_dump(const char *fmt, ...)

32 {

33     va_list ap;

34     va_start(ap, fmt);

35     err_doit(1, LOG_ERR, fmt, ap);

36     va_end(ap);

37     abort();                    /* dump core and terminate */

38     exit(1);                    /* shouldn't get here */

39 }

40 /* Nonfatal error unrelated to system call

41  * Print message and return */

42 void

43 err_msg(const char *fmt, ...)

44 {

45     va_list ap;

46     va_start(ap, fmt);

47     err_doit(0, LOG_INFO, fmt, ap);

48     va_end(ap);

49     return;

50 }

51 /* Fatal error unrelated to system call

52  * Print message and terminate */

53 void

54 err_quit(const char *fmt, ...)

55 {

Page 1028

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


56     va_list ap;

57     va_start(ap, fmt);

58     err_doit(0, LOG_ERR, fmt, ap);

59     va_end(ap);

60     exit(1);

61 }

62 /* Print message and return to caller

63  * Caller specifies "errnoflag" and "level" */

64 static void

65 err_doit(int errnoflag, int level, const char *fmt, va_list ap)

66 {

67     int     errno_save, n;

68     char    buf[MAXLINE + 1];

69     errno_save = errno;         /* value caller might want printed */

70 #ifdef HAVE_VSNPRINTF

71     vsnprintf(buf, MAXLINE, fmt, ap);   * safe */

72 #else

73     vsprintf(buf, fmt, ap);     /* not safe */

74 #endif

75     n = strlen(buf);

76     if (errnoflag)

77         snprintf(buf + n, MAXLINE - n, ": %s", strerror(errno_save));

78     strcat(buf, "\n");

79     if (daemon_proc) {

80         syslog(level, buf);

81     } else {

82         fflush(stdout);         /* in case stdout and stderr are the same */

83         fputs(buf, stderr);

84         fflush(stderr);

85     }

86     return;

87 }

[ Team LiB ]

Page 1029

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Appendix E. Solutions to Selected
Exercises

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Chapter 11

Chapter 12

Chapter 13

Chapter 14

Chapter 15

Chapter 16

Chapter 17

Chapter 18

Chapter 20

Chapter 21

Chapter 22

Chapter 24

Chapter 25

Chapter 26

Chapter 27

Chapter 28

Chapter 29

Chapter 30

Chapter 31

Page 1030

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Page 1031

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Chapter 1

1.3 Under Solaris, we get the following:

solaris % daytimetcpcli 127.0.0.1

socket error: Protocol not supported

To find more information on this error, we first use grep to search for the
string Protocol not supported in the <sys/errno.h> header.

solaris % grep 'Protocol not supported'

/usr/include/sys/errno.h

#define EPROTONOSUPPORT 120     /* Protocol not supported */

This is the errno returned by socket. We then look at the man page:

aix % man socket

Most man pages give additional, albeit terse, information toward the end
under a heading of the form "Errors."

1.4 We change the first declaration to be the following:

int sockfd, n, counter = 0;

We add the statement

counter++;

as the first statement of the while loop. Finally, we execute

printf("counter = %d\n", counter);

before terminating. The value printed is always 1.

Page 1032

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


1.5 We declare an int named i and change the call to write to be the
following:

for (i = 0; i < strlen(buff); i++)

    Write(connfd, &buff[i], 1);

The results vary, depending on the client host and server host. If the
client and server are on the same host, the counter is normally 1, which
means even though the server does 26 writes, the data is returned by a
single read. But, one combination of client and server may produce two
packets, and another combination 26 packets. (Our discussion of the
Nagle algorithm in Section 7.9 explains one reason for this.)

The purpose of this example is to reiterate that different TCPs do
different things with the data and our application must be prepared to
read the data as a stream of bytes until the end of the data stream is
encountered.

[ Team LiB ]

Page 1033

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Chapter 2

2.1 Visit http://www.iana.org/numbers.htm and find the registry called "IP
Version Number." Version 0 is reserved, versions 1 3 are unassigned,
and version 5 is the Internet Stream Protocol.

2.2 All RFCs are available at no charge through electronic mail, anonymous
FTP, or the Web. A starting point is http://www.ietf.org. The directory
ftp://ftp.rfc-editor.org/in-notes is one location for RFCs. To start, fetch
the current RFC index, normally the file rfc-index.txt, also available in
an HTML version at http://www.rfc-editor.org/rfc-index.html. If we
search the RFC index (see the solution to the previous exercise) with an
editor of some form, looking for the term "Stream," we find that RFC
1819 defines Version 2 of the Internet Stream Protocol. Whenever
looking for information that might be covered by an RFC, the RFC index
should be searched.

2.3 With IPv4, this generates a 576-byte IP datagram (20 bytes for the IPv4
header and 20 bytes for the TCP header), the minimum reassembly
buffer size with IPv4.

2.4 In this example, the server performs the active close, not the client.

2.5 The host on the token ring cannot send packets with more than 1,460
bytes of data because the MSS it received was 1,460. The host on the
Ethernet can send packets with up to 4,096 bytes of data, but it will not
exceed the MTU of the outgoing interface (the Ethernet) to avoid
fragmentation. TCP cannot exceed the MSS announced by the other end,
but it can always send less than this amount.

2.6 The "Protocol Numbers" section of the Assigned Numbers Web page (
http://www.iana.org/numbers.htm) shows a value of 89 for OSPF.

2.7 A selective acknowledgment only indicates that the data covered by the
sequence numbers reflected in the selective acknowledgment message
was received. Only a cumulative acknowledgment says that the data up
to and including the sequence number in the cumulative
acknowledgment message was received. When freeing data from the

Page 1034

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.iana.org/numbers.htm
http://www.ietf.org/default.htm
ftp://ftp.rfc-editor.org/in-notes
http://www.rfc-editor.org/rfc-index.html
http://www.iana.org/numbers.htm
http://www.iana.org/numbers.htm
http://www.ietf.org
ftp://ftp.rfc-editor.org/in-notes
http://www.rfc-editor.org/rfc-index.html
http://www.iana.org/numbers.htm
http://www.processtext.com/abcchm.html


send buffer based on a selective acknowledgment, the system may only
free the exact data that was acknowledged, and not any before or after
the selective acknowledgment.

[ Team LiB ]

Page 1035

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Chapter 3

3.1 In C, a function cannot change the value of an argument that is passed
by value. For a called function to modify a value passed by the caller
requires that the caller pass a pointer to the value to be modified.

3.2 The pointer must be incremented by the number of bytes read or written,
but C does not allow a void pointer to be incremented (since the
compiler does not know the datatype pointed to).

[ Team LiB ]

Page 1036

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Chapter 4

4.1 Look at the definitions for the constants beginning with INADDR_ except
INADDR_ANY (which is all zero bits) and INADDR_NONE (which is all one
bits). For example, the class D multicast address 
INADDR_MAX_LOCAL_GROUP is defined as 0xe00000ff with the comment
"224.0.0.255," which is clearly in host byte order.

4.2 Here are the new lines added after the call to connect:

len = sizeof(cliaddr);

Getsockname(sockfd, (SA *) &cliaddr, &len);

printf("local addr: %s\n",

       Sock_ntop((SA *) &cliaddr, len));

This requires a declaration of len as a socklen_t and a declaration of
cliaddr as a struct sockaddr_in. Notice that the value-result argument
for getsockname (len) must be initialized before the call to the size of the
variable pointed to by the second argument. The most common
programming error with value-result arguments is to forget this
initialization.

4.3 When the child calls close, the reference count is decremented from 2 to
1, so a FIN is not sent to the client. Later, when the parent calls close,
the reference count is decremented to 0 and the FIN is sent.

4.4
accept returns EINVAL, since the first argument is not a listening socket.

4.5 Without a call to bind, the call to listen assigns an ephemeral port to
the listening socket.

[ Team LiB ]

Page 1037

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Chapter 5

5.1 The duration of the TIME_WAIT state should be between 1 and 4
minutes, giving an MSL between 30 seconds and 2 minutes.

5.2 Our client/server programs do not work with a binary file. Assume the
first 3 bytes in the file are binary 1, binary 0, and a newline. The call to 
fgets in Figure 5.5 reads up to MAXLINE-1 characters, or until a newline
is encountered, or up through the EOF. In this example, it will read the
first three characters and then terminate the string with a null byte.
But, our call to strlen in Figure 5.5 returns 1, since it stops at the first
null byte. One byte is sent to the server, but the server blocks in its call
to readline, waiting for a newline character. The client blocks waiting
for the server's reply. This is called a deadlock: Both processes are
blocked waiting for something that will never arrive from the other one.
The problem here is that fgets signifies the end of the data that it
returns with a null byte, so the data that it reads cannot contain any
null bytes.

5.3 5.3 Telnet converts the input lines into NVT ASCII (Section 26.4 of
TCPv1), which terminates every line with the two-character sequence of
a CR (carriage return) followed by an LF (linefeed). Our client adds only
a newline, which is actually a linefeed character. Nevertheless, we can
use the Telnet client to communicate with our server as our server
echoes back every character, including the CR that precedes each
newline.

5.4 No, the final two segments of the connection termination sequence are
not sent. When the client sends the data to the server, after we kill the
server child (the "another line"), the server TCP responds with an RST.
The RST aborts the connection and also prevents the server end of the
connection (the end that did the active close) from passing through the
TIME_WAIT state.

5.5 Nothing changes because the server process that is started on the
server host creates a listening socket and is waiting for new connection
requests to arrive. What we send in Step 3 is a data segment destined
for an ESTABLISHED TCP connection. Our server with the listening
socket never sees this data segment, and the server TCP still responds
to it with an RST.

Page 1038

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


5.6 Figure E.1 shows the program. Running this program under Solaris
generates the following:

solaris % tsigpipe 192.168.1.10

SIGPIPE received

write error: Broken pipe

The initial sleep of two seconds is to let the daytime server send its
reply and close its end of the connection. Our first write sends a data
segment to the server, which responds with an RST (since the daytime
server has completely closed its socket). Note that our TCP allows us to
write to a socket that has received a FIN. The second sleep lets the
server's RST be received, and our second write generates SIGPIPE.
Since our signal handler returns, write returns an error of EPIPE.

5.7 Assuming the server host supports the weak end system model (which
we describe in Section 8.8), everything works. That is, the server host
will accept an incoming IP datagram (which contains a TCP segment in
this case) arriving on the leftmost datalink, even though the destination
IP address is the address of the rightmost datalink. We can test this by
running our server on our host linux (Figure 1.16) and then starting
the client on our host solaris, but specifying the other IP address of
the server (206.168.112.96) to the client. After the connection is
established, if we run netstat on the server, we see that the local IP
address is the destination IP address from the client's SYN, not the IP
address of the datalink on which the SYN arrived (as we mentioned in 
Section 4.4).

Figure E.1 Generate SIGPIPE.

tcpcliserv/tsigpipe.c

 1 #include    "unp.h"

 2 void

 3 sig_pipe(int signo)

 4 {

 5     printf("SIGPIPE received\n");

 6     return;

 7 }

 8 int

 9 main(int argc, char **argv)

10 {

11     int     sockfd;

12     struct sockaddr_in servaddr;

13     if (argc != 2)

14         err_quit("usage: tcpcli <IPaddress>");

15     sockfd = Socket(AF_INET, SOCK_STREAM, 0);

16     bzero(&servaddr, sizeof(servaddr));

Page 1039

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


17     servaddr.sin_family = AF_INET;

18     servaddr.sin_port = htons(13);  /* daytime server */

19     Inet_pton(AF_INET, argv[1], &servaddr.sin_addr);

20     Signal(SIGPIPE, sig_pipe);

21     Connect(sockfd, (SA *) &servaddr, sizeof(servaddr));

22     sleep(2);

23     Write(sockfd, "hello", 5);

24     sleep(2);

25     Write(sockfd, "world", 5);

26     exit(0);

27 }

5.8 Our client was on a little-endian Intel system, where the 32-bit integer
with a value of 1 was stored as shown in Figure E.2.

Figure E.2. Representation of the 32-bit integer 1 in
little-endian format.

The 4 bytes are sent across the socket in the order A, A+1, A+2, and
A+3 where they are stored in the big-endian format, as shown in Figure
E.3.

Figure E.3. Representation of the 32-bit integer from 
Figure E.2 in big-endian format.

This value of 0x01000000 is interpreted as 16,777,216. Similarly, the
integer 2 sent by the client will be interpreted at the server as 
0x02000000, or 33,554,432. The sum of these two integers is
50,331,648, or 0x03000000. When this bigendian value on the server is
sent to the client, it is interpreted on the client as the integer value 3.

The 32-bit integer value of - 22 is represented on the little-endian
system as shown in Figure E.4, assuming a two's-complement
representation of negative numbers.

Figure E.4. Representation of the 32-bit integer - 22 in
little-endian format.

This is interpreted on the big-endian server as 0xeaffffff, or -

Page 1040

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


352,321,537. Similarly, the little-endian representation of - 77 is 
0xffffffb3, but this is represented on the big-endian server as
0xb3ffffff, or - 1,275,068,417. The addition on the server yields a
binary result of 0x9efffffe, or - 1,627,389,954. This big-endian value
is sent across the socket to the client where it is interpreted as the
little-endian value 0xfeffff9e, or - 16,777,314, which is the value
printed in our example.

5.9 The technique is correct (converting the binary values to network byte
order), but the two functions htonl and ntohl cannot be used. Even
though the l in these functions once meant "long," these functions
operate on 32-bit integers (Section 3.4). On a 64-bit system, a long
will probably occupy 64 bits and these two functions will not work
correctly. One might define two new functions, hton64 and ntoh64, to
solve this problem, but this will not work on systems that represent 
longs using 32 bits.

5.10 In the first scenario, the server blocks forever in the call to readn in
Figure 5.20 because the client sends two 32-bit values but the server is
waiting for two 64-bit values. Swapping the client and server between
the two hosts causes the client to send two 64-bit values, but the
server reads only the first 64 bits, interpreting them as two 32-bit
values. The second 64-bit value remains in the server's socket receive
buffer. The server writes back one 32-bit value and the client will block
forever in its call to readn in Figure 5.19, waiting to read one 64-bit
value.

5.11 IP's routing function looks at the destination IP address (the server's IP
address) and searches the routing table to determine the outgoing
interface and next hop (Chapter 9 of TCPv1). The primary IP address of
the outgoing interface is used as the source IP address, assuming the
socket has not already bound a local IP address.

[ Team LiB ]

Page 1041

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Chapter 6

6.1 The array of integers is contained within a structure and C allows
structures to be assigned across an equals sign.

6.2 If select tells us that the socket is writable, the socket send buffer has
room for 8,192 bytes, but when we call write for this blocking socket
with a buffer length of 8,193 bytes, write can block, waiting for room for
the final byte. Read operations on a blocking socket will always return a
short count if some data is available, but write operations on a blocking
socket will block until all the data can be accepted by the kernel.
Therefore, when using select to test for writability, we must set the
socket to nonblocking to avoid blocking.

6.3 If both descriptors are readable, only the first test is performed, the test
of the socket. But this does not break the client; it just makes it less
efficient. That is, if select returns with both descriptors readable, the
first if is true, causing a readline from the socket followed by an fputs
to standard output. The next if is skipped (because of the else we
prepended), but select is then called again and immediately finds
standard input readable and returns immediately. The key concept here
is that what clears the condition of "standard input being readable" is
not select returning, but reading from the descriptor.

6.4 Use the getrlimit function to fetch the values for the RLIMIT_NOFILE
resource and then call setrlimit to set the current soft limit (rlim_cur)
to the hard limit (rlim_max). For example, under Solaris 2.5, the soft
limit is 64 but any process can increase this to the default hard limit of
1,024.

getrlimit and setrlimit are not part of POSIX.1, but are required by
Unix 98.

6.5 The server application continually sends data to the client, which the
client TCP acknowledges and throws away.

6.6
shutdown with SHUT_WR or SHUT_RDWR always sends a FIN, while close
sends a FIN only if the descriptor reference count is 1 when close is
called.

Page 1042

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


6.7 6.7 read returns an error, and our Read wrapper function terminates the
server. Servers must be more robust than this. Notice that we handle
this condition in Figure 6.26, although even that code is inadequate.
Consider what happens if connectivity is lost between the client and
server and one of the server's responses eventually times out. The error
returned could be ETIMEDOUT.

In general, a server should not abort for errors like these. It should log
the error, close the socket, and continue servicing other clients. Realize
that handling an error of this type by aborting is unacceptable in a server
such as this one, where one process is handling all clients. But if the
server was a child handling just one client, then having that one child
abort would not affect the parent (which we assume handles all new
connections and spawns the children), or any of the other children that
are servicing other clients.

[ Team LiB ]

Page 1043

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Chapter 7

7.2 Figure E.5 shows one solution to this exercise. We have removed the
printing of the data string returned by the server as that value is not
needed.

Figure E.5 Print socket receive buffer size and MSS
before and after connection establishment.

sockopt/rcvbuf.c

 1 #include    "unp.h"

 2 #include    <netinet/tcp.h>      /* for TCP_MAXSEG */

 3 int

 4 main(int argc, char **argv)

 5 {

 6     int     sockfd, rcvbuf, mss;

 7     socklen_t len;

 8     struct sockaddr_in servaddr;

 9     if (argc != 2)

10         err_quit("usage: rcvbuf <IPaddress>");

11     sockfd = Socket(AF_INET, SOCK_STREAM, 0);

12     len = sizeof(rcvbuf);

13     Getsockopt(sockfd, SOL_SOCKET, SO_RCVBUF, &rcvbuf,

&len);

14     len = sizeof(mss);

15     Getsockopt(sockfd, IPPROTO_TCP, TCP_MAXSEG, &mss,

&len);

16     printf("defaults: SO_RCVBUF = %d, MSS = %d\n", rcvbuf,

mss);

17     bzero(&servaddr, sizeof(servaddr));

18     servaddr.sin_family = AF_INET;

19     servaddr.sin_port = htons(13);  /* daytime server */

20     Inet_pton(AF_INET, argv[1], &servaddr.sin_addr);

21     Connect(sockfd, (SA *) &servaddr, sizeof(servaddr));

22     len = sizeof(rcvbuf);

23     Getsockopt(sockfd, SOL_SOCKET, SO_RCVBUF, &rcvbuf,

&len);

24     len = sizeof(mss);

25     Getsockopt(sockfd, IPPROTO_TCP, TCP_MAXSEG, &mss,

&len);

26     printf("after connect: SO_RCVBUF = %d, MSS = %d\n",

rcvbuf, mss);

Page 1044

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


27     exit(0);

28 }

First, there is no "correct" output from this program. The results vary
from system to system. Some systems (notably Solaris 2.5.1 and
earlier) always return 0 for the socket buffer sizes, preventing us from
seeing what happens with this value across the connection.

With regard to the MSS, the value printed before connect is the
implementation default (often 536 or 512), while the value printed
after connect depends on a possible MSS option from the peer. On a
local Ethernet, for example, the value after connect could be 1,460.
After a connect to a server on a remote network, however, the MSS
may be similar to the default, unless your system supports path MTU
discovery. If possible, run a tool like tcpdump (Section C.5) while the
program is running to see the actual MSS option on the SYN segment
from the peer.

With regard to the socket receive buffer size, many implementations
round this value up after the connection is established to a multiple of
the MSS. Another way to see the socket receive buffer size after the
connection is established is to watch the packets using a tool like 
tcpdump and look at TCP's advertised window.

7.3 Allocate a linger structure named ling and initialize it as follows:

str_cli(stdin, sockfd);

ling.l_onoff = 1;

ling.l_linger = 0;

Setsockopt(sockfd, SOL_SOCKET, SO_LINGER, &ling,

sizeof(ling));

exit(0);

This should cause the client TCP to terminate the connection with an
RST instead of the normal four-segment exchange. The server child's
call to readline returns an error of ECONNRESET and the message
printed is as follows:

readline error: Connection reset by peer

The client socket should not go through the TIME_WAIT state, even
though the client did the active close.

7.4 The first client calls setsockopt, bind, and connect. But between the
first client's calls to bind and connect, if the second client calls bind,
EADDRINUSE is returned. But as soon as the first client connects to the
peer, the second client's bind will work, since the first client's socket is
then connected. The only way to handle this is for the second client to

Page 1045

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


try calling bind multiple times if EADDRINUSE is returned, and not give
up the first time the error is returned.

7.5 We run the program on a host with multicast support (MacOS X
10.2.6).

macosx % sock -s 9999 &                    start first server

with wildcard

[1]     29697

macosx % sock -s 172.24.37.78 9999         try second server,

but without -A

can't bind local address: Address already in use

macosx % sock -s -A 172.24.37.78 9999 &    try again with -A;

works

[2]     29699

macosx % sock -s -A 127.0.0.1 9999 &       third server with

-A; works

[3]     29700

macosx % netstat -na | grep 9999

tcp4      0      0  127.0.0.1.9999        *.*                 

    LISTEN

tcp4      0      0  172.24.37.78.9999    *.*                  

   LISTEN

tcp4      0      0  *.9999                *.*                 

    LISTEN

7.6 We first try on a host that supports multicasting, but does not support
the SO_REUSEPORT option (Solaris 9).

solaris % sock -s -u 8888 &                first one starts

[1]     24051

solaris % sock -s -u 8888

can't bind local address: Address already in use

solaris % sock -s -u -A 8888 &             try second again

with -A; works

solaris % netstat -na | grep 8888          we can see the

duplicate bindings

      *.8888                        Idle

      *.8888                        Idle

On this system, we do not need to specify SO_REUSEADDR for the first
bind, only for the second.

Finally, we run this scenario under MacOS X 10.2.6, which supports
multicasting and the SO_REUSEPORT option. We first try SO_REUSEADDR
for both servers, but this does not work.

macosx % sock -u -s -A 7777 &

[1]     17610

Page 1046

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


macosx % sock -u -s -A 7777

can't bind local address: Address already in use

Next we try SO_REUSEPORT, but only for the second server, not for the
first. This does not work since a completely duplicate binding requires
the option for all sockets that share the binding.

macosx % sock -u -s 8888 &

[1]     17612

macosx % sock -u -s -T 8888

can't bind local address: Address already in use

Finally we specify SO_REUSEPORT for both servers, and this works.

macosx % sock -u -s -T 9999 &

[1]     17614

macosx % sock -u -s -T 9999 &

[2]     17615

macosx % netstat -na | grep 9999

udp4        0      0  *.9999             *.*

udp4        0      0  *.9999             *.*

7.7 This does nothing because ping uses an ICMP socket and the SO_DEBUG
socket option affects only TCP sockets. The description for the SO_DEBUG
socket option has always been something generic such as "this option
enables debugging in the respective protocol layer," but the only
protocol layer to implement the option has been TCP.

7.8 Figure E.6 shows the timeline.

Figure E.6. Interaction of Nagle algorithm with delayed
ACK.

Page 1047

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


7.9 Setting the TCP_NODELAY socket option causes the data from the
second write to be sent immediately, even though the connection has a
small packet outstanding. We show this in Figure E.7. The total time in
this example is just over 150 ms.

Figure E.7. Avoidance of Nagle algorithm by setting 
TCP_NODELAY socket option.

7.10 The advantage to this solution is reducing the number of packets, as we
show in Figure E.8.

Figure E.8. Using writev instead of setting the TCP_NODELAY
socket option.

7.11 Section 4.2.3.2 states: "The delay MUST be less than 0.5 seconds, and
in a stream of full-sized segments, there SHOULD be an ACK for at least
every second segment." Berkeley-derived implementations delay an
ACK by at most 200 ms (p.821 of TCPv2).

7.12 The server parent in Figure 5.2 spends most of its time blocked in the
call to accept and the child in Figure 5.3 spends most of its time
blocked in the call to read, which is called by readline. The keep-alive
option has no effect on a listening socket so the parent is not affected
should the client host crash. The child's read will return an error of
ETIMEDOUT, sometime around two hours after the last data exchange
across the connection.

Page 1048

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


7.13 The client in Figure 5.5 spends most of its time blocked in the call to
fgets, which in turn is blocked in some type of read operation on
standard input within the standard I/O library. When the keep-alive
timer expires around two hours after the last data exchange across the
connection, and all the keep-alive probes fail to elicit a response from
the server, the socket's pending error is set to ETIMEDOUT. But the client
is blocked in the call to fgets on standard input and will not see this
error until it performs a read or write on the socket. This is one reason
why we modified Figure 5.5 to use select in Chapter 6.

7.14 This client spends most of its time blocked in the call to select, which
will return the socket as readable as soon as the pending error is set to 
ETIMEDOUT (as we described in the previous solution).

7.15 Only two segments are exchanged, not four. There is a very low
probability that the two systems will have timers that are exactly
synchronized; hence, one end's keep-alive timer will expire shortly
before the other's. The first one to expire sends the keep-alive probe,
causing the other end to ACK this probe. But the receipt of the
keep-alive probe causes the keep-alive timer on the host with the
(slightly) slower clock to be reset for two hours in the future.

7.16 The original sockets API did not have a listen function. Instead, the
fourth argument to socket contained socket options, and SO_ACCEPTCON
was used to specify a listening socket. When listen was added, the
flag stayed around, but it is now set only by the kernel (p.456 of
TCPv2).

[ Team LiB ]

Page 1049

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Chapter 8

8.1 Yes, read returns 4,096 bytes of data, but the recvfrom returns 2,048
(the first of the two datagrams). A recvfrom on a datagram socket never
returns more than one datagram, regardless of how much the application
asks for.

8.2 If the protocol uses variable-length socket address structures, clilen
could be too large. We will see in Chapter 15 that this is acceptable with
Unix domain socket address structures, but the correct way to code the
function is to use the actual length returned by recvfrom as the length
for sendto.

8.4 Running ping like this is an easy way to see ICMP messages that are
received by the host on which ping is being run. We reduce the number
of packets sent from the normal one per second just to reduce the
output. If we run our UDP client on our host aix, specifying the server's
IP address as 192.168.42.1, and also run the ping program, we get the
following output:

aix % ping -v -i 60 127.0.0.1

PING 127.0.0.1: (127.0.0.1): 56 data bytes

64 bytes from 127.0.0.1: icmp_seq=0 ttl=255 time=0 ms

36 bytes from 192.168.42.1: Destination Port Unreachable

Vr HL TOS  Len   ID Flg  off TTL Pro  cks      Src      Dst

Data

 4  5  00 0022 0007   0 0000  1e  11 c770 192.168.42.2 

192.168.42.1

UDP: from port 40645, to port 9877 (decimal)

Note that not all ping clients print received ICMP errors, even with the -v
flag.

8.5 It probably has a socket receive buffer size, but data is never accepted
for a listening TCP socket. Most implementations do not preallocate
memory for socket send buffers or socket receive buffers. The socket
buffer sizes specified with the SO_SNDBUF and SO_RCVBUF socket options
are just upper limits for that socket.

Page 1050

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


8.6 We run the sock program on the multihomed host freebsd, specifying
the -u option (use UDP) and the -l option (specifying the local IP
address and port).

freebsd % sock -u -l 12.106.32.254.4444 192.168.42.2 8888

hello

The local IP address is the Internet-side interface in Figure 1.16, but the
datagram must go out the other interface to get to the destination.
Watching the network with tcpdump shows that the source IP address is
the one that was bound by the client, not the outgoing interface address.

14:28:29.614846 12.106.32.254.4444 > 192.168.42.2.8888: udp 6

14:28:29.615225 192.168.42.2 > 12.106.32.254: icmp:

192.168.42.2

                                           udp port 8888

unreachable

8.7 Putting a printf in the client should introduce a delay between each
datagram, allowing the server to receive more datagrams. Putting a 
printf in the server should cause the server to lose more datagrams.

8.8 The largest IPv4 datagram is 65,535 bytes, limited by the 16-bit total
length field in Figure A.1. The IP header requires 20 bytes and the UDP
header requires 8 bytes, leaving a maximum of 65,507 bytes for user
data. With IPv6 without jumbogram support, the size of the IPv6 header
is 40 bytes, leaving a maximum of 65,487 bytes for user data.

Figure E.9 shows the new version of dg_cli. If you forget to set the send
buffer size, Berkeley-derived kernels return an error of EMSGSIZE from
sendto, since the size of the socket send buffer is normally less than
required for a maximum-sized UDP datagram (be sure to do Exercise 7.1
). But if we set the client's socket buffer sizes as shown in Figure E.9 and
run the client program, nothing is returned by the server. We can verify
that the client's datagram is sent to the server by running tcpdump, but if
we put a printf in the server, its call to recvfrom does not return the
datagram. The problem is that the server's UDP socket receive buffer is
smaller than the datagram we are sending, so the datagram is discarded
and not delivered to the socket. On a FreeBSD system, we can verify this
by running netstat -s and looking at the "dropped due to full socket
buffers" counter before and after our big datagram is received. The final
solution is to modify the server, setting its socket send and receive buffer
sizes.

Figure E.9 Writing the maximum-sized UDP/IPv4
datagram.

udpcliserv/dgclibig.c

Page 1051

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


 1 #include    "unp.h"

 2 #undef  MAXLINE

 3 #define MAXLINE 65507

 4 void

 5 dg_cli(FILE *fp, int sockfd, const SA *pservaddr, socklen_t

servlen)

 6 {

 7     int     size;

 8     char    sendline[MAXLINE], recvline[MAXLINE + 1];

 9     ssize_t n;

10     size = 70000;

11     Setsockopt(sockfd, SOL_SOCKET, SO_SNDBUF, &size,

sizeof(size));

12     Setsockopt(sockfd, SOL_SOCKET, SO_RCVBUF, &size,

sizeof(size));

13     Sendto(sockfd, sendline, MAXLINE, 0, pservaddr,

servlen);

14     n = Recvfrom(sockfd, recvline, MAXLINE, 0, NULL, NULL);

15     printf("received %d bytes\n", n);

16 }

On most networks, a 65,535-byte IP datagram is fragmented. Recall
from Section 2.11 that an IP layer must support a reassembly buffer size
of only 576 bytes. Therefore, you may encounter hosts that will not
receive the maximum-sized datagrams sent in this exercise. Also, many
Berkeley-derived implementations, including 4.4BSD-Lite2, have a sign
bug that prevents UDP from accepting a datagram larger than 32,767
bytes (line 95 of p.770 of TCPv2).

[ Team LiB ]

Page 1052

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Chapter 9

9.1 There are a number of situations where sctp_peeloff can play an
important role. An example application that might use this function is a
traditional UDP-like server that responds to requests such as small
transactions, but occasionally is requested to do a long-term audit. In
most cases, you only need to send one or two small messages and no
more; but when a audit request arrives, a long-term conversation is
invoked, sending audit information. In this situation, you would peel off
the audit into its own thread or process to do the audit.

In summary, any application that has mainly small requests but on
occasion needs to have a long-term conversation can take advantage of 
sctp_peeloff.

9.2 The server side closes automatically when the client closes the
association. This is because SCTP does not support the half-closed state,
so when the client calls close, the shutdown sequence will flush any
pending data the server had queued for the client and complete the
shutdown, closing the association.

9.3 In the one-to-one style, a connect call must be performed first, and so
when the COOKIE is sent to the peer, no data is pending. For the
one-to-many style, an application can send data to a peer to set up an
association. This means that when the COOKIE is sent, the DATA is
available to send to the peer.

9.4 The only time a peer that you would be setting up an association with
would be able to send back data is if it had DATA pending BEFORE the
connection was set up. This would occur if each side was using the
one-to-many style and each side did a send to implicitly set up the
association. This type of association setup is called an INIT collision, and
details on it can be found in Chapter 4 of [Stewart and Xie 2001].

9.5 In some cases, not all addresses that are bound may be passed to a peer
endpoint. In particular, when addresses that an application has bound
contain both private and public IP addresses, only the public addresses
may be shared with a peer endpoint. Another example is found in IPv6,
where link-local addresses cannot necessarily be shared with a peer.

[ Team LiB ]

Page 1053

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


Page 1054

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Chapter 10

10.1 If the sctp_sendmsg function returns an error, no message will be sent
and the application would then do a blocking sctp_recvmsg, waiting for
a response message that would never be sent to it.

A way to fix this is to check the error return codes, and if an error
occurs on sending, the client should NOT do the receive, but instead
should report an error.

If the sctp_recvmsg function returns an error, no message will arrive
and the server will still attempt to send a message, possibly setting up
an association. To avoid this, the error code should be checked, and
depending on the error, you may wish to report the error and close the
socket, letting the server also then receive an error; or, if the error is
transient, you could retry the sctp_recvmsg call.

10.2 If the server receives a request and then exits, the client in its current
form will hang forever waiting for a message that will never come. A
method that can be used by the client to detect this is to enable
association events. This will allow the client application to receive a
message when the server exits, telling the client that the association is
now gone. This would allow the client to then take a recovery action
such as contacting a different server.

An alternative method the client could use is to set up a timer and
abort after some time period.

10.3 We choose 800 bytes to attempt to get each chunk in a single packet. A
better way would be to get or set the SCTP_MAXSEG socket option to
determine the size that will fit in one chunk.

10.4 The Nagle algorithm (controlled by the SCTP_NODELAY socket option;
see Section 7.10) will cause a problem only if we choose a small data
transfer size. So as long as we send a size that forces SCTP to send
immediately, no harm will occur. However, choosing a smaller size for 
out_sz would skew the results, holding some transmissions awaiting
SACKs from the remote endpoint. So if a smaller size is to be used,
turning off the Nagle algorithm (i.e., turning on the SCTP_NODELAY
socket option) would be a good idea.

10.5 If an application sets up an association and then changes the number of
streams, the association will not have a different number of streams, it

Page 1055

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


will have the original number before the change. This is because
changing the number of streams only affects new associations, not
existing ones.

10.6 The one-to-many style allows implicit setup of associations. To use
ancillary data to change the setup of an association, you need to use
the sendmsg call to provide the data before the association is set up.
Thus, you must use an implicit association setup.

[ Team LiB ]

Page 1056

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Chapter 11

11.1 Figure E.10 shows our program that calls gethostbyaddr. This
program works fine for a host with a single IP address. If we run the
program in Figure 11.3 for a host with four IP addresses, we get the
following:

freebsd % hostent cnn.com

official hostname: cnn.com

        address: 64.236.16.20

        address: 64.236.16.52

        address: 64.236.16.84

        address: 64.236.16.116

        address: 64.236.24.4

        address: 64.236.24.12

        address: 64.236.24.20

        address: 64.236.24.28

But if we run the program in Figure E.10 for the same host, only the
first IP address is output as follows:

freebsd % hostent2 cnn.com

official hostname: cnn.com

        address: 64.236.24.4

        name = www1.cnn.com

Figure E.10 Modification to Figure 11.3 to call
gethostbyaddr.

names/hostent2.c

 1 #include    "unp.h"

 2 int

 3 main(int argc, char **argv)

 4 {

 5     char   *ptr, **pptr;

 6     char    str[INET6_ADDRSTRLEN];

 7     struct hostent *hptr;

 8     while (--argc > 0) {

 9         ptr = *++argv;

10         if ( (hptr = gethostbyname(ptr)) == NULL) {

11             err_msg("gethostbyname error for host: %s:

%s",

12                     ptr, hstrerror(h_errno));

13             continue;

14         }

15         printf("official hostname: %s\n", hptr->h_name);

Page 1057

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


16         for (pptr = hptr->h_aliases; *pptr != NULL;

pptr++)

17             printf("    alias: %s\n", *pptr);

18         switch (hptr->h_addrtype) {

19         case AF_INET:

20 #ifdef  AF_INET6

21         case AF_INET6:

22 #endif

23             pptr = hptr->h_addr_list;

24             for ( ; *pptr != NULL; pptr++) {

25                 printf("\taddress: %s\n",

26                        Inet_ntop(hptr->h_addrtype, *pptr,

str, sizeof(str)));

27                 if ( (hptr = gethostbyaddr(*pptr,

hptr->h_length,

28                                          

hptr->h_addrtype)) == NULL)

29                     printf("\t(gethostbyaddr failed)\n");

30                     else if (hptr->h_name != NULL)

31                         printf("\tname = %s\n",

hptr->h_name);

32                     else

33                         printf("\t(no hostname returned by

gethostbyaddr)\n");

34             }

35             break;

36         default:

37             err_ret("unknown address type");

38             break;

39         }

40     }

41     exit(0);

42 }

The problem is that the two functions, gethostbyname and
gethostbyaddr, share the same hostent structure, as we show at the
beginning of Section 11.18. When our new program calls
gethostbyaddr, it reuses this structure, along with the storage that
the structure points to (i.e., the h_addr_list array of pointers),
wiping out the remaining three IP addresses returned by 
gethostbyname.

11.2 If your system does not supply the re-entrant version of 
gethostbyaddr (which we describe in Section 11.19), then you must
make a copy of the array of pointers returned by gethostbyname, along
with the data pointed to by this array, before calling gethostbyaddr.

11.3 The chargen server sends data to the client until the client closes the
connection (i.e., until you abort the client).

Page 1058

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


11.4 This is a feature of some resolvers, but you cannot rely on it in a
portable program because POSIX leaves the behavior unspecified. 
Figure E.11 shows the modified version. The order of the tests on the
hostname string is important. We call inet_pton first, as it is a fast,
in-memory test for whether or not the string is a valid dotted-decimal
IP address. Only if this fails do we call gethostbyname, which typically
involves some network resources and some time.

If the string is a valid dotted-decimal IP address, we make our own
array of pointers (addrs) to the single IP address, allowing the loop
using pptr to remain the same.

Since the address has already been converted to binary in the socket
address structure, we change the call to memcpy in Figure 11.4 to call
memmove instead, because when a dotted-decimal IP address is
entered, the source and destination fields are the same in this call.

Figure E.11 Allow dotted-decimal IP address or
hostname, port number, or service name.

names/daytimetcpcli2.c

 1 #include    "unp.h"

 2 int

 3 main(int argc, char **argv)

 4 {

 5     int     sockfd, n;

 6     char    recvline[MAXLINE + 1];

 7     struct sockaddr_in servaddr;

 8     struct in_addr **pptr, *addrs[2];

 9     struct hostent *hp;

10     struct servent *sp;

11     if (argc != 3)

12         err_quit("usage: daytimetcpcli2 <hostname>

<service>");

13     bzero(&servaddr, sizeof(servaddr));

14     servaddr.sin_family = AF_INET;

15     if (inet_pton(AF_INET, argv[1], &servaddr.sin_addr) ==

1) {

16         addrs[0] = &servaddr.sin_addr;

17         addrs[1] = NULL;

18         pptr = &addrs[0];

19     } else if ((hp = gethostbyname(argv[1])) != NULL) {

20         pptr = (struct in_addr **) hp->h_addr_list;

21     } else

22          err_quit("hostname error for %s: %s", argv[1],

hstrerror(h_errno));

23     if ( (n = atoi(argv[2])) > 0)

24         servaddr.sin_port = htons(n);

25     else if ((sp = getservbyname(argv[2], "tcp")) != NULL)

26         servaddr.sin_port = sp->s_port;

Page 1059

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


27     else

28         err_quit("getservbyname error for %s", argv[2]);

29     for ( ; *pptr != NULL; pptr++) {

30         sockfd = Socket(AF_INET, SOCK_STREAM, 0);

31         memmove(&servaddr.sin_addr, *pptr, sizeof(struct

in_addr));

32         printf("trying %s\n", Sock_ntop((SA *) &servaddr,

sizeof(servaddr)));

33         if (connect(sockfd, (SA *) &servaddr,

sizeof(servaddr)) == 0)

34             break;              /* success */

35          err_ret("connect error");

36          close(sockfd);

37     }

38     if (*pptr == NULL)

39         err_quit("unable to connect");

40     while ( (n = Read(sockfd, recvline, MAXLINE)) > 0) {

41         recvline[n] = 0;        /* null terminate */

42         Fputs(recvline, stdout);

43     }

44     exit(0);

45     }

11.5 Figure E.12 shows the program.

Figure E.12 Modification of Figure 11.4 to work with
IPv4 and IPv6.

names/daytimetcpcli3.c

 1 #include   "unp.h"

 2 int

 3 main(int argc, char **argv)

 4 {

 5     int     sockfd, n;

 6     char    recvline[MAXLINE + 1];

 7     struct sockaddr_in servaddr;

 8     struct sockaddr_in6 servaddr6;

 9     struct sockaddr *sa;

10     socklen_t salen;

11     struct in_addr **pptr;

12     struct hostent *hp;

13     struct servent *sp;

14     if (argc != 3)

15         err_quit("usage: daytimetcpcli3  <hostname>

<service>");

16     if ( (hp = gethostbyname(argv[1])) == NULL)

17         err_quit("hostname error for %s: %s", argv[1],

hstrerror(h_errno));

Page 1060

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


18     if ( (sp = getservbyname(argv[2], "tcp")) == NULL)

19         err_quit("getservbyname error for %s", argv[2]);

20     pptr = (struct in_addr **) hp->h_addr_list;

21     for ( ; *pptr != NULL; pptr++) {

22         sockfd = Socket(hp->h_addrtype, SOCK_STREAM, 0);

23         if (hp->h_addrtype == AF_INET) {

24             sa = (SA *) &servaddr;

25             salen = sizeof(servaddr);

26         } else if (hp->h_addrtype == AF_INET6) {

27             sa = (SA *) &servaddr6;

28             salen = sizeof(servaddr6);

29         } else

30             err_quit("unknown addrtype %d",

hp->h_addrtype);

31         bzero(sa, salen);

32         sa->sa_family = hp->h_addrtype;

33         sock_set_port(sa, salen, sp->s_port);

34         sock_set_addr(sa, salen, *pptr);

35         printf("trying %s\n", Sock_ntop(sa, salen));

36         if (connect(sockfd, sa, salen) == 0)

37             break;              /* success */

38         err_ret("connect error");

39         close(sockfd);

40     }

41     if (*pptr == NULL)

42         err_quit("unable to connect");

43     while ( (n = Read(sockfd, recvline, MAXLINE)) > 0) {

44         recvline[n] = 0;        /* null terminate */

45         Fputs(recvline, stdout);

46     }

47     exit(0);

48     }

We use the h_addrtype value returned by gethostbyname to determine
the type of address. We also use our sock_set_port and
sock_set_addr functions (Section 3.8) to set these two fields in the
appropriate socket address structure.

Although this program works, it has two limitations. First, we must
handle all the differences, looking at h_addrtype and then setting sa
and salen appropriately. A better solution is to have a library function
that not only looks up the hostname and service name, but also fills in
the entire socket address structure (e.g., getaddrinfo in Section 11.6
). Second, this program compiles only on hosts that support IPv6. To
make this compile on an IPv4-only host would add numerous #ifdefs
to the code, thus complicating it.

We return to the concept of protocol independence in Chapter 11 and
see better ways to accomplish it.

Page 1061

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


11.7 Allocate a big buffer (larger than any socket address structure) and
call getsockname. The third argument is a value-result argument that
returns the actual size of the protocol's addresses. Unfortunately, this
works only for protocols with fixed-length socket address structures
(e.g., IPv4 and IPv6), but is not guaranteed to work with protocols
that can return variable-length socket address structures (e.g., Unix
domain sockets, Chapter 15).

11.8 We first allocate arrays to hold the hostname and service name as
follows:

char host[NI_MAXHOST], serv[NI_MAXSERV];

After accept returns, we call getnameinfo instead of sock_ntop as
follows:

if (getnameinfo(cliaddr, len, host, NI_MAXHOST, serv,

NI_MAXSERV,

                NI_NUMERICHOST | NI_NUMERICSERV) == 0)

printf("connection from %s.%s\n", host, serv);

Since this is a server, we specify the NI_NUMERICHOST and
NI_NUMERICSERV flags to avoid a DNS query and a lookup of
/etc/services.

11.9 The first problem is that the second server cannot bind the same port
as the first server because the SO_REUSEADDR socket option is not set.
The easiest way to handle this is to make a copy of the udp_server
function, rename it udp_server_reuseaddr, have it set the socket
option, and call this new function from the server.

11.10 When the client outputs "Trying 206.62.226.35...", gethostbyname has
returned the IP address. Any client pause before this is the time taken
by the resolver to look up the hostname. The output "Connected to
bsdi.kohala.com." means connect has returned. Any pause between
these two lines of output is the time taken by connect to establish the
connection.

[ Team LiB ]

Page 1062

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Chapter 12

12.1 Here are the relevant excepts (e.g., with the login and directory listings
omitted). Note that the FTP client on the system freebsd always tries
the EPRT command, whether it is using IPv4 or IPv6, and falls back to
the PORT command when it doesn't work.

freebsd % ftp aix-4

Connected to aix-4.unpbook.com

220 aix FTP server ...

...

230 Guest login ok, access restrictions apply.

ftp> debug

Debugging on (debug=1).

ftp> passive

Passive mode: off; fallback to active mode: off.

ftp> dir

---> EPRT |1|192.168.42.1|50484|

500 'EPRT |1|192.168.42.1|50484|': command not understood.

disabling epsv4 for this connection

---> PORT 192,168,42,1,197,52

200 PORT command successful.

---> LIST

150 Opening ASCII mode data connection for /bin/ls.

...

freebsd % ftp ftp.kame.net

Trying 2001:200:0:4819:203:47ff:fea5:3085 ...

Connected to orange.kame.net.

220 orange.kame.net FTP server ...

...

230 Guest login ok, access restrictions apply.

ftp> debug

Debugging on (debug=1).

ftp> passive

Passive mode: off; fallback to active mode: off.

ftp> dir

---> EPRT |2|3ffe:b80:3:9ad1::2|50480|

200 EPRT command successful.

---> LIST

150 Opening ASCII mode data connection for '/bin/ls'.

[ Team LiB ]

Page 1063

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Chapter 13

13.1 The startup error due to an invalid command-line argument count
would be logged using syslog

13.2 The TCP versions of the echo, discard, and chargen servers all run as a
child process after being forked by inetd because these three run until
the client terminates the connection. The other two TCP servers, time
and daytime, do not require a fork because their service is trivial to
implement (get the current time and date, format it, write it, and close
the connection), so these two are handled directly by inetd. All five
UDP services are handled without a fork because each generates at
most a single datagram in response to the client datagram that triggers
the service. These five are therefore handled directly by inetd.

13.3 This is a well-known denial-of-service attack ([CERT 1996a]). The first
datagram from port 7 causes the chargen server to send a datagram
back to port 7. This is echoed and sends another datagram to the 
chargen server. This loop continues. One solution, implemented in
FreeBSD, is to refuse datagrams to any of the internal servers if the
source port of the incoming datagram belongs to any of the internal
servers. Another solution is to disable these internal services, either
through inetd on each host or at an organization's router to the
Internet.

13.4 The client's IP address and port are obtained from the socket address
structure filled in by accept.

The reason inetd does not do this for a UDP socket is because the
recvfrom to read the datagram is performed by the actual server that
is execed, not by inetd itself.

inetd could read the datagram specifying the MSG_PEEK flag (Section
14.7), just to obtain the client's IP address and port, but leaving the
datagram in place for the actual server to read.

[ Team LiB ]

Page 1064

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Chapter 14

14.1 If no handler had been set, the return from the first call to signal
would be SIG_DFL and the call to signal to reset the handler would just
set it back to its default.

14.3 Here is just the for loop:

for ( ; ; ) {

    if ( (n = Recv(sockfd, recvline, MAXLINE, MSG_PEEK)) == 0)

        break;      /* server closed connection */

    Ioctl(sockfd, FIONREAD, &npend);

    printf("%d bytes from PEEK, %d bytes pending\n", n,

npend);

    n = Read(sockfd, recvline, MAXLINE);

    recvline[n] = 0;    /* null terminate */

    Fputs(recvline, stdout);

}

14.4 The data is still output because falling off the end of the main function
is the same as returning from this function, and the main function is
called by the C startup routine as follows:

exit(main(argc, argv));

Hence, exit is called, plus the standard I/O cleanup routine is called.

[ Team LiB ]

Page 1065

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Chapter 15

15.1
unlink removes the pathname from the filesystem, and when the client
calls connect at a later time, the connect will fail. The server's listening
socket is not affected, but no clients will be able to connect after the
unlink.

15.2 The client cannot connect to the server even if the pathname still
exists, because for the connect to succeed, a Unix domain socket must
be currently open and bound to that pathname (Section 15.4).

15.3 When the server prints the client's protocol address by calling 
sock_ntop, the output is "datagram from (no pathname bound)"
because no pathname is bound to the client's socket by default.

One solution is to specifically check for a Unix domain socket in 
udp_client and udp_connect and bind a temporary pathname to the
socket. This puts the protocol dependency in the library function where
it belongs, not in our application.

15.4 Even though we force 1-byte writes by the server for its 26-byte reply,
putting the sleep in the client guarantees that all 26 segments are
received before read is called, causing read to return the entire reply.
This is just to confirm (again) that TCP is a byte stream with no
inherent record markers.

To use the Unix domain protocols, we start the client and server with
the two command-line arguments /local (or /unix) and /tmp/daytime
(or any other temporary pathname you wish to use). Nothing changes:
26 bytes are returned by read each time the client runs.

Since the server specifies the MSG_EOR flag for each send, each byte is
considered a logical record and read returns 1 byte each time it is
called. What is happening here is that Berkeley-derived
implementations support the MSG_EOR flag by default. This is
undocumented, however, and should not be used in production code.
We use it here as an example of the difference between a byte stream
and a record-oriented protocol. From an implementation perspective,
each output operation goes into a memory buffer (mbuf) and the 
MSG_EOR flag is retained by the kernel with the mbuf as the mbuf goes
from the sending socket to the receiving socket's receive buffer. When 
read is called, the MSG_EOR flag is still attached to each mbuf, so the
generic kernel read routine (which supports the MSG_EOR flag since
some protocols use the flag) returns each byte by itself. Had we used 

Page 1066

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


recvmsg instead of read, the MSG_EOR flag would be returned in the
msg_flags member each time recvmsg returned 1 byte. This does not
work with TCP because the sending TCP never looks at the MSG_EOR flag
in the mbuf that it is sending, and even if it did, there is no way to pass
this flag to the receiving TCP in the TCP header. (Thanks to Matt
Thomas for pointing out this undocumented "feature.")

15.5 15.5 Figure E.13 shows an implementation of this program.

Figure E.13 Determine actual number of queued
connections for different backlog values.

debug/backlog.c

 1 #include    "unp.h"

 2 #define PORT        9999

 3 #define ADDR        "127.0.0.1"

 4 #define MAXBACKLOG  100

 5             /* globals */

 6 struct sockaddr_in serv;

 7 pid_t   pid;                    /* of child */

 8 int     pipefd[2];

 9 #define pfd pipefd[1]           /* parent's end */

10 #define cfd pipefd[0]           /* child's end */

11             /* function prototypes */

12 void    do_parent(void);

13 void    do_child(void);

14 int

15 main(int argc, char **argv)

16 {

17     if (argc != 1)

18         err_quit("usage: backlog");

19     Socketpair(AF_UNIX, SOCK_STREAM, 0, pipefd);

20     bzero(&serv, sizeof(serv));

21     serv.sin_family = AF_INET;

22     serv.sin_port = htons(PORT);

23     Inet_pton(AF_INET, ADDR, &serv.sin_addr);

24     if ( (pid = Fork()) == 0)

25         do_child();

26     else

27         do_parent();

28     exit(0);

29 }

30 void

31 parent_alrm(int signo)

Page 1067

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


32 {

33     return;                      /* just interrupt blocked

connect() */

34 }

35 void

36 do_parent(void)

37 {

38     int     backlog,  j, k, junk, fd[MAXBACKLOG + 1];

39     Close(cfd);

40     Signal(SIGALRM, parent_alrm);

41     for (backlog = 0; backlog <= 14; backlog++) {

42         printf("backlog = %d: ", backlog);

43         Write(pfd, &backlog, sizeof(int));  /* tell child

value */

44         Read(pfd, &junk, sizeof(int));  /* wait for child

*/

45         for (j = 1; j <= MAXBACKLOG; j++) {

46             fd[j] = Socket(AF_INET, SOCK_STREAM, 0);

47             alarm(2);

48             if (connect(fd[j], (SA *) &serv, sizeof(serv))

< 0) {

49                 if (errno != EINTR)

50                     err_sys("connect error, j = %d", j);

51                 printf("timeout, %d connections

completed\n", j - 1);

52                 for (k = 1; k <= j; k++)

53                     Close(fd[k]);

54                 break;          /* next value of backlog */

55             }

56             alarm(0);

57         }

58         if (j > MAXBACKLOG)

59             printf("%d connections?\n", MAXBACKLOG);

60     }

61     backlog = -1;      /* tell child we're all done */

62     Write(pfd, &backlog, sizeof(int));

63 }

64 void

65 do_child(void)

66 {

67     int     listenfd, backlog, junk;

68     const int on = 1;

69     Close(pfd);

70     Read(cfd, &backlog, sizeof(int));      /* wait for

parent */

71     while (backlog >= 0) {

72         listenfd = Socket(AF_INET, SOCK_STREAM, 0);

73         Setsockopt(listenfd, SOL_SOCKET, SO_REUSEADDR, &on,

sizeof(on));

74         Bind(listenfd, (SA *) &serv, sizeof(serv));

75         Listen(listenfd, backlog);  /* start the listen */

Page 1068

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


76         Write(cfd, &junk, sizeof(int)); /* tell parent */

77         Read(cfd, &backlog, sizeof(int));   /* just wait

for parent */

78         Close(listenfd);        /* closes all queued

connections, too */

79     }

80 }

[ Team LiB ]

Page 1069

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Chapter 16

16.1 The descriptor is shared between the parent and child, so it has a
reference count of 2. If the parent calls close, this just decrements the
reference count from 2 to 1, and since it is still greater than 0, a FIN is
not sent. This is another reason for the shutdown function: to force a
FIN to be sent even if the descriptor's reference count is greater than 0.

16.2 The parent will keep writing to the socket that has received a FIN, and
the first segment sent to the server will elicit an RST in response. The
next write after this will send SIGPIPE to the parent as we discussed
in Section 5.12.

16.3 When the child calls getppid to send SIGTERM to the parent, the
returned PID will be 1, the init process, which inherits all children
whose parents terminate while their children are still running. The child
will try to send the signal to the init process, but will not have
adequate permission. But if there is a chance that this client could run
with superuser privileges, allowing it to send this signal to init, then
the return value of getppid should be tested before sending the signal.

16.4 If these two lines are removed, select is called. But select will return
immediately because with the connection established, the socket is
writable. This test and goto are to avoid the unnecessary call to select.

16.5 This can happen when the server immediately sends data when its 
accept returns, and when the client host is busy when the second
packet of the three-way handshake arrives to complete the connection
at the client end (Figure 2.5). SMTP servers, for example, immediately
write to a new connection before reading from it, to send a greeting
message to the client.

[ Team LiB ]

Page 1070

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Chapter 17

17.1 No, it does not matter, because the first three members of the union in
Figure 17.2 are socket address structures.

[ Team LiB ]

Page 1071

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Chapter 18

18.1 The sdl_nlen member will be 5 and the sdl_alen member will be 8.
This requires 21 bytes, so the size is rounded up to 24 bytes (p.89 of
TCPv2), assuming a 32-bit architecture.

18.2 The kernel's response is never sent to this socket. This socket option
determines whether the kernel sends its reply to the sending process,
as discussed on pp.649 650 of TCPv2. It defaults to ON, since most
processes want replies. But, disabling the option prevents replies from
being sent to the sender.

[ Team LiB ]

Page 1072

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Chapter 20

20.1 If you get more than a few replies, they should not be in the same
order each time. The sending host, however, is normally the first reply
since the datagrams to and from it loop back internally and do not
appear on the actual network.

20.2 Under FreeBSD, when the signal handler writes the byte to the pipe and
then returns, select returns EINTR. It is called again and returns
readability on the pipe.

[ Team LiB ]

Page 1073

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Chapter 21

21.1 When we run the program, there is no output. To prevent accidental
reception of multicast datagrams that a server is not expecting, the
kernel does not deliver multicast groups to a socket that has never
performed any multicast operations (e.g., joining a group). What is
happening here is that the destination address of the UDP datagram is
224.0.0.1, the all-hosts group that all multicast-capable nodes must
join. The UDP datagram is sent as a multicast Ethernet frame and all
the multicast-capable nodes receive the datagram since they all belong
to the group. However, the kernel drops the received datagram since
the process bound to the daytime port has not set any multicast
options.

21.2 Figure E.14 shows a simple modification to the main function to bind
the multicast address and port 0.

Figure E.14 UDP client main function that binds a
multicast address.

mcast/udpcli06.c

 1 #include    "unp.h"

 2 int

 3 main(int argc, char **argv)

 4 {

 5     int     sockfd;

 6     socklen_t salen;

 7     struct sockaddr *cli,  *serv;

 8     if (argc != 2)

 9         err_quit("usage: udpcli06 <IPaddress>");

10     sockfd = Udp_client(argv[1], "daytime", (void **)

&serv, &salen);

11     cli = Malloc(salen);

12     memcpy(cli, serv, salen);   /* copy socket address

struct */

13     sock_set_port(cli, salen, 0);   /* and set port to 0 */

14     Bind(sockfd, cli, salen);

15     dg_cli(stdin, sockfd, serv, salen);

16     exit(0);

17 }

Unfortunately, on the three systems on which this was tried FreeBSD
4.8, MacOS X, and Linux 2.4.7 all allowed the bind and then sent the

Page 1074

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


UDP datagrams with a multicast source IP address.

21.3 21.3 If we do this from our host aix, which is multicast-capable, we
get the following:

aix % ping 224.0.0.1

PING 224.0.0.1: 56 data bytes

64 bytes from 192.168.42.2: icmp_seq=0 ttl=255 time=0 ms

64 bytes from 192.168.42.1: icmp_seq=0 ttl=64 time=1 ms (DUP!)

^C

----224.0.0.1 PING Statistics----

1 packets transmitted, 1 packets received, +1 duplicates, 0%

packet loss

round-trip min/avg/max = 0/0/0 ms

Both systems on the right-hand Ethernet in Figure 1.16 respond.

To prevent certain denial-of-service attacks, some systems do not
respond to broadcast or multicast pings by default. To get freebsd to
respond, we had to configure it with

freebsd % sysctl net.inet.icmp.bmcastecho=1

21.5 The value 1,073,741,824 is converted to a floating-point number and
divided by 4,294,967,296, yielding 0.250. This is multiplied by
1,000,000, yielding 250,000, which in microseconds is one-quarter of a
second.

The largest fraction is 4,294,967,295, which divided by 4,294,967,296
yields 0.99999999976716935634. Multiplying this by 1,000,000 and
truncating to an integer yields 999,999, the largest value for the
number of microseconds.

[ Team LiB ]

Page 1075

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Chapter 22

22.1 22.1 Recall that sock_ntop uses its own static buffer to hold the result.
If we call it twice as arguments in a call to printf, the second call
overwrites the result of the first call.

22.2 Yes, if the reply contains 0 bytes of user data (i.e., just an hdr
structure).

22.3 Since select does not modify the timeval structure that specifies its
time limit, you need to note the time when the first packet is sent (this
is already returned in units of milliseconds by rtt_ts). If select
returns with the socket being readable, note the current time, and if 
recvmsg is called again, calculate the new timeout for select.

22.4 The common technique is to create one socket per interface address, as
we did in Section 22.6, and send the reply from the same socket on
which the request arrived.

22.5 Calling getaddrinfo without a hostname argument and without the
AI_PASSIVE flag set causes it to assume the local host address: 0::1
(IPv6) and 127.0.0.1 (IPv4). Recall that an IPv6 socket address
structure is returned before an IPv4 socket address structure by 
getaddrinfo, assuming IPv6 is supported. If both protocols are
supported on the host, the call to socket in udp_client will succeed
with the family equal to AF_INET6.

Figure E.15 is the protocol-independent version of this program.

Figure E.15 Protocol-independent version of program
from Section 22.6.

advio/udpserv04.c

 1 #include "unpifi.h"

 2 void mydg_echo(int, SA *, socklen_t);

 3 int

 4 main(int argc, char **argv)

 5 {

 6     int sockfd, family, port;

Page 1076

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


 7     const int on = 1;

 8     pid_t pid;

 9     socklen_t salen;

10     struct sockaddr *sa, *wild;

11     struct ifi_info *ifi, *ifihead;

12     if (argc == 2)

13         sockfd = Udp_client(NULL, argv[1], (void **) &sa,

&salen);

14     else if (argc == 3)

15         sockfd = Udp_client(argv[1], argv[2], (void **)

&sa, &salen);

16     else

17         err_quit("usage: udpserv04 [ <host> ] <service or

port>");

18     family = sa->sa_family;

19     port = sock_get_port(sa, salen);

20     Close(sockfd);              /* we just want family,

port, salen */

21     for (ifihead = ifi = Get_ifi_info(family, 1);

22          ifi != NULL; ifi = ifi->ifi_next) {

23             /* bind unicast address */

24         sockfd = Socket(family, SOCK_DGRAM, 0);

25         Setsockopt(sockfd, SOL_SOCKET, SO_REUSEADDR, &on,

sizeof(on));

26         sock_set_port(ifi->ifi_addr, salen, port);

27         Bind(sockfd, ifi->ifi_addr, salen);

28         printf("bound %s\n", Sock_ntop(ifi->ifi_addr,

salen));

29         if ( (pid = Fork()) == 0) { /* child */

30             mydg_echo(sockfd, ifi->ifi_addr, salen);

31             exit(0);            /* never executed */

32         }

33         if (ifi->ifi_flags & IFF_BROADCAST) {

34                 /* try to bind broadcast address */

35             sockfd = Socket(family, SOCK_DGRAM, 0);

36             Setsockopt(sockfd, SOL_SOCKET, SO_REUSEADDR,

&on, sizeof(on));

37             sock_set_port(ifi->ifi_brdaddr, salen, port);

38             if (bind(sockfd, ifi->ifi_brdaddr, salen) < 0)

{

39                 if (errno == EADDRINUSE) {

40                     printf("EADDRINUSE: %s\n",

41                            Sock_ntop(ifi->ifi_brdaddr,

salen));

42                     Close(sockfd);

43                     continue;

44                 } else

45                     err_sys("bind error for %s",

46                             Sock_ntop(ifi->ifi_brdaddr,

salen));

47             }

48             printf("bound %s\n",

Page 1077

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


Sock_ntop(ifi->ifi_brdaddr, salen));

49             if ( (pid = Fork()) == 0) { /* child */

50                 mydg_echo(sockfd, ifi->ifi_brdaddr, salen);

51                 exit(0);        /* never executed */

52             }

53         }

54     }

55         /* bind wildcard address */

56     sockfd = Socket(family, SOCK_DGRAM, 0);

57     Setsockopt(sockfd, SOL_SOCKET, SO_REUSEADDR, &on,

sizeof(on));

58     wild = Malloc(salen);

59     memcpy(wild, sa, salen);    /* copy family and port */

60     sock_set_wild(wild, salen);

61     Bind(sockfd, wild, salen);

62     printf("bound %s\n", Sock_ntop(wild, salen));

63     if ( (pid = Fork()) == 0) {  /* child */

64         mydg_echo(sockfd, wild, salen);

65         exit(0);                /* never executed */

66     }

67     exit(0);

68 }

69 void

70 mydg_echo(int sockfd, SA *myaddr, socklen_t salen)

71 {

72     int     n;

73     char    mesg[MAXLINE];

74     socklen_t len;

75     struct sockaddr *cli;

76     cli = Malloc(salen);

77     for ( ; ; ) {

78         len = salen;

79         n = Recvfrom(sockfd, mesg, MAXLINE, 0, cli, &len);

80         printf("child %d, datagram from %s", getpid(),

Sock_ntop(cli, len));

81         printf(", to %s\n", Sock_ntop(myaddr, salen));

82         Sendto(sockfd, mesg, n, 0, cli, len);

83     }

84 }

[ Team LiB ]

Page 1078

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Chapter 24

24.1 Yes, in the first example, 2 bytes are sent with a single urgent pointer
that points to the byte following the b. But in the second example (the
two function calls), first the a is sent with an urgent pointer that points
just beyond it, and this is followed by another TCP segment containing
the b with a different urgent pointer that points just beyond it.

24.2 24.2 Figure E.16 shows the version using poll.

Figure E.16 Version of Figure 24.6 using poll instead of
select.

oob/tcprecv03p.c

 1 #include   "unp.h"

 2 int

 3 main(int argc, char **argv)

 4 {

 5     int     listenfd, connfd, n, justreadoob = 0;

 6     char    buff[100];

 7     struct pollfd pollfd[1];

 8     if (argc == 2)

 9         listenfd = Tcp_listen(NULL, argv[1], NULL);

10     else if (argc == 3)

11         listenfd = Tcp_listen(argv[1], argv[2], NULL);

12     else

13         err_quit("usage: tcprecv03p [ <host> ] <port#>");

14     connfd = Accept(listenfd, NULL, NULL);

15     pollfd[0].fd = connfd;

16     pollfd[0].events = POLLRDNORM;

17     for ( ; ; ) {

18         if (justreadoob == 0)

19             pollfd[0].events|= POLLRDBAND;

20         Poll(pollfd, 1, INFTIM);

21         if (pollfd[0].revents & POLLRDBAND) {

22             n = Recv(connfd, buff, sizeof(buff) - 1,

MSG_OOB);

23             buff[n] = 0;        /* null terminate */

24             printf("read %d OOB byte: %s\n", n, buff);

25             justreadoob = 1;

26             pollfd[0].events &= ~POLLRDBAND;    /* turn bit

off */

27         }

Page 1079

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


28         if (pollfd[0].revents & POLLRDNORM) {

29             if ( (n = Read(connfd, buff, sizeof(buff) - 1))

== 0) {

30                 printf("received EOF\n");

31                 exit(0);

32             }

33             buff[n] = 0;        /* null terminate */

34             printf("read %d bytes: %s\n", n, buff);

35             justreadoob = 0;

36         }

37     }

38 }

[ Team LiB ]

Page 1080

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Chapter 25

25.1 No, the modification introduces an error. The problem is that nqueue is
decremented before the array entry dg[iget] is processed, allowing the
signal handler to read a new datagram into this array element.

[ Team LiB ]

Page 1081

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Chapter 26

26.1 In the fork example, there will be 101 descriptors in use, one listening
socket, and 100 connected sockets. But each of the 101 processes (one
parent, 100 children) has just one descriptor open (ignoring any others,
such as standard input, if the server is not daemonized). In the
threaded server, however, there are 101 descriptors in the single
process. Each thread (including the main thread) is handling one
descriptor.

26.2 The final two segments of the TCP connection termination the server's
FIN and the client's ACK of this FIN will not be exchanged. This leaves
the client's end of the connection in the FIN_WAIT_2 state (Figure 2.4).
Berkeley-derived implementations will time out the client's end when it
remains in this state for just over 11 minutes (pp.825 827 of TCPv2).
The server will also run out of descriptors (eventually).

26.3 This message should be printed by the main thread when it reads an
EOF from the socket and the other thread is still running. A simple way
to do this is to declare another external named done that is initialized to
0. Before the thread copyto returns, it sets this variable to 1. The main
thread checks this variable, and if 0, prints the error message. Since
only one thread sets the variable, there is no need for any
synchronization.

[ Team LiB ]

Page 1082

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Chapter 27

27.1 Nothing changes; all the systems are neighbors, so a strict source route
is identical to a loose source route.

27.2 We would place an EOL (a byte of 0) at the end of the buffer.

27.3 Since ping creates a raw socket (Chapter 28), it receives the complete
IP header, including any IP options, on every datagram it reads with 
recvfrom.

27.4
rlogind is invoked by inetd (Section 13.5), so descriptor 0 is the
socket to the client.

27.5 The problem is that the fifth argument to setsockopt is the pointer to
the length, instead of the length. This bug was probably fixed when
ANSI C prototypes were first used.

As it turns out, the bug is harmless, because as we mentioned, to clear
the IP_OPTIONS socket option, we can specify either a null pointer as
the fourth argument or a fifth argument (the length) of 0 (p.269 of
TCPv2).

[ Team LiB ]

Page 1083

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Chapter 28

28.1 The version number field and the next header field in the IPv6 header
are not available. The payload length field is available as either an
argument to one of the output functions or as the return value from one
of the input functions. But, if a jumbo payload option is required, that
actual option itself is not available to an application. The fragment
header is also not available to an application.

28.2 Eventually, the client's socket receive buffer will fill, causing the
daemon's write to block. We do not want this to happen, as that stops
the daemon from handling any more data on any of its sockets. The
easiest solution is for the daemon to set its end of the Unix domain
connection to the client to nonblocking. The daemon must then call 
write instead of the wrapper function Write and just ignore an error of
EWOULDBLOCK.

28.3 28.3 Berkeley-derived kernels, by default, allow broadcasting on a raw
socket (p.1057 of TCPv2). The SO_BROADCAST socket option needs to be
specified only for UDP sockets.

28.4 Our program does not check for a multicast address and does not set
the IP_MULTICAST_IF socket option. Therefore, the kernel chooses the
outgoing interface, probably by searching the routing table for
224.0.0.1. We also do not set the IP_MULTICAST_TTL field, so it defaults
to 1, which is acceptable.

[ Team LiB ]

Page 1084

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Chapter 29

29.1 This flag indicates that the jump buffer has been set by sigsetjmp (
Figure 29.10). While the flag may seem superfluous, there is a chance
that the signal can be delivered after the signal handler is established,
but before the call to sigsetjmp. Even if the program doesn't cause the
signal to be generated, signals can be generated in other ways, such as
with the kill command.

[ Team LiB ]

Page 1085

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Chapter 30
30.1 

30.1 The parent keeps the listening socket open in case it needs to fork
additional children at some later time (which would be an enhancement
to our code).

30.2 Yes, a datagram socket can be used to pass a descriptor instead of
using a stream socket. With a datagram socket, the parent does not
receive an EOF on its end of the stream pipe when a child terminates
prematurely, but the parent could use SIGCHLD for this purpose. One
difference in this scenario, where SIGCHLD can be used versus our icmpd
daemon in Section 28.7, is that in the latter, there was no parent/child
relationship between the client and server so the EOF on the stream
pipe was the only way for the server to detect the disappearance of a
client.

[ Team LiB ]

Page 1086

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Chapter 31

31.1 We are assuming here that the default for the protocol is an orderly
release when the stream is closed, which is true for TCP.

[ Team LiB ]

Page 1087

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


[ Team LiB ]

Bibliography
All RFCs are available at no charge through electronic mail, anonymous FTP, or the World
Wide Web. A starting point is http://www.ietf.org. The directory
ftp://ftp.rfc-editor.org/in-notes is one location for RFCs. URLs are not specified for RFCs.

Items marked "Internet Draft" are works in progress of the IETF. These drafts expire six
months after publication. The appropriate version of the draft may change after this book is
published, or the draft may be published as an RFC. They are available at no charge via the
Internet, similar to the RFCs. http://www.ietf.org is a major repository for Internet Drafts.
We include the filename portion of the URL for each Internet Draft, since the filename
contains the version number.

Whenever an electronic copy was found of a paper or report referenced in this bibliography,
its URL is included. Be aware that these URLs can change over time, and readers are
encouraged to check the Errata for this text on the book's home page for any changes (
http://www.unpbook.com/) A terrific online database of papers can be found at
http://citeseer.nj.nec.com/cs. Entering the title of a paper or report will not only find other
papers that refer to the one entered, but will also point to known online versions.

Albitz, P. and Liu, C. 2001. DNS and Bind, Fourth Edition. O'Reilly & Associates,
Sebastopol, CA.

Allman, M., Floyd, S., and Partridge, C. 2002. "Increasing TCP's Initial Window," RFC 3390.

Allman, M., Ostermann, S., and Metz, C. W. 1998. "FTP Extensions for IPv6 and NATs," RFC
2428.

Allman, M., Paxson, V., and Stevens, W. R. 1999. "TCP Congestion Control," RFC 2581.

Almquist, P. 1992. "Type of Service in the Internet Protocol Suite," RFC 1349 (obsoleted by
RFC 2474). Original definition of how to use the type-of-service field in the IPv4 header.
Obsoleted by RFC 2474 [Nichols et al. 1998] and RFC 3168 [Ramakrishnan, Floyd, and
Black 2001].

Baker, F. 1995. "Requirements for IP Version 4 Routers," RFC 1812.

Borman, D. A. 1997a. "Re: Frequency of RST Terminated Connections," end2end-interest
mailing list (http://www.unpbook.com/borman.97jan30.txt).

Borman, D. A. 1997b. "Re: SYN/RST cookies," tcp-impl mailing list (
http://www.unpbook.com/borman.97jun06.txt).

Borman, D. A., Deering, S. E., and Hinden, R. 1999. "IPv6 Jumbograms," RFC 2675.

Braden, R. T. 1989. "Requirements for Internet Hosts Communication Layers," RFC 1122.
The first half of the host requirements RFC. This half covers the link layer, IPv4, ICMPv4,
IGMPv4, ARP, TCP, and UDP.

Braden, R. T. 1992. "TIME-WAIT Assassination Hazards in TCP," RFC 1337.

Braden, R. T., Borman, D. A., and Partridge, C. 1988. "Computing the Internet checksum,"
RFC 1071.

Bradner, S. 1996. "The Internet Standards Process Revision 3," RFC 2026.

Bush, R. 2001. "Delegation of IP6.ARPA," RFC 3152.

Butenhof, D. R. 1997. Programming with POSIX Threads. Addison-Wesley, Reading, MA.

Page 1088

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.ietf.org/default.htm
ftp://ftp.rfc-editor.org/in-notes
http://www.ietf.org/default.htm
http://www.unpbook.com/default.htm
http://citeseer.nj.nec.com/cs
http://www.unpbook.com/borman.97jan30.txt
http://www.unpbook.com/borman.97jun06.txt
http://www.ietf.org
ftp://ftp.rfc-editor.org/in-notes
http://www.ietf.org
http://www.unpbook.com/
http://citeseer.nj.nec.com/cs
http://www.unpbook.com/borman.97jan30.txt
http://www.unpbook.com/borman.97jun06.txt
http://www.processtext.com/abcchm.html


Cain, B., Deering, S. E., Kouvelas, I., Fenner, B., and Thyagarajan, A. 2002. "Internet
Group Management Protocol, Version 3," RFC 3376.

Carpenter, B. and Moore, K. 2001. "Connection of IPv6 Domains via IPv4 Clouds," RFC
3056.

CERT, 1996a. "UDP Port Deinal-of-Service Attack," Advisory CA-96.01, Computer
Emergency Response Team, Pittsburgh, PA.

CERT, 1996b. "TCP SYN Flooding and IP Spoofing Attacks," Advisory CA-96.21, Computer
Emergency Response Team, Pittsburgh, PA.

Cheswick, W. R., Bellovin, S. M., and Rubin, A. D. 2003. Firewalls and Internet Security:
Repelling the Wily Hacker, Second Edition. Addison-Wesley, Reading, MA.

Conta, A. and Deering, S. E. 1998. "Internet Control Message Protocol (ICMPv6) for the
Internet Protocol Version 6 (IPv6) Specification," RFC 2463.

Conta, A. and Deering, S. E. 2001. "Internet Control Message Protocol (ICMPv6) for the
Internet Protocol Version 6 (IPv6) Specification," draft-ietf-ipngwg-icmp-v3-02.txt
(Internet Draft). This is a revision of [Conta and Deering 1998] and is expected to
eventually replace it.

Crawford, M. 1998a. "Transmission of IPv6 Packets over Ethernet Networks," RFC 2464.

Crawford, M. 1998b. "Transmission of IPv6 Packets over FDDI Networks," RFC 2467.

Crawford, M., Narten, T., and Thomas, S. 1998. "Transmission of IPv6 Packets over Token
Ring Networks," RFC 2470.

Deering, S. E. 1989. "Host extensions for IP multicasting," RFC 1112.

Deering, S. E. and Hinden, R. 1998. "Internet Protocol, Version 6 (IPv6) Specification," RFC
2460.

Draves, R. 2003. "Default Address Selection for Internet Protocol version 6 (IPv6)," RFC
3484.

Eriksson, H. 1994. "MBONE: The Multicast Backbone," Communications of the ACM, vol. 37,
no. 8, pp. 54-60.

Fink, R. and Hinden, R. 2003. "6bone (IPv6 Testing Address Allocation) Phaseout,"
draft-fink-6bone-phaseout-04.txt(Internet Draft).

Fuller, V., Li, T., Yu, J. Y., and Varadhan, K. 1993. "Classless Inter-Domain Routing (CIDR):
an Address Assignment and Aggregation Strategy," RFC 1519.

Garfinkel, S. L., Schwartz, A., and Spafford, E. H. 2003. Practical UNIX & Internet Security,
3rd Edition. O'Reilly & Associates, Sebastapol, CA.

Gettys, J. and Nielsen, H. F. 1998. SMUX Protocol Specification (
http://www.w3.org/TR/WD-mux).

Gierth, A. 1996. Private communication.

Gilligan, R. E. and Nordmark, E. 2000. "Transition Mechanisms for IPv6 Hosts and Routers,"
RFC 2893.

Gilligan, R. E., Thomson, S., Bound, J., McCann, J., and Stevens, W. R. 2003. "Basic Socket
Interface Extensions for IPv6," RFC 3493.

Gilligan, R. E., Thomson, S., Bound, J., and Stevens, W. R. 1997. "Basic Socket Interface
Extensions for IPv6," RFC 2133 (obsoleted by RFC 2553).

Page 1089

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.w3.org/TR/WD-mux
http://www.w3.org/TR/WD-mux
http://www.processtext.com/abcchm.html


Gilligan, R. E., Thomson, S., Bound, J., and Stevens, W. R. 1999. "Basic Socket Interface
Extensions for IPv6," RFC 2553 (obsoleted by RFC 3493).

Haberman, B. 2002. "Allocation Guidelines for IPv6 Multicast Addresses," RFC 3307.

Haberman, B. and Thaler, D. 2002. "Unicast-Prefix-based IPv6 Multicast Addresses," RFC
3306.

Handley, M. and Jacobson, V. 1998. "SDP: Session Description Protocol," RFC 2327.

Handley, M., Perkins, C., and Whelan, E. 2000. "Session Announcement Protocol," RFC
2974.

Harkins, D. and Carrel, D. 1998. "The Internet Key Exchange (IKE)," RFC 2409.

Hinden, R. and Deering, S. E. 2003. "Internet Protocol Version 6 (IPv6) Addressing
Architecture," RFC 3513.

Hinden, R., Deering, S. E., and Nordmark, E. 2003. "IPv6 Global Unicast Address Format,"
RFC 3587.

Hinden, R., Fink, R., and Postel, J. B. 1998. "IPv6 Testing Address Allocation," RFC 2471.

Holbrook, H. and Cheriton, D. 1999. "IP multicast channels: EXPRESS support for
large-scale single-source applications,"Computer Communication Review, vol. 29, no. 4,
pp. 65 78.

Huitema, C. 2001. "An Anycast Prefix for 6to4 Relay Routers," RFC 3068.

IANA, 2003. Protocol/Number Assignments Directory (http://www.iana.org/numbers.htm).

IEEE, 1996. "Information Technology Portable Operating System Interface (POSIX) Part
1: System Application Program Interface (API) [C Language]," IEEE Std 1003.1, 1996
Edition, Institute of Electrical and Electronics Engineers, Piscataway, NJ. This version of
POSIX.1 contains the 1990 base API, the 1003.1b realtime extensions (1993), the 1003.1c
pthreads (1995), and the 1003-1i technical corrections (1995). This is also International
Standard ISO/IEC 9945 1: 1996 (E). Ordering information on IEEE standards and draft
standards is available at http://www.ieee.org.

IEEE, 1997. Guidelines for 64-bit Global Identifier (EUI-64) Registration Authority.
Institute of Electrical and Electronics Engineers, Piscataway, NJ (
http://standards.ieee.org/regauth/oui/tutorials/EUI64.html).

Jacobson, V. 1988. "Congestion Avoidance and Control,"Computer Communication Review,
vol. 18, no. 4, pp. 314 329 (ftp://ftp.ee.lbl.gov/papers/congavoid.ps.Z). A classic paper
describing the slow start and congestion avoidance algorithms for TCP.

Jacobson, V., Braden, R. T., and Borman, D. A. 1992. "TCP Extensions for High
Performance," RFC 1323. Describes the window scale option, the timestamp option, and
the PAWS algorithm, along with the reasons why these modifications were needed.

Jacobson, V., Braden, R. T., and Zhang, L. 1990. "TCP Extension for High-Speed Paths,"
RFC 1185 (obsoleted by RFC 1323).

Josey, A., ed. 1997. Go Solo 2: The Authorized Guide to Version 2 of the Single UNIX
Specification. Prentice Hall, Upper Saddle River, NJ.

Josey, A., ed. 2002. The Single UNIX Specification The Authorized Guide to Version 3. The
Open Group, Berkshire, UK.

Joy, W. N. 1994. Private communication.

Karn, P. and Partridge, C. 1991. "Improving Round-Trip Time Estimates in Reliable

Page 1090

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.iana.org/numbers.htm
http://www.ieee.org/default.htm
http://standards.ieee.org/regauth/oui/tutorials/EUI64.html
ftp://ftp.ee.lbl.gov/papers/congavoid.ps.z
http://www.iana.org/numbers.htm
http://www.ieee.org
http://standards.ieee.org/regauth/oui/tutorials/EUI64.html
ftp://ftp.ee.lbl.gov/papers/congavoid.ps.Z
http://www.processtext.com/abcchm.html


Transport Protocols,"ACM Transactions on Computer Systems, vol. 9, no. 4, pp. 364 373.

Katz, D. 1993. "Transmission of IP and ARP over FDDI Networks," RFC 1390.

Katz, D. 1997. "IP Router Alert Option," RFC 2113.

Kent, S. T. 1991. "U. S. Department of Defense Security Options for the Internet Protocol,"
RFC 1108.

Kent, S. T. 2003a. "IP Authentication Header," draft-ietf-ipsec-rfc2402bis-04.txt(Internet
Draft).

Kent, S. T. 2003b. "IP Encapsulating Security Payload (ESP),"
draft-ietf-ipsec-esp-v3-06.txt (Internet Draft).

Kent, S. T. and Atkinson, R. J. 1998a. "Security Architecture for the Internet Protocol," RFC
2401.

Kent, S. T. and Atkinson, R. J. 1998b. "IP Authentication Header," RFC 2402. As of this
writing, this RFC is being updated by the IETF IPsec Working Group (see [Kent 2003a]).

Kent, S. T. and Atkinson, R. J. 1998c. "IP Encapsulating Security Payload (ESP)," RFC
2406. As of this writing, this RFC is being updated by the IETF IPsec Working Group (see
[Kent 2003b]).

Kernighan, B. W. and Pike, R. 1984. The UNIX Programming Environment. Prentice Hall,
Englewood Cliffs, NJ.

Kernighan, B. W. and Ritchie, D. M. 1988. The C Programming Language, Second Edition.
Prentice Hall, Englewood Cliffs, NJ.

Lanciani, D. 1996. "Re: sockets: AF_INET vs. PF_INET," Message-ID:
<3561@news.IPSWITCH.COM>, USENET comp.protocols.tcp-ip Newsgroup (
http://www.unpbook.com/lanciani.96apr10.txt).

Maslen, T. M. 1997. "Re: gethostbyXXXX() and Threads," Message-ID:
<maslen.862463630 @shellx>, USENET comp.programming.threads Newsgroup (
http://www.unpbook.com/maslen.97may01.txt).

McCann, J., Deering, S. E., and Mogul, J. C. 1996. "Path MTU Discovery for IP version 6,"
RFC 1981.

McCanne, S. and Jacobson, V. 1993. "The BSD Packet Filter: A New Architecture for
User-Level Packet Capture," Proceedings of the 1993 Winter USENIX Conference, San
Diego, CA, pp. 259 269.

McDonald, D. L., Metz, C. W., and Phan, B. G. 1998. "PF_KEY Key Management API, Version
2," RFC 2367.

McKusick, M. K., Bostic, K., Karels, M.J., and Quarterman, J. S. 1996. The Design and
Implementation of the 4.4BSD Operating System. Addison-Wesley, Reading, MA.

Meyer, D. 1998. "Administratively Scoped IP Multicast," RFC 2365.

Mills, D. L. 1992. "Network Time Protocol (Version 3) Specification, Implementation," RFC
1305.

Mills, D. L. 1996. "Simple Network Time Protocol (SNTP) Version 4 for IPv4, IPv6 and OSI,"
RFC 2030.

Mogul, J. C. and Deering, S. E. 1990. "Path MTU discovery," RFC 1191.

Mogul, J. C. and Postel, J. B. 1985. "Internet Standard Subnetting Procedure," RFC 950.

Page 1091

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.unpbook.com/lanciani.96apr10.txt
http://www.unpbook.com/maslen.97may01.txt
http://www.unpbook.com/lanciani.96apr10.txt
http://www.unpbook.com/maslen.97may01.txt
http://www.processtext.com/abcchm.html


Narten, T. and Draves, R. 2001. "Privacy Extensions for Stateless Address
Autoconfiguration in IPv6," RFC 3041.

Nemeth, E. 1997. Private communication.

Nichols, K., Blake, S., Baker, F., and Black, D. 1998. "Definition of the Differentiated
Services Field (DS Field) in the IPv4 and IPv6 Headers," RFC 2474.

Nordmark, E. 2000. "Stateless IP/ICMP Translation Algorithm (SIIT)," RFC 2765.

Ong, L., Rytina, I., Garcia, M., Schwarzbauer, H., Coene, L., Lin, H., Juhasz, I., Holdrege,
M., and Sharp, C. 1999. "Framework Architecture for Signaling Transport," RFC 2719.

Ong, L. and Yoakum, J. 2002. "An Introduction to the Stream Control Transmission Protocol
(SCTP)," RFC 3286.

The Open Group, 1997. CAE Specification, Networking Services (XNS), Issue 5. The Open
Group, Berkshire, UK. This is the specification for sockets and XTI in Unix 98, now
superseded by The Single UNIX Specification, Version 3. This manual also has appendices
describing the use of XTI with Net-BIOS, the OSI protocols, SNA, and the Netware IPX and
SPX protocols. Three appendices cover the use of both sockets and XTI with ATM.

Partridge, C. and Jackson, A. 1999. "IPv6 Router Alert Option," RFC 2711.

Partridge, C., Mendez, T., and Milliken, W. 1993. "Host Anycasting Service," RFC 1546.

Partridge, C. and Pink, S. 1993. "A Faster UDP," IEEE/ACM Transactions on Networking, vol.
1, no. 4, pp. 429 440.

Paxson, V. 1996. "End-to-End Routing Behavior in the Internet," Computer Communication
Review, vol. 26, no. 4, pp. 25 38 (ftp://ftp.ee.lbl.gov/papers/routing.SIGCOMM.ps.z).

Paxson, V. and Allman, M. 2000. "Computing TCP's Retransmission Timer," RFC 2988.

Plauger, P.J. 1992. The Standard C Library. Prentice Hall, Englewood Cliffs, NJ.

Postel, J. B. 1980. "User Datagram Protocol," RFC 768.

Postel, J. B. 1981a. "Internet Protocol," RFC 791.

Postel, J. B. 1981b. "Internet Control Message Protocol," RFC 792.

Postel, J. B. 1981c. "Transmission Control Protocol," RFC 793.

Pusateri, T. 1993. "IP Multicast over Token-Ring Local Area Networks," RFC 1469.

Rago, S. A. 1993. UNIX System V Network Programming. Addison-Wesley, Reading, MA.

Rajahalme, J., Conta, A., Carpenter, B., and Deering, S. E. 2003. "IPv6 Flow Label
Specification," draft-ietf-ipv6-flow-label-07.txt (Internet Draft).

Ramakrishnan, K., Floyd, S., and Black, D. 2001. "The Addition of Explicit Congestion
Notification (ECN) to IP," RFC 3168.

Rekhter, Y., Moskowitz, B., Karrenberg, D., de Groot, G. J., and Lear, E. 1996. "Address
Allocation for Private Internets," RFC 1918.

Reynolds, J. K. 2002. "Assigned Numbers: RFC 1700 is Replaced by an On-line Database,"
RFC 3232. The database referred to in this RFC is [IANA 2003].

Reynolds, J. K. and Postel, J. B. 1994. "Assigned Numbers," RFC 1700 (obsoleted by RFC
3232). This RFC is the last in the series of "Assigned Numbers" RFCs. Since the
information changed so often, it was decided to simply keep the directory online. See
[Reynolds 2002] for more explanation or [IANA 2003] for the database itself.

Page 1092

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

ftp://ftp.ee.lbl.gov/papers/routing.sigcomm.ps.z
ftp://ftp.ee.lbl.gov/papers/routing.SIGCOMM.ps.z
http://www.processtext.com/abcchm.html


Ritchie, D. M. 1984. "A Stream Input-Output System,"AT&T Bell Laboratories Technical
Journal, vol. 63, no. 8, pp. 1897 1910.

Salus, P. H. 1994. A Quarter Century of Unix. Addison-Wesley, Reading, MA.

Salus, P. H. 1995. Casting the Net: From ARPANET to Internet and Beyond.
Addison-Wesley, Reading, MA.

Schimmel, C. 1994. UNIX Systems for Modern Architectures: Symmetric Multiprocessing
and Caching for Kernel Programmers. Addison-Wesley, Reading, MA.

Spero, S. 1996. Session Control Protocol (SCP) (http://www.w3.org/Protocols/HTTP-NG/
http-ng-scp.html).

Srinivasan, R. 1995. "XDR: External Data Representation Standard," RFC 1832.

Stevens, W. R. 1992. Advanced Programming in the UNIX Environment. Addison-Wesley,
Reading, MA. All the details of Unix programming. Referred to in this text as APUE.

Stevens, W. R. 1994. TCP/IP Illustrated, Volume 1: The Protocols. Addison-Wesley,
Reading, MA. A complete introduction to the Internet protocols. Referred to in this text as
TCPv1.

Stevens, W. R. 1996. TCP/IP Illustrated, Volume 3: TCP for Transactions, HTTP, NNTP, and
the UNIX Domain Protocols. Addison-Wesley, Reading, MA. Referred to in this text as
TCPv3.

Stevens, W. R. and Thomas, M. 1998. "Advanced Sockets API for IPv6," RFC 2292
(obsoleted by RFC 3542).

Stevens, W. R., Thomas, M., Nordmark, E., and Jinmei, T. 2003. "Advanced Sockets
Application Program Interface (API) for IPv6," RFC 3542.

Stewart, R. R., Bestler, C., Jim, J., Ganguly, S., Shah, H., and Kashyap, V. 2003a. "Stream
Control Transmission Protocol (SCTP) Remote Direct Memory Access (RDMA) Direct Data
Placement (DDP) Adaptation," draft-stewart-rddp-sctp-02.txt (Internet Draft).

Stewart, R. R., Ramalho, M., Xie, Q., Tuexen, M., Rytina, I., Belinchon, M., and Conrad, P.
2003b. "Stream Control Transmission Protocol (SCTP) Dynamic Address Reconfiguration,"
draft-ietf-tsvwg-addip-sctp-07.txt (Internet Draft).

Stewart, R. R. and Xie, Q. 2001. Stream Control Transmission Protocol (SCTP): A Reference
Guide. Addison-Wesley, Reading, MA.

Stewart, R. R., Xie, Q., Morneault, K., Sharp, C., Schwarzbauer, H., Taylor, T., Rytina, I.,
Kalla, M., Zhang, L., and Paxson, V. 2000. "Stream Control Transmission Protocol," RFC
2960.

Stone, J., Stewart, R. R., and Otis, D. 2002. "Stream Control Transmission Protocol (SCTP)
Checksum Change," RFC 3309.

Tanenbaum, A. S. 1987. Operating Systems Design and Implementation. Prentice Hall,
Englewood Cliffs, NJ.

Thomson, S. and Huitema, C. 1995. "DNS Extensions to support IP version 6," RFC 1886.

Torek, C. 1994. "Re: Delay in re-using TCP/IP port," Message-ID:
<199501010028.QAA16863 @elf.bsdi.com>, USENET comp.unix.wizards Newsgroup (
http://www.unpbook.com/torek.94dec31.txt).

Touch, J. 1997. "TCP Control Block Interdependence," RFC 2140.

Unix International, 1991. Data Link Provider Interface Specification. Unix International,

Page 1093

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.w3.org/Protocols/HTTP-NG/ http-ng-scp.html
http://www.w3.org/Protocols/HTTP-NG/ http-ng-scp.html
http://www.unpbook.com/ torek.94dec31.txt
http://www.w3.org/Protocols/HTTP-NG/
http://www.unpbook.com/torek.94dec31.txt
http://www.processtext.com/abcchm.html


Parsippany, NJ, Revision 2.0.0 (http://www.unpbook.com/dlpi.2.0.0.ps). A newer version
of this specification is available online from The Open Group at 
http://www.rdg.opengroup.org/pubs/catalog/web.htm.

Unix International, 1992a. Network Provider Interface Specification. Unix International,
Parsippany, NJ, Revision 2.0.0 (http://www.unpbook.com/npi.2.0.0.ps).

Unix International, 1992b. Transport Provider Interface Specification. Unix International,
Parsippany, NJ, Revision 1.5 (http://www.unpbook.com/tpi.1.5.ps). A newer version of this
specification is available online from The Open Group at 
http://www.rdg.opengroup.org/pubs/catalog/web.htm.

Vixie, P. A. 1996. Private communication.

Wright, G. R. and Stevens, W. R. 1995. TCP/IP Illustrated, Volume 2: The Implementation.
Addison-Wesley, Reading, MA. The implementation of the Internet protocols in the
4.4BSD-Lite operating system. Referred to in this text as TCPv2.

[ Team LiB ]

Page 1094

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.unpbook.com/dlpi.2.0.0.ps
http://www.rdg.opengroup.org/pubs/catalog/web.htm
http://www.unpbook.com/npi.2.0.0.ps
http://www.unpbook.com/tpi.1.5.ps
http://www.rdg.opengroup.org/pubs/catalog/web.htm
http://www.unpbook.com/dlpi.2.0.0.ps
http://www.rdg.opengroup.org/pubs/catalog/web.htm
http://www.unpbook.com/npi.2.0.0.ps
http://www.unpbook.com/tpi.1.5.ps
http://www.rdg.opengroup.org/pubs/catalog/web.htm
http://www.processtext.com/abcchm.html

	[Trial version] Main Page
	[Trial version] Table of content
	[Trial version] Copyright
	[Trial version] Addison-Wesley Professional Computing Series
	[Trial version] Foreword
	[Trial version] Preface
	[Trial version] Introduction
	[Trial version] Changes from the Second Edition
	[Trial version] Using This Book
	[Trial version] Source Code and Errata Availability
	[Trial version] Acknowledgments

	[Trial version] Part 1: Introduction and TCP/IP
	[Trial version] Chapter 1. Introduction
	[Trial version] 1.1 Introduction
	[Trial version] 1.2 A Simple Daytime Client
	[Trial version] 1.3 Protocol Independence
	[Trial version] 1.4 Error Handling: Wrapper Functions
	[Trial version] 1.5 A Simple Daytime Server
	[Trial version] 1.6 Roadmap to Client/Server Examples in the Text
	[Trial version] 1.7 OSI Model
	[Trial version] 1.8 BSD Networking History
	[Trial version] 1.9 Test Networks and Hosts
	[Trial version] 1.10 Unix Standards
	[Trial version] 1.11 64-Bit Architectures
	[Trial version] 1.12 Summary
	[Trial version] Exercises

	[Trial version] Chapter 2. The Transport Layer: TCP, UDP, and SCTP
	[Trial version] 2.1 Introduction
	[Trial version] 2.2 The Big Picture
	[Trial version] 2.3 User Datagram Protocol (UDP)
	[Trial version] 2.4 Transmission Control Protocol (TCP)
	[Trial version] 2.5 Stream Control Transmission Protocol (SCTP)
	[Trial version] 2.6 TCP Connection Establishment and Termination
	[Trial version] 2.7 TIME_WAIT State
	[Trial version] 2.8 SCTP Association Establishment and Termination
	[Trial version] 2.9 Port Numbers
	[Trial version] 2.10 TCP Port Numbers and Concurrent Servers
	[Trial version] 2.11 Buffer Sizes and Limitations
	[Trial version] 2.12 Standard Internet Services
	[Trial version] 2.13 Protocol Usage by Common Internet Applications
	[Trial version] 2.14 Summary
	[Trial version] Exercises


	[Trial version] Part 2: Elementary Sockets
	[Trial version] Chapter 3. Sockets Introduction
	[Trial version] 3.1 Introduction
	[Trial version] 3.2 Socket Address Structures
	[Trial version] 3.3 Value-Result Arguments
	[Trial version] 3.4 Byte Ordering Functions
	[Trial version] 3.5 Byte Manipulation Functions
	[Trial version] 3.6 'inet_aton', 'inet_addr', and 'inet_ntoa' Functions
	[Trial version] 3.7 'inet_pton' and 'inet_ntop' Functions
	[Trial version] 3.8 'sock_ntop' and Related Functions
	[Trial version] 3.9 'readn', 'writen', and 'readline' Functions
	[Trial version] 3.10 Summary
	[Trial version] Exercises

	[Trial version] Chapter 4. Elementary TCP Sockets
	[Trial version] 4.1 Introduction
	[Trial version] 4.2 'socket' Function
	[Trial version] 4.3 'connect' Function
	[Trial version] 4.4 'bind' Function
	[Trial version] 4.5 'listen' Function
	[Trial version] 4.6 'accept' Function
	[Trial version] 4.7 'fork' and 'exec' Functions
	[Trial version] 4.8 Concurrent Servers
	[Trial version] 4.9 'close' Function
	[Trial version] 4.10 'getsockname' and 'getpeername' Functions
	[Trial version] 4.11 Summary
	[Trial version] Exercises

	[Trial version] Chapter 5. TCP Client/Server Example
	[Trial version] 5.1 Introduction
	[Trial version] 5.2 TCP Echo Server: 'main' Function
	[Trial version] 5.3 TCP Echo Server: 'str_echo' Function
	[Trial version] 5.4 TCP Echo Client: 'main' Function
	[Trial version] 5.5 TCP Echo Client: 'str_cli' Function
	[Trial version] 5.6 Normal Startup
	[Trial version] 5.7 Normal Termination
	[Trial version] 5.8 POSIX Signal Handling
	[Trial version] 5.9 Handling 'SIGCHLD' Signals
	[Trial version] 5.10 'wait' and 'waitpid' Functions
	[Trial version] 5.11 Connection Abort before 'accept' Returns
	[Trial version] 5.12 Termination of Server Process
	[Trial version] 5.13 'SIGPIPE' Signal
	[Trial version] 5.14 Crashing of Server Host
	[Trial version] 5.15 Crashing and Rebooting of Server Host
	[Trial version] 5.16 Shutdown of Server Host
	[Trial version] 5.17 Summary of TCP Example
	[Trial version] 5.18 Data Format
	[Trial version] 5.19 Summary
	[Trial version] Exercises

	[Trial version] Chapter 6. I/O Multiplexing: The 'select' and 'poll' Functions
	[Trial version] 6.1 Introduction
	[Trial version] 6.2 I/O Models
	[Trial version] 6.3 'select' Function
	[Trial version] 6.4 'str_cli' Function (Revisited)
	[Trial version] 6.5 Batch Input and Buffering
	[Trial version] 6.6 'shutdown' Function
	[Trial version] 6.7 'str_cli' Function (Revisited Again)
	[Trial version] 6.8 TCP Echo Server (Revisited)
	[Trial version] 6.9 'pselect' Function
	[Trial version] 6.10 'poll' Function
	[Trial version] 6.11 TCP Echo Server (Revisited Again)
	[Trial version] 6.12 Summary
	[Trial version] Exercises

	[Trial version] Chapter 7. Socket Options
	[Trial version] 7.1 Introduction
	[Trial version] 7.2 'getsockopt' and 'setsockopt' Functions
	[Trial version] 7.3 Checking if an Option Is Supported and Obtaining the Default
	[Trial version] 7.4 Socket States
	[Trial version] 7.5 Generic Socket Options
	[Trial version] 7.6 IPv4 Socket Options
	[Trial version] 7.7 ICMPv6 Socket Option
	[Trial version] 7.8 IPv6 Socket Options
	[Trial version] 7.9 TCP Socket Options
	[Trial version] 7.10 SCTP Socket Options
	[Trial version] 7.11 'fcntl' Function
	[Trial version] 7.12 Summary
	[Trial version] Exercises

	[Trial version] Chapter 8. Elementary UDP Sockets
	[Trial version] 8.1 Introduction
	[Trial version] 8.2 'recvfrom' and 'sendto' Functions
	[Trial version] 8.3 UDP Echo Server: 'main' Function
	[Trial version] 8.4 UDP Echo Server: 'dg_echo' Function
	[Trial version] 8.5 UDP Echo Client: 'main' Function
	[Trial version] 8.6 UDP Echo Client: 'dg_cli' Function
	[Trial version] 8.7 Lost Datagrams
	[Trial version] 8.8 Verifying Received Response
	[Trial version] 8.9 Server Not Running
	[Trial version] 8.10 Summary of UDP Example
	[Trial version] 8.11 'connect' Function with UDP
	[Trial version] 8.12 'dg_cli' Function (Revisited)
	[Trial version] 8.13 Lack of Flow Control with UDP
	[Trial version] 8.14 Determining Outgoing Interface with UDP
	[Trial version] 8.15 TCP and UDP Echo Server Using 'select'
	[Trial version] 8.16 Summary
	[Trial version] Exercises

	[Trial version] Chapter 9. Elementary SCTP Sockets
	[Trial version] 9.1 Introduction
	[Trial version] 9.2 Interface Models
	[Trial version] 9.3 'sctp_bindx' Function
	[Trial version] 9.4 'sctp_connectx' Function
	[Trial version] 9.5 'sctp_getpaddrs' Function
	[Trial version] 9.6 'sctp_freepaddrs' Function
	[Trial version] 9.7 'sctp_getladdrs' Function
	[Trial version] 9.8 'sctp_freeladdrs' Function
	[Trial version] 9.9 'sctp_sendmsg' Function
	[Trial version] 9.10 'sctp_recvmsg' Function
	[Trial version] 9.11 'sctp_opt_info' Function
	[Trial version] 9.12 'sctp_peeloff' Function
	[Trial version] 9.13 'shutdown' Function
	[Trial version] 9.14 Notifications
	[Trial version] 9.15 Summary
	[Trial version] Exercises

	[Trial version] Chapter 10. SCTP Client/Server Example
	[Trial version] 10.1 Introduction
	[Trial version] 10.2 SCTP One-to-Many-Style Streaming Echo Server: 'main' Function
	[Trial version] 10.3 SCTP One-to-Many-Style Streaming Echo Client: 'main' Function
	[Trial version] 10.4 SCTP Streaming Echo Client: 'str_cli' Function
	[Trial version] 10.5 Exploring Head-of-Line Blocking
	[Trial version] 10.6 Controlling the Number of Streams
	[Trial version] 10.7 Controlling Termination
	[Trial version] 10.8 Summary
	[Trial version] Exercises

	[Trial version] Chapter 11. Name and Address Conversions
	[Trial version] 11.1 Introduction
	[Trial version] 11.2 Domain Name System (DNS)
	[Trial version] 11.3 'gethostbyname' Function
	[Trial version] 11.4 'gethostbyaddr' Function
	[Trial version] 11.5 'getservbyname' and 'getservbyport' Functions
	[Trial version] 11.6 'getaddrinfo' Function
	[Trial version] 11.7 'gai_strerror' Function
	[Trial version] 11.8 'freeaddrinfo' Function
	[Trial version] 11.9 'getaddrinfo' Function: IPv6
	[Trial version] 11.10 'getaddrinfo' Function: Examples
	[Trial version] 11.11 'host_serv' Function
	[Trial version] 11.12 'tcp_connect' Function
	[Trial version] 11.13 'tcp_listen' Function
	[Trial version] 11.14 'udp_client' Function
	[Trial version] 11.15 'udp_connect' Function
	[Trial version] 11.16 'udp_server' Function
	[Trial version] 11.17 'getnameinfo' Function
	[Trial version] 11.18 Re-entrant Functions
	[Trial version] 11.19 'gethostbyname_r' and 'gethostbyaddr_r' Functions
	[Trial version] 11.20 Obsolete IPv6 Address Lookup Functions
	[Trial version] 11.21 Other Networking Information
	[Trial version] 11.22 Summary
	[Trial version] Exercises


	[Trial version] Part 3: Advanced Sockets
	[Trial version] Chapter 12. IPv4 and IPv6 Interoperability
	[Trial version] 12.1 Introduction
	[Trial version] 12.2 IPv4 Client, IPv6 Server
	[Trial version] 12.3 IPv6 Client, IPv4 Server
	[Trial version] 12.4 IPv6 Address-Testing Macros
	[Trial version] 12.5 Source Code Portability
	[Trial version] 12.6 Summary
	[Trial version] Exercises

	[Trial version] Chapter 13. Daemon Processes and the 'inetd' Superserver
	[Trial version] 13.1 Introduction
	[Trial version] 13.2 'syslogd' Daemon
	[Trial version] 13.3 'syslog' Function
	[Trial version] 13.4 'daemon_init' Function
	[Trial version] 13.5 'inetd' Daemon
	[Trial version] 13.6 'daemon_inetd' Function
	[Trial version] 13.7 Summary
	[Trial version] Exercises

	[Trial version] Chapter 14. Advanced I/O Functions
	[Trial version] 14.1 Introduction
	[Trial version] 14.2 Socket Timeouts
	[Trial version] 14.3 'recv' and 'send' Functions
	[Trial version] 14.4 'readv' and 'writev' Functions
	[Trial version] 14.5 'recvmsg' and 'sendmsg' Functions
	[Trial version] 14.6 Ancillary Data
	[Trial version] 14.7 How Much Data Is Queued?
	[Trial version] 14.8 Sockets and Standard I/O
	[Trial version] 14.9 Advanced Polling
	[Trial version] 14.10 Summary
	[Trial version] Exercises

	[Trial version] Chapter 15. Unix Domain Protocols
	[Trial version] 15.1 Introduction
	[Trial version] 15.2 Unix Domain Socket Address Structure
	[Trial version] 15.3 'socketpair' Function
	[Trial version] 15.4 Socket Functions
	[Trial version] 15.5 Unix Domain Stream Client/Server
	[Trial version] 15.6 Unix Domain Datagram Client/Server
	[Trial version] 15.7 Passing Descriptors
	[Trial version] 15.8 Receiving Sender Credentials
	[Trial version] 15.9 Summary
	[Trial version] Exercises

	[Trial version] Chapter 16. Nonblocking I/O
	[Trial version] 16.1 Introduction
	[Trial version] 16.2 Nonblocking Reads and Writes: 'str_cli' Function (Revisited)
	[Trial version] 16.3 Nonblocking 'connect'
	[Trial version] 16.4 Nonblocking 'connect:' Daytime Client
	[Trial version] 16.5 Nonblocking 'connect:' Web Client
	[Trial version] 16.6 Nonblocking 'accept'
	[Trial version] 16.7 Summary
	[Trial version] Exercises

	[Trial version] Chapter 17. 'ioctl' Operations
	[Trial version] 17.1 Introduction
	[Trial version] 17.2 'ioctl' Function
	[Trial version] 17.3 Socket Operations
	[Trial version] 17.4 File Operations
	[Trial version] 17.5 Interface Configuration
	[Trial version] 17.6 'get_ifi_info' Function
	[Trial version] 17.7 Interface Operations
	[Trial version] 17.8 ARP Cache Operations
	[Trial version] 17.9 Routing Table Operations
	[Trial version] 17.10 Summary
	[Trial version] Exercises

	[Trial version] Chapter 18. Routing Sockets
	[Trial version] 18.1 Introduction
	[Trial version] 18.2 Datalink Socket Address Structure
	[Trial version] 18.3 Reading and Writing
	[Trial version] 18.4 'sysctl' Operations
	[Trial version] 18.5 'get_ifi_info' Function (Revisited)
	[Trial version] 18.6 Interface Name and Index Functions
	[Trial version] 18.7 Summary
	[Trial version] Exercises

	[Trial version] Chapter 19. Key Management Sockets
	[Trial version] 19.1 Introduction
	[Trial version] 19.2 Reading and Writing
	[Trial version] 19.3 Dumping the Security Association Database (SADB)
	[Trial version] 19.4 Creating a Static Security Association (SA)
	[Trial version] 19.5 Dynamically Maintaining SAs
	[Trial version] 19.6 Summary
	[Trial version] Exercises

	[Trial version] Chapter 20. Broadcasting
	[Trial version] 20.1 Introduction
	[Trial version] 20.2 Broadcast Addresses
	[Trial version] 20.3 Unicast versus Broadcast
	[Trial version] 20.4 'dg_cli' Function Using Broadcasting
	[Trial version] 20.5 Race Conditions
	[Trial version] 20.6 Summary
	[Trial version] Exercises

	[Trial version] Chapter 21. Multicasting
	[Trial version] 21.1 Introduction
	[Trial version] 21.2 Multicast Addresses
	[Trial version] 21.3 Multicasting versus Broadcasting on a LAN
	[Trial version] 21.4 Multicasting on a WAN
	[Trial version] 21.5 Source-Specific Multicast
	[Trial version] 21.6 Multicast Socket Options
	[Trial version] 21.7 'mcast_join' and Related Functions
	[Trial version] 21.8 'dg_cli' Function Using Multicasting
	[Trial version] 21.9 Receiving IP Multicast Infrastructure Session Announcements
	[Trial version] 21.10 Sending and Receiving
	[Trial version] 21.11 Simple Network Time Protocol (SNTP)
	[Trial version] 21.12 Summary
	[Trial version] Exercises

	[Trial version] Chapter 22. Advanced UDP Sockets
	[Trial version] 22.1 Introduction
	[Trial version] 22.2 Receiving Flags, Destination IP Address, and Interface Index
	[Trial version] 22.3 Datagram Truncation
	[Trial version] 22.4 When to Use UDP Instead of TCP
	[Trial version] 22.5 Adding Reliability to a UDP Application
	[Trial version] 22.6 Binding Interface Addresses
	[Trial version] 22.7 Concurrent UDP Servers
	[Trial version] 22.8 IPv6 Packet Information
	[Trial version] 22.9 IPv6 Path MTU Control
	[Trial version] 22.10 Summary
	[Trial version] Exercises

	[Trial version] Chapter 23. Advanced SCTP Sockets
	[Trial version] 23.1 Introduction
	[Trial version] 23.2 An Autoclosing One-to-Many-Style Server
	[Trial version] 23.3 Partial Delivery
	[Trial version] 23.4 Notifications
	[Trial version] 23.5 Unordered Data
	[Trial version] 23.6 Binding a Subset of Addresses
	[Trial version] 23.7 Determining Peer and Local Address Information
	[Trial version] 23.8 Finding an Association ID Given an IP Address
	[Trial version] 23.9 Heartbeating and Address Failure
	[Trial version] 23.10 Peeling Off an Association
	[Trial version] 23.11 Controlling Timing
	[Trial version] 23.12 When to Use SCTP Instead of TCP
	[Trial version] 23.13 Summary
	[Trial version] Exercises

	[Trial version] Chapter 24. Out-of-Band Data
	[Trial version] 24.1 Introduction
	[Trial version] 24.2 TCP Out-of-Band Data
	[Trial version] 24.3 'sockatmark' Function
	[Trial version] 24.4 TCP Out-of-Band Data Recap
	[Trial version] 24.5 Summary
	[Trial version] Exercises

	[Trial version] Chapter 25. Signal-Driven I/O
	[Trial version] 25.1 Introduction
	[Trial version] 25.2 Signal-Driven I/O for Sockets
	[Trial version] 25.3 UDP Echo Server Using 'SIGIO'
	[Trial version] 25.4 Summary
	[Trial version] Exercises

	[Trial version] Chapter 26. Threads
	[Trial version] 26.1 Introduction
	[Trial version] 26.2 Basic Thread Functions: Creation and Termination
	[Trial version] 26.3 'str_cli' Function Using Threads
	[Trial version] 26.4 TCP Echo Server Using Threads
	[Trial version] 26.5 Thread-Specific Data
	[Trial version] 26.6 Web Client and Simultaneous Connections (Continued)
	[Trial version] 26.7 Mutexes: Mutual Exclusion
	[Trial version] 26.8 Condition Variables
	[Trial version] 26.9 Web Client and Simultaneous Connections (Continued)
	[Trial version] 26.10 Summary
	[Trial version] Exercises

	[Trial version] Chapter 27. IP Options
	[Trial version] 27.1 Introduction
	[Trial version] 27.2 IPv4 Options
	[Trial version] 27.3 IPv4 Source Route Options
	[Trial version] 27.4 IPv6 Extension Headers
	[Trial version] 27.5 IPv6 Hop-by-Hop Options and Destination Options
	[Trial version] 27.6 IPv6 Routing Header
	[Trial version] 27.7 IPv6 Sticky Options
	[Trial version] 27.8 Historical IPv6 Advanced API
	[Trial version] 27.9 Summary
	[Trial version] Exercises

	[Trial version] Chapter 28. Raw Sockets
	[Trial version] 28.1 Introduction
	[Trial version] 28.2 Raw Socket Creation
	[Trial version] 28.3 Raw Socket Output
	[Trial version] 28.4 Raw Socket Input
	[Trial version] 28.5 'ping' Program
	[Trial version] 28.6 'traceroute' Program
	[Trial version] 28.7 An ICMP Message Daemon
	[Trial version] 28.8 Summary
	[Trial version] Exercises

	[Trial version] Chapter 29. Datalink Access
	[Trial version] 29.1 Introduction
	[Trial version] 29.2 BSD Packet Filter (BPF)
	[Trial version] 29.3 Datalink Provider Interface (DLPI)
	[Trial version] 29.4 Linux: 'SOCK_PACKET' and 'PF_PACKET'
	[Trial version] 29.5 'libpcap': Packet Capture Library
	[Trial version] 29.6 'libnet': Packet Creation and Injection Library
	[Trial version] 29.7 Examining the UDP Checksum Field
	[Trial version] 29.8 Summary
	[Trial version] Exercises

	[Trial version] Chapter 30. Client/Server Design Alternatives
	[Trial version] 30.1 Introduction
	[Trial version] 30.2 TCP Client Alternatives
	[Trial version] 30.3 TCP Test Client
	[Trial version] 30.4 TCP Iterative Server
	[Trial version] 30.5 TCP Concurrent Server, One Child per Client
	[Trial version] 30.6 TCP Preforked Server, No Locking Around 'accept'
	[Trial version] 30.7 TCP Preforked Server, File Locking Around 'accept'
	[Trial version] 30.8 TCP Preforked Server, Thread Locking Around 'accept'
	[Trial version] 30.9 TCP Preforked Server, Descriptor Passing
	[Trial version] 30.10 TCP Concurrent Server, One Thread per Client
	[Trial version] 30.11 TCP Prethreaded Server, per-Thread 'accept'
	[Trial version] 30.12 TCP Prethreaded Server, Main Thread 'accept'
	[Trial version] 30.13 Summary
	[Trial version] Exercises

	[Trial version] Chapter 31. Streams
	[Trial version] 31.1 Introduction
	[Trial version] 31.2 Overview
	[Trial version] 31.3 'getmsg' and 'putmsg' Functions
	[Trial version] 31.4 'getpmsg' and 'putpmsg' Functions
	[Trial version] 31.5 'ioctl' Function
	[Trial version] 31.6 Transport Provider Interface (TPI)
	[Trial version] 31.7 Summary
	[Trial version] Exercises


	[Trial version] Appendix A. IPv4, IPv6, ICMPv4, and ICMPv6
	[Trial version] A.1 Introduction
	[Trial version] A.2 IPv4 Header
	[Trial version] A.3 IPv6 Header
	[Trial version] A.4 IPv4 Addresses
	[Trial version] A.5 IPv6 Addresses
	[Trial version] A.6 Internet Control Message Protocols (ICMPv4 and ICMPv6)

	[Trial version] Appendix B. Virtual Networks
	[Trial version] B.1 Introduction
	[Trial version] B.2 The MBone
	[Trial version] B.3 The 6bone
	[Trial version] B.4 IPv6 Transition: 6to4

	[Trial version] Appendix C. Debugging Techniques
	[Trial version] C.1 System Call Tracing
	[Trial version] C.2 Standard Internet Services
	[Trial version] C.3 'sock' Program
	[Trial version] C.4 Small Test Programs
	[Trial version] C.5 'tcpdump' Program
	[Trial version] C.6 'netstat' Program
	[Trial version] C.7 'lsof' Program

	[Trial version] Appendix D. Miscellaneous Source Code
	[Trial version] D.1 'unp.h' Header
	[Trial version] D.2 'config.h' Header
	[Trial version] D.3 Standard Error Functions

	[Trial version] Appendix E. Solutions to Selected Exercises
	[Trial version] Chapter 1
	[Trial version] Chapter 2
	[Trial version] Chapter 3
	[Trial version] Chapter 4
	[Trial version] Chapter 5
	[Trial version] Chapter 6
	[Trial version] Chapter 7
	[Trial version] Chapter 8
	[Trial version] Chapter 9
	[Trial version] Chapter 10
	[Trial version] Chapter 11
	[Trial version] Chapter 12
	[Trial version] Chapter 13
	[Trial version] Chapter 14
	[Trial version] Chapter 15
	[Trial version] Chapter 16
	[Trial version] Chapter 17
	[Trial version] Chapter 18
	[Trial version] Chapter 20
	[Trial version] Chapter 21
	[Trial version] Chapter 22
	[Trial version] Chapter 24
	[Trial version] Chapter 25
	[Trial version] Chapter 26
	[Trial version] Chapter 27
	[Trial version] Chapter 28
	[Trial version] Chapter 29
	[Trial version] Chapter 30
	[Trial version] Chapter 31

	[Trial version] Bibliography

